
Pushing to the Top

Alexander Ivrii
IBM Research

alexi@il.ibm.com

Arie Gurfinkel
Software Engineering Institute

http://arieg.bitbucket.org

Abstract—IC3 is undoubtedly one of the most successful and
important recent techniques for unbounded model checking.
Understanding and improving IC3 has been a subject of a
lot of recent research. In this regard, the most fundamental
questions are how to choose Counterexamples to Induction (CTIs)
and how to generalize them into (blocking) lemmas. Answers
to both questions influence performance of the algorithm by
directly affecting the quality of the lemmas learned. In this
paper, we present a new IC3-based algorithm, called QUIP1,
that is designed to more aggressively propagate (or push) learned
lemmas to obtain a safe inductive invariant faster. QUIP modifies
the recursive blocking procedure of IC3 to prioritize pushing
already discovered lemmas over learning of new ones. However,
a naive implementation of this strategy floods the algorithm with
too many useless lemmas. In QUIP, we solve this by extending
IC3 with may-proof-obligations (corresponding to the negations
of learned lemmas), and by using an under-approximation of
reachable states (i.e., states that witness why a may-proof-
obligation is satisfiable) to prune non-inductive lemmas. We
have implemented QUIP on top of an industrial-strength im-
plementation of IC3. The experimental evaluation on HWMCC
benchmarks shows that the QUIP is a significant improvement
(at least 2x in runtime and more properties solved) over IC3.
Furthermore, the new reasoning capabilities of QUIP naturally
lead to additional optimizations and new techniques that can lead
to further improvements in the future.

I. INTRODUCTION

IC3 [1] (also known as PDR [2]) is one of the most power-
ful algorithms for unbounded model checking of hardware. It
is highly customizable [3], [4], and was successfully extended
to more general domains [5]–[7].

In a nutshell, IC3 aims at constructing an inductive invari-
ant proving the property. IC3 works by iteratively detecting
states that lead to a property violation (in IC3-literature these
states are also identified with counterexamples-to-induction
and are called CTIs) and by learning lemmas that demonstrate
why these CTIs cannot be reached from the initial states within
a bounded number of steps. In this way, IC3 incrementally
refines over-approximations Fk of states that are reachable in
up to k steps, and terminates when one of the sets Fk represents
a safe inductive invariant, or when a counterexample is found.
The general scope of this paper is to further improve on the
invariant generation capabilities of IC3. In what follows, we
first analyze and discuss some of the choices made by IC3,
and then present our approach.

One of the most important decisions made by IC3 pertains
to the process of generalization of new lemmas at the time

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. This material has been approved for public release and unlimited distribution. DM-0002441.

1QUIP is an acronym for “a QUest for an Inductive Proof”.

when they are discovered. Ideally, given a CTI, we would like
to generate the strongest possible lemma that excludes this CTI
and holds on all reachable states. However, obviously the set
of all reachable states is not available. IC3 solves this problem
by attempting to find the strongest lemma ϕ that is relatively
inductive with respect to the appropriate over-approximation
Fk. However, as Fk is neither an over-approximation nor an
under-approximation of the set of all reachable states, ϕ can be
either too strong or too weak. Being too strong means that ϕ
excludes some of the reachable states and hence has no chance
to be in the final inductive invariant, while being too weak
means that ϕ prunes less unreachable states which degrades
convergence. Another deficiency of IC3 is that once a lemma
is added, it remains in the system, and there is no mechanism
to detect and prune non-inductive lemmas, which translates to
the wasted effort spent to propagate them.

An important optimization that already exists in IC3
consists of blocking the same CTI at many different levels. In
our experience, IC3 often discovers many different lemmas to
block the same CTI. On the one hand, different lemmas are in
general of different quality and so having a variety of lemmas
to choose from is beneficial. On the other hand, keeping several
lemmas for the same CTI leads to a wasted effort of storing
and pushing multiple lemmas when one would be enough.
IC3 partially addresses this concern by pushing each lemma
as far as possible when it is created (which implicitly blocks
the corresponding CTIs at higher levels); however, it often
happens that a lemma ϕ cannot be pushed forward because the
appropriate over-approximation Fk is not strong enough. An
alternative solution is to derive additional supporting lemmas
that enable pushing ϕ forward, thus prioritizing the usage of
a lemma already in the system, at the expense of finding
additional lemmas required to support it. We believe that the
new strategy is superior, as it should lead to an inductive
invariant faster. Unfortunately, a naı̈ve implementation forces
the algorithm to start discovering new lemmas to support
lemmas already in the system, and then new lemmas to support
these supporting lemmas, and so on – flooding the algorithm
with a huge number lemmas. To some extent the problem again
boils down to lack of control on the usefulness of lemmas in
the system, and the need to detect and prune the less useful
ones.

