
Verifying Correctness of Transactional

Memories

Ariel Cohen1 John W. O’Leary2 Amir Pnueli1

Mark R. Tuttle2 Lenore D. Zuck3

1New York University

2Intel

3University of Illinois at Chicago

FMCAD – November 2007

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 1 / 21



Transactional Memory, why Now?

Multicore is now a mainstream architecture;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 2 / 21



Transactional Memory, why Now?

Multicore is now a mainstream architecture;

Concurrent programs are hard to write:
◮ locks, semaphores, etc, are difficult to compose;

TM is a simple(r) solution for coordination and synchronization
of threads, that

◮ transfers the burden of the concurrency management from the
programmers to the system designers;

◮ enables programmers to compose scalable applications safely;

Many processors are now constructed with the goal of offering
TM.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 3 / 21



Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 4 / 21



Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;

How: Propose a general model for abstract TM, based on the
model of fair discrete systems, and proof rules, based on
abstraction mapping, to verify that an implementation of a TM
correctly refines its abstract specification;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 4 / 21



Objectives of Research

What: Define a methodology, supported by tools, to determine
when does a TM satisfy its specification;

How: Propose a general model for abstract TM, based on the
model of fair discrete systems, and proof rules, based on
abstraction mapping, to verify that an implementation of a TM
correctly refines its abstract specification;

Verify implementations using tla
+/tlc;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 4 / 21



Transactional Sequences (TS)

A TS (Transaction Sequence) is a sequence of events, each one of
the form:

◭i – open a transaction;

Ri(x , w) – read value w from address x ;

Wi(x , v) – write value v to address x ;

◮i – commit the transaction;

6◮i – abort the transaction;

where

1 i is a client ID;

2 Each event abbreviates invocation of a request and a non-error
response. For example, Ri(x , w) abbreviates Ri(x) request
responded by w .

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 5 / 21



Well-Formed TSs

Transactions of each client do not intersect: for every i , the
projection of the TS on i is a sequence of transactions, each of
the form ◭i(Ri + Wi)

∗ (◮i + 6 ◮i).

Each transaction satisfies local R/W consistency: if in a given
transaction a Wi(x , v) occurs, then every later Ri(x , w) in the
same transaction is such that w = v , unless another Wi(x , u)
occurs first.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 6 / 21



Atomic and Serializable TSs

A TS is atomic if

Transactions don’t overlap (even for different clients);

Any Ri(x , v) has the value of the most recent Wj(x , v) in a
committed transaction (i.e. in a transaction that ends with ◮).

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 7 / 21



Atomic and Serializable TSs

A TS is atomic if

Transactions don’t overlap (even for different clients);

Any Ri(x , v) has the value of the most recent Wj(x , v) in a
committed transaction (i.e. in a transaction that ends with ◮).

A TS is serializable if it can be “transformed”
into an atomic TS.

Such transformation is effected by exchanging contiguous events
according to specified rules.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 7 / 21



Interchanging Events

Restricting which events in TS may be exchanged, defines
◮ correctness conditions;
◮ conflicts to be avoided;

When defining whether two contiguous events ei and ej (j 6= i)
may be interchanged,

◮ consider only events that belong to transactions i and j ;
◮ consider no future events;
◮ require restrictions to be independent of data values;

Let A denote the interchange set – pairs of events allowed to be
interchanged.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 8 / 21



Transforming TS’s

A TS is serializable wrt to A if, after removing all aborted
transactions (transactions ending in 6 ◮i) it can be transformed
into an atomic TS using only interchanges allowed in A.

Strict Searializability: do not allow (◮i , ◮j) in the interchange
set.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 9 / 21



Capturing Conflicts

The interchange set A can characterize conflicts that should be
avoided in a correct behavior.

Overlap conflict: a conflict arising when one transaction begins
before another pending transaction ends. In A we do not allow
(◭i , ◮j) or (◮i , ◭j).

Writer Overlap conflict: a conflict arising when two transactions
overlap and one writes before the other ends. In A we do not
allow (Wi , ◮j), and also not (◭i , ◮j) if there exists Wj .

Other conflicts of [Scott06] can be similarly defined; however,
not all of them.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 10 / 21



TMs

An implementation TM consists of two functions:

A read function that, given a prefix η of a TS, a client id i , and
a memory address x , determines which value for read(η, i , x) is
returned;

A commit function that, given a prefix η and a client i ,
determines if commit(η, i) may be accepted;

A TS is compatible with a TM if for every event sequence η,

If ηRi(x , u) is a prefix of TS, then read(η, i , x) = u;

If η◮i is a prefix of TS, then commit(η, i) = True;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 11 / 21



TMs

An implementation TM consists of two functions:

A read function that, given a prefix η of a TS, a client id i , and
a memory address x , determines which value for read(η, i , x) is
returned;

A commit function that, given a prefix η and a client i ,
determines if commit(η, i) may be accepted;

A TS is compatible with a TM if for every event sequence η,

If ηRi(x , u) is a prefix of TS, then read(η, i , x) = u;

