
IC3 Software Model Checking
on Control Flow Automata

Tim Lange
RWTH Aachen University, Germany

tim.lange@cs.rwth-aachen.de

Martin R. Neuhäußer
Siemens AG, Germany

martin.neuhaeusser@siemens.com

Thomas Noll
RWTH Aachen University, Germany

noll@cs.rwth-aachen.de

Abstract—In recent years, the inductive, incremental verifi-
cation algorithm IC3 had a major impact on hardware model
checking. Also with respect to software model checking, a number
of adaptations of Boolean IC3 and combinations with CEGAR
and ART-based techniques have been developed. However, most
of them exploit the peculiarities of software programs, such
as the explicit representation of control flow, only to a limited
extent. In this paper, we propose a technique that supports this
explicit representation in the form of control flow automata, and
integrates it with symbolic reasoning about the data state space of
the program. It thus provides a true lifting of IC3 from hardware
to software model checking. By evaluating the approach on a
number of case studies using a prototypical implementation, we
demonstrate that our method shows promising results.

I. INTRODUCTION

IC3 [1] is an incremental algorithm that has originally been
designed for verifying invariant properties of finite transition
systems. It constructs an over-approximation of the reachable
state space by generating Boolean clauses that are induc-
tive relative to stepwise reachability information. During this
construction, candidate counterexamples are being disproved
using Boolean SAT-solving techniques. This approach has
turned out to be highly effective; in fact, it is considered to
be one of (if not the) most important contribution of bit-level
formal verification of hardware systems for the last decade.

There have been several attempts to lift Boolean IC3 to the
domain of software model checking. As this setting usually
induces infinite-state systems, more advanced symbolic rea-
soning techniques are required. The most prominent one is
Satisfiability Modulo Theories (SMT). Here, sets of states are
symbolically specified by first-order formulas over constraints
from the respective theory, and SMT-solving techniques are
employed to rule out spurious counterexamples.

One of the first integrations of SMT into IC3 has been
presented in [2]. In addition to the generalisation of SAT to
SMT solving, it exploits the partitioning of the program’s state
space as induced by its control flow graph. This is achieved
by unwinding the latter into an Abstract Reachability Tree
(ART) in which each node is associated with a control location
and a formula, resulting in an “explicit-symbolic” approach
named Tree-IC3. Candidate counterexamples are handled by
computing under-approximations of pre-images.

The advantages in comparison to Boolean IC3 are twofold.
First, Tree-IC3 eliminates the possible redundancy of subfor-

mulas partitioning of the control state space, the solver is
exposed to simpler and smaller formulas.

On the downside, the key idea underlying IC3, relative
inductiveness, cannot be directly applied in this setting due
to the partitioned representation that leads to a path-wise
unwinding of the transition system. The follow-up publica-
tion [3] therefore reverts to a monolithic transition relation,
replacing the pre-image computation by (implicit) predicate
abstraction. The latter is a standard abstraction technique [4]
that partitions the state space according to the equivalence
relation induced by a set of predicates. Its implicit variant
[5] allows to express abstract transitions without explicitly
computing the abstract system. In the IC3 setting, this avoids
theory-specific generalisation techniques.

In [6], Horn clauses are employed to represent recursive
predicate transformers. Proof obligations are generalised using
a specialised interpolation procedure for linear arithmetic.
However, the latter again does not exploit relative induction.

In summary, existing work exploits the peculiarities of
software programs only to a limited extent to support IC3-
style verification. In this paper, we develop an approach that
combines the advantage of explicitly handling the control flow
of a program, employing a corresponding automata model,
with relative inductive reasoning over a symbolic representa-
tion of its data space. It thus provides a true lifting of IC3 from
hardware to software model checking. We demonstrate the
applicability and efficiency of our method by evaluating it on
a number of case studies using a prototypical implementation.

The remainder of this paper is organised as follows. We start
by introducing some general concepts in Section II. Section III
sets the stage for our contribution with a description of the
original IC3 algorithm, which is then extended in Section IV
by taking control flow automata into account. Results of the
experimental evaluation are given in Section V. Section VI
concludes the paper with a summary and a description of
future work.

II. PRELIMINARIES

A control flow automaton (CFA) A = (L,G) consists of a
finite set of locations L = {0, . . . , n}, modeling the program
counter of a corresponding sequential code, and edges in
G ⊆ L × FO × L labeled with quantifier-free first-order
formulas over the set Var of program variables and their next-
state primed forms, Var ′ [7]. Priming of a formula, ϕ’, is

tim.lange@cs.rwth-aachen.de
martin.neuhaeusser@siemens.com
noll@cs.rwth-aachen.de

the same as priming every variable in ϕ. Such a formula can
either encode a variable assignment, containing primed and
unprimed variables, or an assume statement in which case it
will only contain unprimed variables. We assume that for any
two locations there exists at most one edge between them.

Given a subset of variables X ⊆ Var , a cube over X is
defined as a conjunction of literals, each literal being a variable
or its negation in the propositional case and a theory atom or
its negation in the quantifier-free first-order case. The negation
of a cube, i.e. a disjunction of literals, is called a clause.