In this paper, we present an improvement to the core of
the IC3 algorithm. Motivated by the considerations above, we
present an algorithm, called Quip, that combines the following
innovations:

1) In Quip, we periodically detect the maximal inductive
subset of all lemmas discovered so far. These lemmas are
stored separately (in F∞ in the terminology of PDR) and

http://arieg.bitbucket.org

represent good lemmas – lemmas that should always remain
in the system.

2) In Quip, we turn existing lemmas into additional proof
obligations (and prioritize considering these proof obligations
over regular proof obligations). Given ϕ ∈ Fk \Fk+1, we add
¬ϕ at level k + 1 as a may-proof-obligation. In this way, we
either succeed to push ϕ further (if ¬ϕ is blocked), or find a
witness trace that explains why ϕ cannot be pushed. Since ¬ϕ
does not necessarily represent a CTI, the witness trace does not
necessarily lead to a property violation; however, it produces
a concrete forward reachable state that is excluded by ϕ and
hence which explains why ϕ is not inductive. In particular,
ϕ is a bad lemma – lemma that has no chance to be in the
inductive invariant.

3) In Quip we dynamically discover reachable states.
These reachable states are used in several ways. First, each
time that a new reachable state is discovered, it is used to mark
as bad all lemmas in the system that exclude this state. Second,
reachable states are used to automatically invalidate other may-
proof-obligations or to discover a real counterexample. Finally,
they are used to effectively enlarge the set of initial states and
take the enlarged initial states into account when generalizing
lemmas in the future.

Note that the ideas above are highly interdependent: with-
out considering may-proof-obligations there is no way to
produce interesting reachable states, while without considering
reachable states there is no way to prune lemmas in the
system. We also claim that Quip partially addresses the
problems described in the beginning. By prioritizing may-
proof-obligations over regular-proof-obligations, we try to
reuse lemmas that already exist. In addition, as may-proof-
obligations usually consist of significantly fewer literals than
regular proof obligations, we effectively try to avoid detecting
lemmas that are too weak, while by computing and using the
set of reachable states for generalization, we also try to avoid
detecting lemmas that are too strong. Finally, we can now
classify lemmas as good, bad and unknown, and thus gain
some control on which lemmas we want to propagate and keep,
and which lemmas we do not. In what follows, we show how
to integrate the presented ideas into an efficient algorithm and
experimentally demonstrate that this represents a significant
performance improvement over classical IC3.

We believe that our work extends the IC3 framework with
additional reasoning capabilities: computing maximal induc-
tive invariants, considering may-proof-obligations and forward
reachable states. These naturally lead to other optimizations
and new techniques that can lead to further improvement in
the future. Last but not least, the new framework can be used
with all other known IC3 optimizations and can be adapted
to more general domains.

The rest of the paper is structured as follows. In Section II,
we review the necessary background about IC3. We present
the Quip algorithm at high-level in Section III, and the details
of our implementation in Section IV. Our empirical evaluation
is reported in Section VI. Finally, we conclude the paper with
an overview of related work in Section VII, and conclusion in
Section VIII.

II. BACKGROUND

Let V be a set of variables. A literal is either a variable
b ∈ V or its negation ¬b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal `, we write ` ∈ c to mean that ` occurs
in c, and c ∈ F to mean that c occurs in F .

Let V be a set of variables and V ′ = {v′ | v ∈ V}. A safety
verification problem is a tuple P = (Init ,Tr ,Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V,V ′) is
a formula with free variables in V ∪V ′ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

Init(~v0) ∧

(
N−1∧
i=0

Tr(~vi, ~vi+1)

)
∧ Bad(~vN) (1)

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(~v)→ Inv(~v) Inv(~v) ∧ Tr(~v,~v′)→ Inv(~v′) (2)
Inv(~v)→ ¬Bad(~v) (3)

A formula Inv that satisfies (2) is called an invariant, while a
formula Inv that satisfies (3) is called safe.

We give a brief description of IC3 that highlights some
steps, but omits many crucial optimizations. We refer the
reader to [8] for an overview of available optimizations and
their possible implementations.

IC3 maintains a set of clauses F0, F1, . . . called a trace.
Each Fi in a trace is called a frame, each clause c ∈ Fi is
called a lemma, and the index of a frame is called a level. We
assume that F0 is initialized to Init and that Init → ¬Bad .
IC3 maintains the following invariant:

Fi → ¬Bad Fi+1 ⊆ Fi Fi ∧ Tr → F ′i+1

That is, each element of the trace is safe, the trace is syntac-
tically monotone, and each Fi+1 is inductive relative to Fi.

