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Transactional Memory, why Now?

Multicore is now a mainstream architecture;
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Transactional Memory, why Now?

Multicore is now a mainstream architecture;

Concurrent programs are hard to write:
◮ locks, semaphores, etc, are difficult to compose;

TM is a simple(r) solution for coordination and synchronization
of threads, that

◮ transfers the burden of the concurrency management from the
programmers to the system designers;

◮ enables programmers to compose scalable applications safely;

Many processors are now constructed with the goal of offering
TM.
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Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;
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Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;

How: Propose a general model for abstract TM, based on the
model of fair discrete systems, and proof rules, based on
abstraction mapping, to verify that an implementation of a TM
correctly refines its abstract specification;
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Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;

How: Propose a general model for abstract TM, based on the
model of fair discrete systems, and proof rules, based on
abstraction mapping, to verify that an implementation of a TM
correctly refines its abstract specification;

Verify implementations using tla
+/tlc;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 4 / 21



Transactional Sequences (TS)

A TS (Transaction Sequence) is a sequence of events, each one of
the form:

◭i – open a transaction;

Ri(x , w) – read value w from address x ;

Wi(x , v) – write value v to address x ;

◮i – commit the transaction;

6◮i – abort the transaction;

where

1 i is a client ID;

2 Each event abbreviates invocation of a request and a non-error
response. For example, Ri(x , w) abbreviates Ri(x) request
responded by w .
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Well-Formed TSs

Transactions of each client do not intersect: for every i , the
projection of the TS on i is a sequence of transactions, each of
the form ◭i(Ri + Wi)

∗ (◮i + 6 ◮i).

Each transaction satisfies local R/W consistency: if in a given
transaction a Wi(x , v) occurs, then every later Ri(x , w) in the
same transaction is such that w = v , unless another Wi(x , u)
occurs first.
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Atomic and Serializable TSs

A TS is atomic if

Transactions don’t overlap (even for different clients);

Any Ri(x , v) has the value of the most recent Wj(x , v) in a
committed transaction (i.e. in a transaction that ends with ◮).
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Atomic and Serializable TSs

A TS is atomic if

Transactions don’t overlap (even for different clients);

Any Ri(x , v) has the value of the most recent Wj(x , v) in a
committed transaction (i.e. in a transaction that ends with ◮).

A TS is serializable if it can be “transformed”
into an atomic TS.

Such transformation is effected by exchanging contiguous events
according to specified rules.
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Interchanging Events

Restricting which events in TS may be exchanged, defines
◮ correctness conditions;
◮ conflicts to be avoided;

When defining whether two contiguous events ei and ej (j 6= i)
may be interchanged,

◮ consider only events that belong to transactions i and j ;
◮ consider no future events;
◮ require restrictions to be independent of data values;

Let A denote the interchange set – pairs of events allowed to be
interchanged.
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Transforming TS’s

A TS is serializable wrt to A if, after removing all aborted
transactions (transactions ending in 6 ◮i) it can be transformed
into an atomic TS using only interchanges allowed in A.

Strict Searializability: do not allow (◮i , ◮j) in the interchange
set.
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Capturing Conflicts

The interchange set A can characterize conflicts that should be
avoided in a correct behavior.

Overlap conflict: a conflict arising when one transaction begins
before another pending transaction ends. In A we do not allow
(◭i , ◮j) or (◮i , ◭j).

Writer Overlap conflict: a conflict arising when two transactions
overlap and one writes before the other ends. In A we do not
allow (Wi , ◮j), and also not (◭i , ◮j) if there exists Wj .

Other conflicts of [Scott06] can be similarly defined; however,
not all of them.
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TMs

An implementation TM consists of two functions:

A read function that, given a prefix η of a TS, a client id i , and
a memory address x , determines which value for read(η, i , x) is
returned;

A commit function that, given a prefix η and a client i ,
determines if commit(η, i) may be accepted;

A TS is compatible with a TM if for every event sequence η,

If ηRi(x , u) is a prefix of TS, then read(η, i , x) = u;

If η◮i is a prefix of TS, then commit(η, i) = True;
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TMs

An implementation TM consists of two functions:

A read function that, given a prefix η of a TS, a client id i , and
a memory address x , determines which value for read(η, i , x) is
returned;

A commit function that, given a prefix η and a client i ,
determines if commit(η, i) may be accepted;