A program P = (A, l0, lE) consists of a CFA A represent-
ing the control flow, as well as an initial location l0 ∈ L and
an error location lE ∈ L. This representation allows to encode
arbitrary programs and assertions for safety verification. For
every assertion that has to be verified at location l, split l and
introduce an edge with the negated assertion to lE and an
edge with the positive assertion between the split nodes. This
way, checking the violation of assertions becomes checking
reachability of lE in A.

Given two locations l1, l2 ∈ L, we define the transition
formula

Tl1→l2 =

{
(pc = l1) ∧ t ∧ (pc′ = l2) , if (l1, t, l2) ∈ G
false , otherwise.

(1)

This yields the global transition formula as

T =
∨

(l1,t,l2)∈G

Tl1→l2 . (2)

Definition 1 (Relative inductiveness [1]): Given a transition
formula T , a formula ϕ is inductive relative to another formula
ψ if

ψ ∧ ϕ ∧ T ⇒ ϕ′ (3)

is valid.
Starting from Def. 1 we can refine relative inductiveness

to consider only a single transition rather than the whole
transition relation.

Definition 2 (Edge-relative inductiveness): Given a CFA A
and locations l1, l2 ∈ L, a formula ϕ is edge-relative inductive
to another formula ψ if

ψ ∧ ϕ ∧ Tl1→l2 ⇒ ϕ′ (4)

is valid.
Note that edge-relative inductiveness does also hold if

(l1, t, l2) /∈ G for every t. In this case, Tl1→l2 = false, which
makes (4) hold trivially, i.e. if we are in a state satisfying ϕ
and we cannot leave it via the considered edge, we remain in
a state satisfying ϕ.

To handle the possibly infinite state space over Var , we use
a symbolic representation through quantifier-free first-order
formulas.

Definition 3 (Data region): A data region is represented by
a quantifier-free FO formula s over Var and consists of all
variable assignments σ satisfying s, i.e., {σ | σ |= s}.

Based on Def. 3 we can augment a data region with a control
flow location l ∈ L. This information, sometimes referred to
as atomic region [8] is called region in the following.

Definition 4 (Region): We define a region r = (l, s) as a
pair consisting of location l ∈ L and data region s. Given such
a region r = (l, s), the corresponding formulas are defined
as {φ | φ ≡ (pc = l ∧ s)}. Analogously the corresponding
formulas for a negated region ¬r are defined as {φ | φ ≡
¬(pc = l ∧ s)}.

Given two regions r1, r2 and representatives of their corre-
sponding propositional formulas ϕ1, ϕ2, then r1 is inductive
relative to r2 iff ϕ1 is inductive relative to ϕ2. The analogue
can be defined for the special case of edge-relative inductive-
ness.

Using their corresponding formula, we can use relative and
edge-relative inductiveness for regions very similar to [1].

Even though it works for two non-negated regions as well,
the IC3 algorithm only makes use of the case where we check
whether a negated region ¬r2 is inductive edge-relative to a
non-negated region r1. Therefore we will only consider this
case in the following and inspect it in detail. We found two
different cases whose premise can be statically determined and
that simplify the SMT queries that we have to use.

Lemma 1 (Relative inductive regions): Assuming two re-
gions r1 = (l1, s1), ¬r2 = ¬(l2, s2), we can reduce edge-
relative inductiveness of ¬r2 to r1 to

s1 ∧ Tl1→l2 ⇒ ¬s′2 , if l2 6= l1 (5)
s1 ∧ ¬s2 ∧ Tl1→l2 ⇒ ¬s′2 , if l2 = l1 (6)

Proof 1: Given two regions r1 = (l1, s1) and r2 = (l2, s2)
with corresponding formulas ϕ1 and ϕ2, we have:

ϕ1 ≡ (pc = l1 ∧ s1) ¬ϕ2 ≡ ¬(pc = l2 ∧ s2)

Def. 2 yields:

(pc = l1 ∧ s1) ∧ ¬(pc = l2 ∧ s2) ∧ Tl1→l2

⇒ ¬(pc′ = l2 ∧ s′2)
≡ (pc = l1 ∧ s1) ∧ (pc 6= l2 ∨ ¬s2) ∧ Tl1→l2

⇒ (pc′ 6= l2 ∨ ¬s′2)

If l1 6= l2, this is equisatisfiable to

(true ∧ s1) ∧ (true ∨ ¬s2) ∧ Tl1→l2 ⇒ (false ∨ ¬s′2)
≡ s1 ∧ Tl1→l2 ⇒ ¬s′2

Otherwise, we obtain

(true ∧ s1) ∧ (false ∨ ¬s2) ∧ Tl1→l2 ⇒ (false ∨ ¬s′2)
≡ s1 ∧ ¬s2 ∧ Tl1→l2 ⇒ ¬s′2

�
In Proof 1, we can use the presented equisatisfiable trans-

formations because the transition from l1 and l2 implicitly
contains the atoms (pc = l1) and (pc′ = l2). Therefore in the
first case, where l1 6= l2, the atoms (pc = l1) and (pc′ 6= l2)
can be rewritten to true , while the atom (pc′ 6= l2) can be

rewritten to false . The analogous holds for the case where
l1 = l2.