If η◮i is a prefix of TS, then commit(η, i) = True;

A TM correctly implements a transactional memory (with
respect to A) if every TS that is compatible with it (once
aborted transactions are removed) is serializable.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 11 / 21



Formal Specification

A Specification Module consists of the following:

spec mem : N→ N – a persistent memory, init all 0;

q – a queue of pending events;

spec out – most recent event added to q;

An interchange set A

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 12 / 21



Formal Specification

A Specification Module consists of the following:

spec mem : N→ N – a persistent memory, init all 0;

q – a queue of pending events;

spec out – most recent event added to q;

An interchange set A

The module can:

Issue an event and add it to the end of q;

Remove an aborted transaction from q;

Interchange consecutive events in q, if A allows;

Remove from the front of q spec mem-consistent committed
transaction and update spec mem accordingly;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 12 / 21



Verification

Given a specification DA and an implementation DC , how to verify
that DC implements DA?

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 13 / 21



Verification

Given a specification DA and an implementation DC , how to verify
that DC implements DA?
Find an abstraction relation R between DC ’s and DA’s states, such
that the following all hold:

Every initial concrete state has an R-related initial abstract state;

Every concrete transition can be emulated by an abstract
transition;

Every pair of R-related states agree on their observables;

Abstract fairness requirements hold in any abstract state
sequence that is R-related to a concrete computation;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 13 / 21



Verification Using TLC

tlc is an explicit state model checker for tla
+. It requires tla

+

descriptions of:

A specification module;

An implementation module;

A refinement mapping from the implementation to the
specification;

tlc runs the implementation module while using the refinement
mapping to map concrete steps into abstract steps, and checks if
they are compatible with the specification module.

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 14 / 21



Example: Lazy Invalidation

Scott: a conflict occurs when the commitment of one
transaction may invalidate a read of the other;

More formally: if for some transactions Ti and Tj and some
memory address x , a sequence that satisfies
Ri(x), Wj(x) ≺ ◮j ≺ ◮i , where ei ≺ ej denote that ei

precedes ej , occurs.

Admissible interchange set A: ei and ej may be interchanged
unless ∃x , u, v .(Wj(x , u) ∈ Tj ∧ ei = Ri(x , v) ∧ ej = ◮j)

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 15 / 21



Example: Trivial Implementation

The implementation module has the following data structures:

imp mem : N→ N – a persistent memory, init all 0;

pend trans : array of lists – where pend trans [i ] are the events
of i ’s pending transaction;

imp out – latest occurring event;

history q – a queue that consists of all the pending transactions’
events; It is an auxiliary variable introduced to simplify the proof;

Lazy version management – memory updated at commit;

Lazy conflict detection – conflicts detected at commit;

In case of a conflict, the committing transaction is aborted;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 16 / 21



Example: Refinement Mapping

A refinement mapping is defined from Trivial Implementation to
Specification:

spec mem ← imp mem;

q ← history q;

spec out ← imp out;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 17 / 21



Example: Refinement Mapping

A refinement mapping is defined from Trivial Implementation to
Specification:

spec mem ← imp mem;

q ← history q;

spec out ← imp out;

verified, using this refinement:
Trivial Implementation correctly implements Lazy Invalidation.

Bounds of data structures:

2 clients;

At most 4 events in each transaction;

2 memory addresses, 3 values;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 17 / 21



Additional Implementations Verified

Using tlc we successfully verified other implementations:

Eager conflict detection and lazy version management – conflicts
are checked progressively as transactions read and write data,
and the memory is updated only when a transaction is
committed (ltm);

Eager conflict detection and eager version management –
conflicts are checked progressively, and the memory is updated
immediately when a write event occurs (logtm);

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 18 / 21



Accomplishments

Defined and employed an abstract model for the specification of
transactional memory;

Defined a family of specifications of TMs;

Showed that by appropriate adaptation of A we can capture
conflicts that are mentioned in the literature (e.g. Scott’s);

Deductively verified some simple implementations;

Successfully verified, using tlc, some standard implementations
appearing in the literature (tcc, ltm, logtm);

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 19 / 21



Future Work

Prove liveness properties
◮ if a client closes the same transaction infinitely many times,

then it is committed infinitely many times;
◮ (provided someone suggests an implementation that satisfies

such properties...)

Verify using a theorem prover;

Prove more complex implementations:
◮ memory access outside transactions;
◮ nested transactions;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 20 / 21



Reference

[Lamport, 99] showed how to specify concurrent systems with tla
+;

[Scott, 06] offered a sequential specifications that embody conflict
functions;

[Herlihy and Moss, 93] proposed the first transactional memory;

[Shavit and Touitou, 95] presented the first software-only transactional
memory (stm);

[Hammond et al., 04] proposed the model tcc (transactional memory
coherence and consistency);

[Ananian et al., 05] described utm (unbounded transactional memory) and
ltm;

[Moore et al., 06] proposed logtm– a log-based transactional memory;

Ariel Cohen (NYU) Verification of Transactional Memory FMCAD – 2007 21 / 21