A TS is compatible with a TM if for every event sequence η,

If ηRi(x , u) is a prefix of TS, then read(η, i , x) = u;

If η◮i is a prefix of TS, then commit(η, i) = True;

A TM correctly implements a transactional memory (with
respect to A) if every TS that is compatible with it (once
aborted transactions are removed) is serializable.
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Formal Specification

A Specification Module consists of the following:

spec mem : N→ N – a persistent memory, init all 0;

q – a queue of pending events;

spec out – most recent event added to q;

An interchange set A
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Formal Specification

A Specification Module consists of the following:

spec mem : N→ N – a persistent memory, init all 0;

q – a queue of pending events;

spec out – most recent event added to q;

An interchange set A

The module can:

Issue an event and add it to the end of q;

Remove an aborted transaction from q;

Interchange consecutive events in q, if A allows;

Remove from the front of q spec mem-consistent committed
transaction and update spec mem accordingly;
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Verification

Given a specification DA and an implementation DC , how to verify
that DC implements DA?
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Verification

Given a specification DA and an implementation DC , how to verify
that DC implements DA?
Find an abstraction relation R between DC ’s and DA’s states, such
that the following all hold:

Every initial concrete state has an R-related initial abstract state;

Every concrete transition can be emulated by an abstract
transition;

Every pair of R-related states agree on their observables;

Abstract fairness requirements hold in any abstract state
sequence that is R-related to a concrete computation;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 13 / 21



Verification Using TLC

tlc is an explicit state model checker for tla
+. It requires tla

+

descriptions of:

A specification module;

An implementation module;

A refinement mapping from the implementation to the
specification;

tlc runs the implementation module while using the refinement
mapping to map concrete steps into abstract steps, and checks if
they are compatible with the specification module.
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Example: Lazy Invalidation

Scott: a conflict occurs when the commitment of one
transaction may invalidate a read of the other;

More formally: if for some transactions Ti and Tj and some
memory address x , a sequence that satisfies
Ri(x), Wj(x) ≺ ◮j ≺ ◮i , where ei ≺ ej denote that ei

precedes ej , occurs.

Admissible interchange set A: ei and ej may be interchanged
unless ∃x , u, v .(Wj(x , u) ∈ Tj ∧ ei = Ri(x , v) ∧ ej = ◮j)
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Example: Trivial Implementation

The implementation module has the following data structures:

imp mem : N→ N – a persistent memory, init all 0;

pend trans : array of lists – where pend trans [i ] are the events
of i ’s pending transaction;

imp out – latest occurring event;

history q – a queue that consists of all the pending transactions’
events; It is an auxiliary variable introduced to simplify the proof;

Lazy version management – memory updated at commit;

Lazy conflict detection – conflicts detected at commit;

In case of a conflict, the committing transaction is aborted;
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Example: Refinement Mapping

A refinement mapping is defined from Trivial Implementation to
Specification:

spec mem ← imp mem;

q ← history q;

spec out ← imp out;
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Example: Refinement Mapping

A refinement mapping is defined from Trivial Implementation to
Specification:

spec mem ← imp mem;

q ← history q;

spec out ← imp out;

verified, using this refinement:
Trivial Implementation correctly implements Lazy Invalidation.

Bounds of data structures:

2 clients;

At most 4 events in each transaction;

2 memory addresses, 3 values;
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Additional Implementations Verified

Using tlc we successfully verified other implementations:

Eager conflict detection and lazy version management – conflicts
are checked progressively as transactions read and write data,
and the memory is updated only when a transaction is
committed (ltm);

Eager conflict detection and eager version management –
conflicts are checked progressively, and the memory is updated
immediately when a write event occurs (logtm);
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Accomplishments

Defined and employed an abstract model for the specification of
transactional memory;

Defined a family of specifications of TMs;

Showed that by appropriate adaptation of A we can capture
conflicts that are mentioned in the literature (e.g. Scott’s);

Deductively verified some simple implementations;

Successfully verified, using tlc, some standard implementations
appearing in the literature (tcc, ltm, logtm);
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Future Work

Prove liveness properties
◮ if a client closes the same transaction infinitely many times,

then it is committed infinitely many times;
◮ (provided someone suggests an implementation that satisfies

such properties...)

Verify using a theorem prover;

Prove more complex implementations:
◮ memory access outside transactions;
◮ nested transactions;
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