Given a program P , we can define a finite path π of length
n as a sequence l0, l1, . . . , ln, s.t. for every 0 ≤ i < n there
exists an edge (li, ti, li+1) ∈ G in P . A path π is called
feasible iff for every lj in π we can construct a region (lj , sj)
that is non-empty, i.e. sj 6≡ false, s.t. si ∧ Tli→li+1 ⇒ si+1

for 0 ≤ i < n.

III. ORIGINAL IC3 ALGORITHM

Let S = (X, I, T) be a transition system over a set X of
Boolean variables, and I(X) and T (X,X ′) two propositional
formulas respectively describing the initial condition and the
transition relation over variables in X and next-state primed
successors X ′. Given a propositional property P (X), we want
to verify that every state in S that is reachable from a state in
I satisfies P . Sometimes also an inverted formulation is used
like in [9] where ¬P states are bad states and we want to
show that no bad state is reachable from the initial states. The
main idea of the IC3 algorithm [1] and the earlier finite state
inductive strengthening (FSIS [10]) is that if P is inductive,
i.e. I ⇒ P and P ∧ T ⇒ P ′, then P is also an invariant
on S. However, even if P is an invariant on S it may not be
inductive. Therefore the goal of IC3 and FSIS is to produce a
so called inductive strengthening F of property P , s.t. F ∧P
is inductive. This means that we can restrict the set of states
in P to a smaller set of states in the intersection of F and P ,
which still contains all states reachable from I , but excludes
unreachable states that will lead to a violation of induction.
While FSIS tries to come up with such a strengthening in one
step, IC3 proceeds in a more relaxed approach and constructs
F incrementally.

This incremental construction is based on a sequence of
frames F0, . . . , Fk for which

I ⇒ F0

Fi ⇒ Fi+1 , for 0 ≤ i < k

Fi ⇒ P , for 0 ≤ i ≤ k
Fi ∧ T ⇒ F ′i+1 , for 0 ≤ i < k

has to hold in order to produce an inductive invariant. The
algorithm starts with two initial checks for 0- and 1-step
reachable states in ¬P and afterwards initializes the first frame
F0 to I . The rest of the algorithm can be divided into an inner
and an outer loop, sometimes also referred to as blocking and
propagation phases, respectively.

The outer loop iterates over the maximal frame index
k, looking for states in Fk that can reach ¬P , so called
counterexamples to induction (CTI). If such a CTI exists, it
is analyzed in the inner loop, the blocking phase. If no such
CTI exists, IC3 tries to propagate clauses learned in frame Fi

forward to Fi+1. In the end it checks for termination, which
is given if Fi = Fi+1 for some 0 ≤ i < k.

The objective of the blocking phase is to decide whether a
CTI is reachable from I or not. For this purpose, it maintains

a set of pairs of frame indices and states, called proof obliga-
tions. From this set it picks the pair (i, s) with the smallest
frame index i. If there is more than one pair with this frame
index, the choice between those is arbitrary. For the chosen
state, IC3 checks whether ¬s is relative inductive to Fi−1,
using (3). If it is relative inductive, we can block s in frames
Fj for 0 ≤ j ≤ i+1. But rather than just adding ¬s, IC3 first
tries to obtain a clause that is a subset of ¬s and therefore
excludes more states. This clause, called a generalization of
¬s, is then added to the frames and afterwards the pair (i, s) in
the set of proof obligations is replaced by (i+1, s). If s is not
relative inductive to Fi−1 this means that there exists an Fi−1
predecessor p that can reach s. IC3 therefore adds (i − 1, p)
to the set of proof obligations. The blocking phase terminates
if either there exists an s in the set of proof obligations that
is relative inductive to an initial state at index 0, in which
case there exists a counterexample path, or for every proof
obligation the frame index i > k, i.e. there exists a j ≥ 0, s.t.
every predecessor of the original CTI is inductive relative to
Fj .

IV. IC3 ON CONTROL FLOW AUTOMATA

In this section we will present our IC3 algorithm for
control flow automata as annotated pseudocode, give a short
explanation and a proof of partial correctness, followed by an
example showing the benefits of our method.

The most straight-forward way to lift IC3 to software model
checking is to encode the control flow in an additional pc
variable representing the program location, as presented in
[2]. However, this approach introduces some tedious handling
of the implicit pc variable and is not very competitive. One
reason is that the control flow of the input program already
gives a very clear structure to the system, which is completely
disregarded when encoded inside a global transition formula.
Thus our approach tries to exploit as much of the structure
given in the input program as possible.

In [1] Bradley draws an analogy between the way IC3
proves properties on a transition system and how a human
analyzes a system - by producing a set of lemmas s.t. each
holds relative to a previous one and that all together imply
the property. It is that stepwise approach that makes IC3
so competitive and which motivated us to apply our version
of IC3 directly to a control flow automaton as an explicit
representation of a program’s possible execution steps.