Additionally, IC3 maintains a queue of proof obligations
(or CTI’s) of the form 〈m, i〉 where m is a cube over state
variables and i is a level. At each point of the execution,
it considers a proof obligation 〈m, i〉 with the smallest level
i, and attempts to prove that m is reachable in i steps. If
i = 0 then there is a real counterexample. Otherwise, it
makes a predecessor query SAT?(¬m ∧ Fi−1 ∧ Tr ∧ m′)
that checks whether a state in m can be reached from a state
in Fi−1. If the result is satisfiable, it adds a predecessor of
m as a new proof obligation at level i − 1. If the result is
unsatisfiable, it learns a new lemma ϕ, such that Init → ϕ,
ϕ → ¬m and ϕ ∧ Fi−1 ∧ Tr → ϕ′, and adds ϕ to all Fj ,

Data: A cex queue Q , where c ∈ Q is a pair 〈m, i〉, m
is a cube over state variables, and i ∈ N. A level
N . A trace F0, F1, . . .

Initially: Q = ∅, N = 0, F0 = Init , ∀i > 0 · Fi = >.
repeat

Unreachable If there is an i < N s.t. Fi+1 ⊆ Fi

return Unreachable.
Reachable If there is an m s.t. 〈m, 0〉 ∈ Q

return Reachable.
Unfold If FN → ¬Bad , then set N ← N + 1, and Q← ∅.
Candidate If for some m, m→ FN ∧ Bad , then add

〈m,N〉 to Q .
Predecessor If 〈m, i+ 1〉 ∈ Q and there are m0 and m1 s.t.

m1 → m, m0 ∧m′1 is satisfiable, and
m0 ∧m′1 → Fi ∧ Tr ∧m′, then add 〈m0, i〉 to Q .

NewLemma For 0 ≤ i < N : given 〈m, i+ 1〉 ∈ Q and a
clause ϕ, such that ϕ→ ¬m,
if Init → ϕ, and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for j ≤ i+ 1.

ReQueue If 〈m, i〉 ∈ Q , 0 < i < N and Fi−1 ∧ Tr ∧m′ is
unsatisfiable, then add 〈m, i+ 1〉 to Q .

Push For 0 ≤ i < N and a clause (ϕ ∨ ψ) ∈ Fi,
if ϕ 6∈ Fi+1, Init → ϕ and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for each j ≤ i+ 1.

until ∞;

Fig. 1. Rule-based description of IC3/PDR.

for j ≤ i. In other words, the lemma ϕ represents a new over-
approximation, and in particular demonstrates why the state m
cannot be reached in up to i steps from the initial states. An
important optimization is to re-enqueue 〈m, i + 1〉 as a new
proof obligation. If at any point of the execution Fi−1 = Fi

and Fi → ¬Bad , then Fi represents an inductive invariant
establishing the correctness of the property.

Fig. 1 shows a rule-based overview of IC3 (adapted
from [9]). Initially, Q is empty, N = 0 and F0 = Init . Then,
the rules in Fig. 1 are applied (possibly in a non-deterministic
order) until either Unreachable or Reachable rule is applica-
ble. Unfold extends the current trace and increases the level
at which counterexample is searched. Candidate picks a bad
state. Predecessor extends a counterexample from the queue
by one step. NewLemma blocks a counterexample and adds
a new lemma. ReQueue moves the counterexample to the
next level. Finally, Push pushes a lemma to the next level,
optionally generalizing it inductively. A typical schedule of
the rules is to first apply all applicable rules except for Push
and Unfold, followed by Push at all levels, then Unfold, and
then repeating the cycle.

III. QUIP: THE ALGORITHM

In this section, we give a high-level description of Quip
as a set of rules. This description shows various reasoning
capabilities of Quip and establishes its correctness. A practical
implementation of these rules is described in Section IV.

The main data structures and rules for Quip are shown
in Fig. 2. Similarly to IC3, Quip manages proof obligations
using a priority queue Q. However each proof obligation is
a triple 〈m, i, t〉, where m and i are as in IC3, and t is

Data: A cex queue Q , where c ∈ Q is a triple 〈m, i, t〉,
m is a cube over state variables, i ∈ N, and
t ∈ {may ,must}. A level N . A trace F0, F1, . . .
An invariant F∞. A set of reachable states
REACH.

Initially: Q = ∅, N = 0, REACH = F0 = Init ,
∀i ≥ 1 · Fi = >, F∞ = >.
Require: Init → ¬Bad
repeat

Unreachable If F∞ → ¬Bad
return Unreachable.

Reachable If 〈m, i,must〉 ∈ Q, m ∩ (∨REACH) 6= ∅
return Reachable.