With respect to the definition of programs we follow the
notion of [9] and reason about error states, rather than property
states.

The explicit representation of edges leads to a situation
where we can reduce the possible transitions for a region
r = (l, s) to those that are available from l in the program
P , which allows us to formulate significantly smaller solver
queries. Explicit initial and error states enable us to statically
check 0-step and (potential) 1-step reachability, as well as to
avoid initial and error conditions, which in turn reduces the
size of the solver queries even further.

In analogy to bit-level IC3, we construct frame sequences
F0, . . . , Fk, but instead of using global frames, we use
location-local frames F(i,l) in every l ∈ G. We interpret those
F(i,l) as the set of, possibly overapproximating, data regions
reachable in at most i steps at location l.

Algorithm 1 Outer loop
Ensure: ret. value iff lE is reachable

function BOOL PROVE
if l0 = lE or ((l0, t, lE) ∈ G and sat(t)) then

return false
initialize frames
for k = 1 to . . . do

if not STRENGTHEN(k) then
return false

propagate
if termination then

return true

Alg. 1 works more or less like the original function prove
in [1]. In the initial checks, we can reformulate the 0-step
reachability query I∧¬P to the simple check whether l0 = lE .
Also for 1-step counterexamples, originally I ∧ T ∧ ¬P ′, we
can still check the necessary syntactic reachability condition
statically. If there exists an edge e = (l0, t, lE), then we
have to use the solver to check satisfiability of t. After those
initial checks are completed we initialize frames F0 and F1.
Exploiting the fact that only l0 is initial, we can set F(0,l0)

to true and F(0,l) to false for every l 6= l0. After the initial
phase, the algorithm starts the main loop with frame limit k
and tries to strengthen the new frame set. If the blocking phase
succeeds and finds a strengthening for k, the propagation phase
starts and tries to push learned data regions forward. The inner
loop ends with checking termination. Here we have to modify
the original termination condition Fi = Fi+1, for some i, to
F(i,l) = F(i+1,l) for some i and every l ∈ L \ {lE}.

Algorithm 2 Strengthening
Require: (a) k ≥ 1
Require: (b) ∀i ≥ 0, l ∈ L,F(i,l) ⇒ F(i+1,l)

Require: (c) ∀0 ≤ i < k, l, l′ ∈ L, s.t. (l, t, l′) ∈ G, F(i,l) ∧
Tl→l′ ⇒ F ′(i+1,l′)

Ensure: ∀i ≥ 0, l ∈ L,F(i,l) ⇒ F(i+1,l)

Ensure: if ret. value then ∀0 ≤ i < k, l, l′ ∈ L, s.t.(l, t, l′) ∈
G, F(i,l) ∧ Tl→l′ ⇒ F ′(i+1,l′)

Ensure: if ¬ret. value, there exists a counterexample path
function BOOL STRENGTHEN(k: int)

while ∃l, s.t. sat(F(k,l) ∧ Tl→lE) do
@assert (b),(c)
s := predecessor data region
if not BACKWARDBLOCK(k, l, s) then

return false
@assert s 6|= F(k,l)

return true

The function STRENGTHEN in Alg. 2 also works similarly to
the original IC3. The main difference here is in the condition
of the while loop which checks whether there exists l ∈ L s.t.
e = (l, t, lE) ∈ G and t is satisfiable under F(k,l). If this is
the case, there exists a CTI. Note that in this paper we do not
tackle the whole topic of generalization and restrict ourselves
to computing weakest preconditions (WP) of the error state
w.r.t. to t. While this might not offer the best performance
possible, it is a safe approximation, as the WP is the smallest
overapproximation of CTI states. The so extracted predecessor
s is then analyzed in the function BACKWARDBLOCK, shown
in Alg. 3.

Algorithm 3 Inner loop
Require: (b),(c)
Require: sat(F(̂i,l̂′) ∧ ŝ ∧ Tl̂′→lE

)
Ensure: if ret. value, then ¬ŝ is inductive relative to F(̂i−1,l),
∀l, s.t. (l, t, l̂′) ∈ G

Ensure: if ret. value, then (b),(c)
Ensure: if ¬ret. value, there exists a feasible path l0 l̂′

function BOOL BACKWARDBLOCK(̂i: int, l̂′: location, ŝ:
data region)
Q.add(̂i, l̂′, ŝ)
while |Q| > 0 do