Unfold If FN → ¬Bad , then set N ← N + 1.
Candidate If for some m, m→ FN ∧ Bad , then add

〈m,N,must〉 to Q .
Predecessor If 〈m, i+ 1, t〉 ∈ Q and there are

m0 and m1 s.t. m1 → m, m0 ∧m′1 is satisfiable,
and m0 ∧m′1 → Fi ∧ Tr ∧m′,
then add 〈m0, i, t〉 to Q .

NewLemma For 0 ≤ i < N : given 〈m, i+ 1〉 ∈ Q and a
clause ϕ, such that ϕ→ ¬m,
if (∨REACH)→ ϕ, and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for j ≤ i+ 1.

ReQueue If 〈m, i,must〉 ∈ Q , and Fi−1 ∧ Tr ∧m′ is
unsatisfiable, then add 〈m, i+ 1,must〉 to Q .

Push For 1 ≤ i and a clause (ϕ ∨ ψ) ∈ Fi \ Fi+1,
if (∨REACH)→ ϕ and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for each j ≤ i+ 1.

MaxIndSubset If there is i > N s.t. Fi+1 ⊆ Fi, then
F∞ ← Fi, and ∀j ≥ i · Fj ← F∞.

Successor If 〈m, i+ 1, t〉 ∈ Q and exist m0, m1 s.t.
m0 ∧m′1 are satisfiable and
m0 ∧m′1 → (∨REACH) ∧ Tr ∧m′, then
add m1 to REACH.

MayEnqueue For i ≥ 1 and a clause ϕ ∈ Fi \ Fi+1,
if (∨REACH)→ ϕ, add 〈¬ϕ, i+ 1,may〉 ∈ Q.

ResetQ Q← ∅.
ResetReach REACH ← Init .

until ∞;

Fig. 2. Rule-based description of Quip.

the type of the proof-obligation: either may or must. Must
proof-obligations represent cubes that must be blocked for the
problem to be SAFE. May-proof-obligations represent cubes
that we would like to block, but the problem might be SAFE
even if they are not blocked. As in IC3, Quip maintains a
trace of clauses F0, F1, However, the number of the non-
empty frames in the trace can be larger than the current depth
N . Intuitively, a non-empty frame Fi with i > N contains
clauses that are inductive up to a yet-to-be-explored level i.
Additionally, as in PDR, Quip maintains a set F∞ of absolute
invariants. The unique feature of Quip is that it also maintains
a set REACH of states reachable from Init . In practice, we
keep REACH as a set of cubes. We say that a lemma ϕ ∈ Fi is
good if it is also in F∞, bad if it excludes a state in REACH,
and unknown otherwise. Note that the categories above are
exclusive – a lemma cannot be both good and bad at the same
time.

We now describe the rules.

a) Termination: The rule Unreachable in Quip is even
simpler than the corresponding one in IC3: the verification
problem is deduced to be SAFE as soon as F∞ ⇒ ¬Bad .
Note that this formulation makes it extremely easy to handle
designs with multiple properties. The rule Reachable in Quip
states that the problem is UNSAFE if a must-proof-obligation
includes a reachable state; that is, either an initial state or a
new reachable state explicitly found by the algorithm.

b) Generating proof obligations: The rules Candidate,
Predecessor, and ReQueue are similar to the corresponding
rules of IC3. The rule MayEnqueue is new. Candidate picks
a bad state and adds it as a must-proof-obligation. Predecessor
adds a CTI m0 for an already existing proof obligation m1

as a new proof obligation, at the level one lower than that
of m1. The type of m0 is the same as that of m1, and so
in particular m0 is a must-proof-obligation whenever m1 is.
ReQueue moves a blocked must-proof-obligation to the next
level. We explicitly limit this rule to must-proof-obligations
only, as may-proof-obligations are handled by MayEnqueue.
MayEnqueue picks a lemma ϕ ∈ Fi \ Fi+1 that is not yet
established at level i+ 1 and adds its negation ¬ϕ as a may-
proof-obligation at level i + 1. The rule is only applicable if
the status of ϕ is unknown. Note that it is actually sound to
take any clause ψ such that Init ⇒ ψ and any level k, and
add ¬ψ at level k as a may-proof-obligation. However, we do
not currently use this level of generality.

c) Managing lemmas: Unfold increases the level at
which a counterexample is searched. NewLemma adds a new
lemma that blocks a proof obligation. We explicitly disallow
learning bad lemmas. For correctness, it is possible to take
any clause ψ such that ψ ∧ Fi ∧ Tr → ψ′ and add ψ to
all Fj for j ≤ i + 1. Push pushes a lemma to the next
level, optionally generalizing it inductively. As before, we
limit pushing and generalization to unknown lemmas only. An
important distinction from IC3 is that in Quip Push is not
limited to the current working depth N of the algorithm.