@assert ∀(i, l′, s) ∈ Q.0 ≤ i ≤ k
@assert ∀(i, l′, s) ∈ Q.∃ path (l′, s) (lE , true)
(i, l′, s) = Q.pop
if i = 0 then

return false
else

@assert (l′,¬s) is inductive relative to F(j,l),
∀0 ≤ j < i, l ∈ L\{lE}

for each l, s.t. (l, t, l′) ∈ G do
if l = l′ and sat(F(i−1,l) ∧ ¬s ∧ Tl→l′ ∧ s′) then

generate predecessor c of s
@assert ∀(i, l′, s) ∈ Q, c 6= s
add (i− 1, l, c) and (i, l′, s) to Q

else if l 6= l′ and sat(F(i−1,l) ∧ Tl→l′ ∧ s′) then
generate predecessor c of s
@assert ∀(i, l′, s) ∈ Q, c 6= s
add (i− 1, l, c) and (i, l′, s) to Q

else
block s in frames F(j,l′) for 0 ≤ j ≤ i

return true

While Alg. 1 and 2 are based on [1], we decided to present
the inner loop similarly to the representation in [9] as we found
it easier to comprehend. The function BACKWARDBLOCK gets
as parameter a frame index î, a location l̂′ ∈ L and a data
region ŝ. Following [9] we add this initial proof obligation to
a priority queue Q, s.t. the obligation with the lowest i will
get popped first. While the queue is non-empty, we start the
inner loop by picking the obligation with the smallest i. If i =
0, we can immediately stop with a counterexample because
l′ has to be initial. If it were not initial, the previous proof

obligation at level 1 would have included the frame F(0,l),
which is false for every non-initial location l. If i 6= 0 we have
to check whether the region ¬(l′, s) is inductive edge-relative
to F(i−1,l) of any predecessor l by solving the query (5) or
(6), depending on whether l = l′ or not. If ¬(l′, s) is inductive
edge-relative to F(i−1,l) for every predecessor l, we can block
s in all F(j,l′), 0 ≤ j ≤ i. If, on the other hand, ¬(l′, s) is not
inductive edge-relative to F(i−1,l) for some l, then there must
exist a predecessor that can reach (l′, s). We therefore take the
WP c of s w.r.t. the transition formula and add the new proof
obligation (i−1, l, c) to the obligation queue. We also add the
old obligation (i, l′, s) to the queue for future re-inspection.
The inner loop terminates with true in case that Q is empty
or with false in case there exists an obligation at frame 0.

Note that Alg. 3 slightly differs from the idea of blocking a
region r iff r is edge-relative inductive to all incoming edges.
However, the presented algorithm behaves correctly: Due to
the ordering of the obligation queue, the algorithm proceeds
in a kind of depth-first search manner. Even if r has been
blocked at level i via one edge, another obligation r′, that
is a predecessor of r, at level i − 1 will be chosen. Here
we can distinguish two cases: Either r′ is the last step on a
counterexample path from l0 to r at level i or it is not, in
which case all regions explored will be blocked. In both cases
r at level i will not be reconsidered before backtracking to an
obligation at level i + 1, in which case r at level i has been
blocked.

In the following we will show that our algorithm is partially
correct, i.e. it is correct given its termination. We construct
our proof bottom-up by first proving that Alg. 3 is correct.
As we use weakest preconditions, we can actually show full
correctness, because termination is achieved for the following
reason: Given an initial obligation (i, l, s) we have to construct
at most ni proof obligations, where n is the maximal in-degree
of locations in L. This upper bound can be established because
a WP of s covers all, possibly infinitely many, predecessor
data regions that can reach s w.r.t. the transition. Therefore we
cover all data regions in one step and only have to construct
predecessor regions until we reach frame level 0, i.e., after
doing this i times.

Lemma 2: Function BACKWARDBLOCK returns true iff ¬ŝ
is inductive relative to F(̂i−1,l) for all locations l that are a
predecessor of l̂′.

Proof 2: Function BACKWARDBLOCK starts the while loop
by examining the proof obligation in the queue that has the
lowest frame index i. If the frame index is zero, then l̂′ must
be l0, because F(0,I) is the only region with frame index 0 to
which any other region is relatively inductive, by construction.
This way, there must exist a feasible path from l0 to l̂′.

If there exists no feasible path from l0 to l̂′ given F0, ..., Fk,
then every path of length j ending in l̂′ starts in a location l,
s.t. the region (l,¬s) is inductive relative to F(k−j−1,lx) for
all lx, s.t.(lx, t, l) ∈ G. This means that every proof obligation
added to Q is ultimately inductive relative to its predecessors
and thus also ¬ŝ is inductive relative to F(̂i−1,l).

0

1

2lE

x := 10

x++;

x 6= 9x = 9

Fig. 1. Example for non-termination of Alg. 1

We continue by proving correctness of Alg. 2. Here we can
guarantee termination for the same reason as for BACKWARD-
BLOCK. Because we only search for CTIs, we have at most
nE of them, where nE is the number of predecessor locations
of lE in P . As we compute exact pre-images by weakest
preconditions, every data region has exactly one predecessor
data region per edge.

Lemma 3: Function STRENGTHEN terminates with result
true iff there exists an inductive strengthening for the frames
F(k,l) in all locations l in the CFA.

Proof 3: Assume a call of function STRENGTHEN returns
false, then there must have been a call to BACKWARDBLOCK
with some (k, l, s), such that BACKWARDBLOCK returned
false. From Lemma 2 we know that in this case, there exists a
feasible path of length k from l0 to l that ends up in data region
s. Because l is a predecessor of lE and s is a precondition
under Tl→lE , there exists a counterexample path of length
k + 1. Otherwise every call of BACKWARDBLOCK returned
true, which means that every predecessor location (and data
region) of lE is unreachable in the current frame sequence.
Thus every predecessor of lE was excluded from their frames
at level k which yields an inductive strengthening for Fk.

After proving correctness of Alg. 2 and 3, we have to
drop termination for Alg. 1. The reason is that there might
exist infinite ascending or descending chains that we cannot
generalize. This is exemplified in the simple program in Fig. 1.
While there exist an inductive strengthening, e.g., (x ≥ 10),
for every maximal frame index k our algorithm will block a
region (1, 9− (k − 1)) of which there can be infinitely many
for unbounded integers, such that there will never exist an
i for which F(i,1) = F(i+1,1). Note that in the following,
as all statements over F(i,l) always concern all non-error
locations, we will slightly abuse notation and use Fi in place
of F(i,l),∀l ∈ L\{lE}.

Lemma 4: In case function PROVE terminates, it returns true
iff there exists an inductive strengthening F for P , s.t. F ∧P
is inductive.

Proof 4: Assume PROVE terminates with true, then every
call of STRENGTHEN for every j < k must have returned true
and there must exist a frame with index i < k, s.t. Fi = Fi+1,
i.e. the frame Fi is inductive, because Fi∧T ⇒ F ′i . Therefore
there cannot exist a counterexample path of length k (more
precise of length i) or less and there cannot exist one of length
greater than k, because Fi is inductive.

l0

1

2lE

x :=?;
y := x

x++;
y++

x = yx 6= y

l:
i:

0 1 2

l0 true true true
1 false x = y x = y

Fig. 2. Example program and resulting frames

Now assume that PROVE returns false: Then there must exist
a k, s.t. for no i < k, Fi is inductive and STRENGTHEN for
k returns false, i.e. there exists a path of length k from the
initial to the error state.

Theorem 1: If the algorithm terminates, it returns true iff P
is an invariant on S.

Proof 5: By Lem. 2-4 the theorem holds. �

Example

In the remainder of this section we show by example how
our lifting of IC3 to control flow automata works and what its
benefits are. We start with the program from Fig. 2 as input.
Note that in our presentation we omit the computation steps
for l = 2, as lE is not reachable from that location. As shown
in Alg. 1 we start by the two static checks for 0- and 1-step
counterexamples. As they are both obviously not satisfied, we
proceed to initializing F(0,l0) to true and F(0,1) to false.
F(1,l) is set to true for both locations l ∈ {l0, 1}.

We now start our algorithm with k = 1 and try to construct
a strengthening. There exists exactly one l s.t. (l, t, lE) ∈ G,
namely l = 1, which yields the initial proof obligation
(1, 1, x 6= y) for the priority queue Q in Alg. 3. As i is not 0,
we start the blocking phase by searching for a predecessor
of 1 and find location l0, which means we have to apply
query (5) and check sat(F(0,l0) ∧ y′ = x′ ∧ x′ 6= y′), which
is obviously not satisfiable. Next we check l = 1. As this
is a self-loop we can use the stronger query (6) to check
sat(F(0,1) ∧ x = y ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ x′ 6= y′).

This query shows two improvements over existing tech-
niques: First, we initialized F(0,1) to false because it is not
initial, which allows us to block the obligation one step earlier
and also make the query non-satisfiable immediately. Second,
even without any information learned in F(0,1) the query is
not satisfiable due to the stronger edge-relative inductiveness
of (6).

We continue the execution by blocking x 6= y in F(1,1), i.e.
add ¬(x 6= y) to F(1,1). Afterwards there is no entry in Q
and we leave BACKWARDBLOCK. As by the blocking there
is no more CTI at index 1, we also leave STRENGTHEN and
continue with major iteraton k = 2.

The function call STRENGTHEN(2) enters BACKWARD-
BLOCK with the initial obligation (2, 1, x 6= y). For predeces-
sor l0, we check sat(F(1,l0)∧y′ = x′∧x′ 6= y′), which is again
unsatisfiable, as well as sat(F(1,1)∧x = y∧x′ = x+1∧y′ =
y+1∧ x′ 6= y′) for location 1, which is not satisfiable either.
We can therefore block x 6= y in frame F(2,1), too.

Again we have an empty Q and no more CTI at level 2.
We check for termination and find F(1,l0) = F(2,l0) as well
as F(1,1) = F(2,1), which means that we found an inductive
strengthening F = (1, x = y) s.t. lE is not reachable in the
CFA.

V. BENCHMARKS

In this section we start with details of our implementation,
followed by an evaluation and end with a discussion of the
presented results.