d) Inductive invariant: MaxIndSubset checks whether
for some i there is Fi = Fi+1. In this case, Fi is an inductive
invariant which is used to enlarge F∞. In the case i < N ,
F∞ is a safe inductive invariant and an immediate application
of Unreachable finishes verification. Otherwise, it discovers
new good lemmas. Correctness follows from the fact that
Fi = Fi+1 indirectly implies that ∀j ≥ i · Fj ∩ REACH = ∅.
That is, there are no bad lemmas in any Fj for j ≥ i.
Note that a maximal inductive subset of current lemmas is
computed by applying Push as much as possible, followed by
MaxIndSubset.

e) Reachability: Successor adds new reachable states.
Given a proof obligation m that can be reached in one
transition from an already known reachable state (either an
initial state or an explicitly found reachable state), it computes
a new reachable state m1 that is included in m and adds it to
REACH.

f) Restarts: The final set of rules deals with various
reset mechanisms. The rule ResetQ allows to empty the proof
obligation queue. This rule can be though of as a “local reset”
that may guide Quip in a different search place by examining
different predecessors and learning new lemmas. Note that
in IC3, ResetQ is implicitly included in Unfold. That is,

F0 = Init
if F0 ∧ Bad then

return CEX
N ← 0; F∞ ← >; REACH = F0

while (true) do
N ← N + 1
if Quip_RecBlockCube(Bad , N) = CEX then

return CEX
if Quip_Push() = PROOF then

return PROOF

Fig. 3. Main Procedure (Quip_Main).

IC3 resets its queue every time a new depth is explored.
On the other hand, in Quip this choice is flexible. The rule
ResetReach resets the reachable states. In practice, we may
remove only some (less useful) reachable states when their
number becomes too large.

IV. QUIP: IMPLEMENTATION

In this section, we describe our implementation of the
Quip rules.

The set of all reachable states handled by Quip is of the
form REACH = Init ∪ R, where Init are the initial states
and R are the reachable states dynamically discovered by the
algorithm. In our current implementation, R consists only of
concrete states. That is, each element of R is a complete
assignment to all state variables. Each state in R is stored
as a Boolean array. The main functionality required from R
is checking whether a given cube s intersects (or equivalently
subsumes) one of the states r in R. In the pseudocode below,
the function Intersect(R, s) returns NULL if R ∩ s = ∅,
and returns a state r ∈ R with r ∩ s 6= ∅ otherwise.

In what follows, we require an additional bookkeeping
mechanism. If a proof obligation 〈s, f, p〉 is added as a
predecessor of another proof obligation 〈s̃, f̃ , p̃〉 using the
Predecessor rule, then we say that s̃ is a parent of s. On
the other hand, if 〈s, f, p〉 is added using either Candidate
or MayEnqueue, then we say that s has no parent. Finally,
the rule ReQueue keeps the parent information. In the pseu-
docode, we let Parent(s) be the parent of s or NULL if
none. To some extent this bookkeeping is already supported by
most IC3 implementations as it is required for reconstructing
counterexamples.

A. The Main Loop

Our implementation of Quip is structured similarly to
PDR [2]. For completeness, the main loop is shown in Fig. 3.
The algorithm first checks for a counterexamples at level 0
(N = 0), and then incrementally increases the working level
N until either a counterexample or a safe inductive invariant
is found.

B. Recursive Block Cube

The central procedure, Quip_RecBlockCube, that re-
cursively blocks a bad state, is shown in Fig. 4. On the
surface, it looks similar to Pdr_RecursiveBlockCube
from [2], but there are many important differences.

Input: (Cube s0, Frame f0)
Data: Priority queue Q of triples 〈c, f, t〉, where c is a

cube, f is a level and t ∈ {may ,must}
Data: Map Parent from a proof obligation to its

parent proof obligation (NULL if none)
Data: Array R containing concrete reachable states

1 Add(Q, 〈s0, f0,must〉)
2 Parent(s0)← NULL
3 while ¬Empty(Q) do
4 〈s, f, p〉 ← Pop(Q)
5 if f = 0 then
6 if p = must then

// Found Real Counterexample
7 return CEX
8 else

// New reachable state
9 Find r such that Init ∧ Tr → r′ and

r ∩ Parent(s) 6= ∅; Add r to R
10 continue
11 if (r0 ← Intersect(R, s)) 6= NULL then
12 if p = must then