Implementation

We implemented our IC3CFA algorithm on top of an
existing proprietary model checking framework. A flow chart
of the framework is shown in Fig. 3. The framework makes
use of the LLVM project enable parsing a wide range of input
languages and translate them into the LLVM intermediate
representation (IR) [11]. To close the gap between compiler
oriented semantics of C as assumed by LLVM and verification
semantics that was encountered in the development of the UFO
model checker we use the approach of initializing variables
with a call to an external function as presented in [12].
We translate this IR into our own intermediate verification
language (IVL) that is more suitable for verification, e.g. no
SSA form, no three-adress code. On the IVL code we execute
some optimization stages that are also widely used in other
model checkers, e.g. the Kratos software model checker [13],
like program slicing, expression propagation and bisimulation
minimization, as well as Steensgaard’s pointer analysis [14]
to rewrite simple pointer expressions. The bit-precise memory
model (similar to the one of CBMC [15]) supports limited
pointer operations, including array-element and record-field
addressing. After reaching a fixpoint of these optimizations,
we construct the program’s control flow graph, labeled with
instructions of a guarded command language similar to that
of [16]. This allows for efficient construction of weakest
preconditions [16], [17]. The results of our preprocessing are
in line with the CFAs produced by Kratos and only differ
by one or two locations. While the presented approach is
fully theory unaware and can be used for infinite-domain
theories such as linear real arithmetic (LRA) we use the
finite-domain theory of bit vectors. Our tool supports the
Z3 and MathSAT SMT solvers; all following benchmarks
were executed using the Z3 solver. To minimize overhead
and reduce unnecessary pushing attempts we implemented the
efficient pushing strategy of [18]. For storing frames efficiently
we implemented the delta encoding approach of [9] which,
in our experiments, reduced memory consumption as well
as runtime significantly. For some benchmarks the reduction

LLVM

Input File

LLVM IR IVL

static
analyses

optimize Fixpoint? Construct
CFA

Large-block
encoding

IC3CFAOther MCs

no

yes

Fig. 3. Tool flow

in runtime was almost 20 times. Generalization of computed
preimages is not implemented, yet.

Evaluation

For evaluation of our algorithm and to compare it to others
we used a subset1 of 28 programs from the set of bench-
marks used in [2], originating from different domains such
as device drivers, communication protocols, SystemC designs
and textbook algorithms, some of which are contained in the
set of benchmarks of the software verification competition
(http://sv-comp.sosy-lab.org/2015/). One out of four programs
contains a bug.

All presented results can be reproduced by our tool via
the web-interface at http://www-i2.informatik.rwth-aachen.de/
mctools/vplc/fmcad15/ .

All experiments have been executed on a cluster using a
single core per instance, running at 2.1 GHz with a memory
limit of 4GB per file and a timeout of 1200 seconds.

We briefly compare our implementation to the IC3SMT,
Tree-IC3 and Tree-IC3-ITP algorithms of [2]. Scatter plots
in Fig. 4 give a graphical idea of how IC3CFA compares
time-wise against each of these algorithms while the appended
table gives statistics of the overall performance of the four
algorithms. The second column highlights the number of
solved instances of the 28 benchmark programs. The third
column shows the time in seconds for solved instances only,
while the last column also takes timeouts into account.

IC3SMT, the implementation of the straight-forward lifting
of IC3 to SMT as described in the beginning of Sec. IV
is clearly the one that performs worst from all four. This
comparison is in line with the observations from [2] and shows
that IC3CFA benefits from using the explicit representation of
control flow over the implicit representation using a dedicated
pc variable. IC3CFA is able to solve nine more instances than
IC3SMT and does so in almost 9% of the time.

The comparison of IC3CFA with the Tree-IC3 implementa-
tion shows the effect of constructing frames for control flow

1Currently we do not support assignment of nondeterministic values inside
a loop, due to limitations in our current memory model.

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

IC3CFA

IC
3S

M
T

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

IC3CFA

Tr
ee

IC
3

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

IC3CFA

Tr
ee

IC
3-

IT
P

Algorithm # solve solve t total t
IC3SMT 13/28 6328s 24328s
Tree-IC3 21/28 1752s 10152s
Tree-IC-ITP 28/28 3107s 3107s
IC3CFA 22/28 584s 7784s

Fig. 4. Comparison of Tree-IC3 and IC3CFA

locations, rather than unrolling the ART, as both algorithms are
based on a very similar representation of control flow automata
and both use weakest preconditions to construct the preimage
of a state. IC3CFA is able to solve one more instance than
Tree-IC3 in a third of the time.

Besides these two direct comparisons we also evaluated
our implementation against the Tree-IC3-ITP implementation
that almost resembles Tree-IC3 with the only difference in
the computation of preimages, where Tree-IC3-ITP uses in-
terpolants. This comparisons shows the advantage of using
interpolants over weakest preconditions, as Tree-IC3-ITP is
able to solve six more instances than IC3CFA.

http://sv-comp.sosy-lab.org/2015/
http://www-i2.informatik.rwth-aachen.de/mctools/vplc/fmcad15/
http://www-i2.informatik.rwth-aachen.de/mctools/vplc/fmcad15/

Results
From the results in Fig. 4 we can come to three conclusions.