// Found Real Counterexample
13 return CEX
14 else
15 if Parent(s) 6= NULL then

// New reachable state
16 Find r such that r0 ∧ Tr → r′ and

r′ ∩ Parent(s) 6= ∅; Add r to R
17 continue
18 〈t, g〉 ← Block(s, f)
19 if g 6= f − 1 then

// Cube s is successfully blocked
by lemma ¬t

// Lemma ¬t holds until frame g
20 if (g < N) then
21 if t 6= s then
22 Add(Q, 〈t, g + 1,may〉)
23 Parent(t)← NULL
24 else
25 Add(Q, 〈t, g + 1, p〉)
26 else

// t is a predecessor of s
27 Add(Q, 〈t, f − 1, p〉)
28 Add(Q, 〈s, f, p〉)
29 Parent(t)← s
30 return BLOCKED

Fig. 4. Recursive Block Cube (Quip_RecBlockCube).

Quip_RecBlockCube accepts a must-proof-obligation
〈s0, f0,must〉, and either succeeds to strengthen the trace so
that s0 is blocked at level f0, or finds a concrete reachable
state r that intersects s0 (hence r is a witness that ¬s0 is not
an invariant).

Quip_RecBlockCube starts by adding the proof-
obligation 〈s0, f0,must〉, with no parent, to Q (lines 1–2) and
proceeds to the main loop. In each iteration of the loop, it
retrieves the proof-obligation from Q with the lowest-level,
and in case of a tie, with the smaller number of literals.
In particular, the proposed tie-breaking condition means that
when Q contains two proof-obligations s1 and s2 at the lowest

level, with s1 ⊆ s2, the algorithm will select s1 first – hence
attempting to derive the strongest possible lemma (that would
automatically block s2 as well). Let 〈s, f, p〉 be this proof
obligation (line 4).

Let us first assume that the level f of the proof obli-
gation is 0 (lines 5–10). In particular, s ∩ Init 6= ∅ and
Parent(s) 6= NULL (according to our rules, only Prede-
cessor can add proof-obligations at level 0). If this is a must-
proof-obligation (lines 6–7), then our property is deduced to be
UNSAFE and Quip_RecBlockCube terminates. Moreover,
a concrete counterexample can be reconstructed using the
parent information. If this is a may-proof-obligation (lines 8–
10), then we compute a new reachable state r that is one-
step reachable from Init and that intersects Parent(s). Note
that such a state r must always exist since s is a CTI for
Parent(s). In our implementation, we use a dedicated SAT-
solver for all the successor queries, including reconstruction
of real counterexamples. However, by also saving for each
predecessor the assignment to inputs, this task can be reduced
to simulation. The new state r is then added to R. In partic-
ular, when on some future iteration the algorithm returns to
examining the proof-obligation corresponding to Parent(s),
Parent(s) already intersects R.

Next, let us assume that s intersects a state r0 ∈ R
(lines 11–17). If this is a must-proof-obligation, then our prop-
erty is deduced to be UNSAFE and the procedure terminates.
By additionally storing for each state in R its predecessor (not
explicitly shown in the pseudocode), we can again reconstruct
a real counterexample. If this is a may-proof-obligation and
Parent(s) 6= NULL, then as before we compute a reachable
state r that is one-step reachable from r0 and that intersects
Parent(s) – and so when the algorithm returns to examining
Parent(s) the condition Intersect(R,Parent(s)) 6= ∅
is activated and the reachable state is further propagated. In
other words, as soon as a recursive predecessor of a may-
proof-obligation intersects an initial or an already existing
reachable state in R, a sequence of additional reachable states
is discovered, including a reachable state that intersects a given
proof-obligation.

The helper procedure Block (line 18), adapted from
PDR [2], hides some less relevant details. In our implementa-
tion, Block(s, f) first syntactically checks whether s is already
blocked in the frame f – i.e., whether there exists a lemma
¬t ∈ Fg with t ⊆ s and f ≤ g (the case g = ∞ is also
allowed). If so, then (t, g) is returned. Otherwise, Block(s, f)
checks whether the formula Ff−1 ∧Tr ∧ s′ is satisfiable. If it
is, a predecessor t of s is extracted and suitably generalized. In
this case, (t, f − 1) is returned. If the formula is unsatisfiable,
then using an inductive generalization procedure, we obtain a
lemma ¬t which holds at least up to the frame f (and possibly
up to a larger frame g, including ∞). In this case, Block
adds the lemma ¬t to Fg and returns (t, g). Note that lemma
generalization takes the reachable states R into account, and
ensures that new lemmas always include all of R.

Let us first consider the case that the cube s was suc-
cessfully blocked (lines 20–25), i.e., Block returns a lemma
¬t ∈ Fg with t ⊆ s and f ≤ g. An important optimization in
IC3 consists of reinserting the proof-obligation s at the level
g+1, forcing the algorithm to block s in all higher frames as
well. The unique feature of Quip is that ¬t is inserted into

for k = 1, . . . do
for all lemmas c ∈ Fk \ Fk+1 do

// Rule Push
1 if ¬bad(c) then
2 if Fk ∧ c ∧ Tr ⇒ c′ then
3 Fk+1 ← Fk+1 ∪ {c}

if Fk \ Fk+1 = ∅ then
// Rule MaxIndSubset

4 F∞ ← Fk

5 for j = k + 1, . . . do
6 Fj ← F∞
7 break;

if F∞ ⇒ ¬Bad then
// Found Safe Inductive Invariant

8 return PROOF
return UNKNOWN

Fig. 5. Pushing lemmas (Quip_Push).

Q at the level g + 1 instead of s. This forces the algorithm
to concentrate on further pushing existing lemma t rather than
discovering new lemmas to block s at a higher level. However,
¬t can be only added as a may-obligation (with the only
exception being that s = t and s is a must-obligation). Finally,
note that when t 6= s, the cube t has no parent, otherwise we
keep the previous parent of s.

In the case that a predecessor t of s is found (lines 16–29),
just as in IC3, Quip returns 〈s, f, p〉 to Q, as well as inserts
a new proof obligation 〈t, f − 1, p〉 with the same type of a
proof obligation as that of s. The parent of t is set to s.

C. Pushing

Fig. 5 describes our pushing procedure Quip_Push. For
each lemma c, we keep a Boolean flag bad(c) that represents
whether c is known to be bad (that is, whether c excludes some
states in REACH). We say that a lemma is unknown if bad(c) =
FALSE and c /∈ F∞. Each time that a new reachable state
r is added in Quip_RecBlockCube, we check it against
every unknown lemma in the system and mark as bad those
lemmas that exclude r. Just as in IC3, in practice the sets Fi

are delta-encoded: for any i, j, Fi ∩ Fj = ∅. However, for
this presentation, we are using the full sets Fi as defined in
the introduction. The pushing stage proceeds as in IC3, with
the following exceptions. First, bad lemmas are not pushed.
This has two positive effects. The primary effect is conserving
resources by not propagating lemmas that have no chance to
be in the final invariant. A secondary effect is that as the new
lemmas are learned, they are less dependent on the currently
known bad lemmas. Second, the lemmas are pushed arbitrarily
far past the current depth N . In particular, in the last iteration
of the outer for-loop, all lemmas at level k are pushed to the
next frame. In this case, the if -condition on line 3 is true, and
all lemmas of Fk+1 are added to F∞. It is easy to see that
after Quip_Push, F∞ contains the maximal inductive subset
of all lemmas in the system. If F∞ implies ¬Bad , i.e., F∞
represents a safe inductive invariant, then Quip_Push returns
PROOF.

D. Managing reachable states

Efficiently handling reachable states poses additional chal-
lenges. Currently we represent reachable states explicitly, and
as their number grows large, the time taken by Intersect
and the memory required for their storage become significant.
However, our experience shows that many of the reachable
states can be removed without much sacrificing the number
of may-proof-obligations pruned or the quality of lemmas
discovered, and that the newly discovered states are more
likely to be useful in the immediate future. Thus our solution
mimics the clause deletion strategy as used in a SAT solver:
for each reachable state we keep its activity representing how
many times the state was a witness for intersection, and we
periodically decay this activity and aggressively delete the less
active states. Furthermore, as in our current implementation
most of the time on managing lemmas is spent during the
inductive generalization (making sure that a learned lemma
includes all the states in REACH), we have found it further
beneficial to consider even fewer reachable states during the
generalization.

It may also be possible to compute partial states directly
from the Successor query, or to represent reachable states
symbolically by computing minimal DNF representation of R.
An alternative way to take reachable states into account is to
include them directly in F0. Another optimization is to check
whether a given may-obligation is one-step reachable from R.
However, we have found both of these difficult to implement
efficiently. Finally, it might also be useful to push reachable
states forward more aggressively, for example, by running a
simulation from already known reachable states.

V. ALTERNATIVES

In this section, we present two alternative implementations
of Quip, which illustrate the variety of possibilities offered by
our framework. Unfortunately, for the reasons discussed below,
both of these variants do not perform consistently. We sketch
how they could be improved in the future.