First, as already discovered in [2], the IC3SMT approach,
while easy to lift, is very inefficient and is not competitive
to control flow based techniques. Second, while the TreeIC3
approach is, in very rare cases, slightly more efficient on
very small examples, the absence of overhead in ART un-
rolling makes our approach much faster on medium to large
scale examples. Third, the effect of how predecessors are
constructed, i.e. weakest preconditions against interpolants,
is another important factor that has to be considered when
evaluating the performance of IC3 based software model
checking algorithms.

VI. CONCLUSION

In this paper we have presented an approach to lift the
application domain of the inductive, incremental verification
algorithm IC3 from hardware to software model checking. In
resemblance to other adaptations of IC3 to software verifi-
cation, it supports the handling of infinite-state systems by
generalising SAT to SMT solving. Its distinguishing feature,
however, is the explicit consideration of a program’s control
flow by maintaining location-specific frames for storing ap-
proximate reachability information. In comparison to more
implicit approaches such as Tree-IC3, which is based on an
unrolling of the ART, this allows to apply a stronger form of
relative inductiveness than obtained in comparable algorithms.
The gain in efficiency is demonstrated by experimental eval-
uations against different implementations of existing, control
flow based IC3 algorithms. Due to the novelty of IC3 there is
a wide range of future research on this field. One particularly
interesting perspective that we intend to investigate are the po-
tentialities of using generalization as a way to overapproximate
the exact preimages that we use up to now.

REFERENCES

[1] Bradley, A.R.: SAT-based model checking without unrolling. In Jhala,
R., Schmidt, D.A., eds.: Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin,
TX, USA, January 23-25, 2011. Proceedings. Volume 6538 of Lecture
Notes in Computer Science., Springer (2011) 70–87

[2] Cimatti, A., Griggio, A.: Software model checking via IC3. In
Madhusudan, P., Seshia, S.A., eds.: Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13,
2012 Proceedings. Volume 7358 of Lecture Notes in Computer Science.,
Springer (2012) 277–293

[3] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories
via implicit predicate abstraction. In Ábrahám, E., Havelund, K., eds.:
Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings. Volume 8413
of Lecture Notes in Computer Science., Springer (2014) 46–61

[4] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS.
In Grumberg, O., ed.: Computer Aided Verification, 9th International
Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings.
Volume 1254 of Lecture Notes in Computer Science., Springer (1997)
72–83

[5] Tonetta, S.: Abstract model checking without computing the abstraction.
In Cavalcanti, A., Dams, D., eds.: FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009.
Proceedings. Volume 5850 of Lecture Notes in Computer Science.,
Springer (2009) 89–105

[6] Hoder, K., Bjørner, N.: Generalized property directed reachability. In
Cimatti, A., Sebastiani, R., eds.: Theory and Applications of Satisfi-
ability Testing - SAT 2012 - 15th International Conference, Trento,
Italy, June 17-20, 2012. Proceedings. Volume 7317 of Lecture Notes
in Computer Science., Springer (2012) 157–171

[7] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press
(2001)

[8] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In
Launchbury, J., Mitchell, J.C., eds.: Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, OR, USA, January 16-18, 2002, ACM (2002) 58–
70

[9] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of
property directed reachability. In Bjesse, P., Slobodová, A., eds.: Inter-
national Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011,
FMCAD Inc. (2011) 125–134

[10] Bradley, A.R., Manna, Z.: Checking safety by inductive generalization
of counterexamples to induction. In Baumgartner, J., Sheeran, M.,
eds.: Formal Methods in Computer-Aided Design, 7th International
Conference, FMCAD 2007, Austin, Texas, USA, November 11-14,
2007, Proceedings, IEEE (2007) 173–180

[11] Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong
program analysis & transformation. In: 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA, IEEE Computer Society (2004) 75–88

[12] Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: A framework
for abstraction- and interpolation-based software verification. In: Com-
puter Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings. Volume 7358 of
Lecture Notes in Computer Science., Springer (2012) 672–678

[13] Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos
- a software model checker for SystemC. In Gopalakrishnan, G., Qadeer,
S., eds.: Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Volume
6806 of Lecture Notes in Computer Science., Springer (2011) 310–316

[14] Steensgaard, B.: Points-to analysis in almost linear time. In Boehm,
H., Jr., G.L.S., eds.: Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996, ACM Press (1996) 32–41

[15] Kroening, D., Tautschnig, M.: CBMC - C bounded model checker
- (competition contribution). In Ábrahám, E., Havelund, K., eds.:
Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings. Volume 8413
of Lecture Notes in Computer Science., Springer (2014) 389–391

[16] Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating
compact verification conditions. In Hankin, C., Schmidt, D., eds.:
Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, London, UK,
January 17-19, 2001,, ACM (2001) 193–205

[17] Leino, K.R.M.: Efficient weakest preconditions. Information Processing
Letters 93(6) (2005) 281–288

[18] Suda, M.: Triggered clause pushing for IC3. CoRR abs/1307.4966
(2013)

	Introduction
	Preliminaries
	Original IC3 Algorithm
	IC3 on Control Flow Automata
	Benchmarks
	Conclusion
	References