A. Reset-free approach

Both IC3 and Quip as described previously implicitly
reset the queue of proof obligations each time that a new
depth is explored. An interesting alternative in Quip is as
follows. (1) Allow to enqueue proof-obligations at any level
(and not only up to N) by removing the if -condition on line 20
of Quip_RecBlockCube. (2) Check whether Fk = Fk+1

each time that a lemma is successfully pushed from Fk to
a higher-frame (or simply each time that a proof obligation
at level k + 1 is successfully blocked); if Fk = Fk+1,
then grow the set F∞ to Fk, and check the termination
condition F∞ ⇒ ¬Bad . (3) Replace Quip_Main by a
single call to Quip_RecBlockCube(Bad , 1). In this way,
the negation of every unknown lemma in the system is always
present as a proof obligation at the corresponding frame and
the external pushing stage can be avoided altogether. This
alternative procedure takes to the extreme the idea of pushing
every lemma in the system as far as possible, and arguably
results in an even simpler overall algorithm. However, a
preliminary experimental evaluation shows that this scheme
performs worse in practice. One possible explanation is that

TABLE I. SUMMARY OF EXPERIMENTAL RESULTS

UNSAFE solved UNSAFE time SAFE solved SAFE time
IC3 22 (2) 52,302 76 (7) 137,244
Quip 32 (12) 20,302 99 (30) 69,590

Experimental results on the instances solved by either IC3 or Quip separated into
unsafe and safe instances. The numbers in parentheses represent the unique solves. The

times are in seconds.

periodically resetting the proof obligation queue keeps proof
obligations more focused to proving the property, while the
procedure above handles the “main” lemmas and the “support-
ing” lemmas (and the supporting lemmas for the supporting
lemmas, and so on) equally. A possible solution would be to
define some additional criteria for proof obligations reflecting
their expected usefulness, and to take these into account when
choosing the next proof obligation.

B. Garbage-collecting bad lemmas

We can use the classification of all lemmas into good, bad
and unknown to periodically remove all the bad lemmas from
the system. However, as bad lemmas may be supporting other
unknown lemmas, we cannot simply remove bad lemmas from
their corresponding frames. Instead, we can keep all the good
lemmas in F∞, put all the unknown lemmas into F1, and use
Push to push the unknown lemmas as far as possible. We have
found that during this pushing stage it is important to preserve
the set of lemmas as much as possible, which requires to
disable both the additional generalizing capability of pushing
and the built-in subsumption mechanism for storing lemmas.
Note that we might also need to decrease the current bound N
at which the property is proved. A preliminary experimental
evaluation shows that this variant usually allows Quip to
converge at a smaller depth, and in some cases leads to a
significant speedup. However, it is also true that applying
“garbage collection” too aggressively on average leads to a
significant performance degradation, and an ongoing work is
to find the a good heuristic for when to apply it and how
to properly combine it with the resetting of reachable states
described in Section IV.

VI. EXPERIMENTS

In this section, we present our experimental results2. We
compare Quip with a custom variant of IC3, as implemented
in the IBM formal verification tool Rulebase-Sixthsense [10].
All experiments were performed on a 2.13Ghz Linux-based
machine with Intel Xeon E7-4830 processor, 16GB of RAM,
and one hour time limit. We have used 300 single property
designs from the HWMCC’13 and HWMCC’14 benchmark
sets. These are obtained by removing duplicates and instances
solved using standard logic synthesis (similar to the &dc2
command in ABC [11]).

The overall results are shown in Table I. The columns
“UNSAFE solved” and “SAFE solved” show that number of
unsafe and safe instances, respectively, solved by either IC3
or Quip. The numbers in parentheses represent the number of
instances not solved by the other configuration. The columns
“UNSAFE time” and “SAFE time” represent the cumulative
time in seconds for unsafe and safe properties, respectively.

2See http://arieg.bitbucket.org/quip for more details.

1 10 100 1000

IC3 (secs)

1

10

100

1000

Q
u
ip

(s
ec
s)

IC3 v.s. Quip on HWMCC’13 and ’14

Fig. 6. Run-time comparison between IC3 and Quip. Points below the
diagonal are in favor of Quip. The scale is logarithmic. Diagonals mark an
order of magnitude. Timeout is 3,600 seconds.

TABLE II. DATA ON REACHABLE STATES DISCOVERED BY QUIP

reach. states 0–10 11 – 100 101 – 1K 1K – 10K 10K – 50K
instances 42 19 29 32 9
unique solved 1 1 10 22 8

According to our experiments, either IC3 or Quip was
successful on 34 unsafe instances and 106 safe instances. In
the remaining 160 instances both IC3 and Quip timed out.
We can see that Quip is clearly superior to IC3 on both safe
and unsafe problems, solving more properties and running in
roughly half of the time.

A more detailed comparison between IC3 and Quip is
shown on the scatter plot in Fig. 6. Only the 140 instances
solved by at least one tool are shown. For instances solved
by both, the run time is similar, with an advantage for Quip
Sometimes, the advantage is over an order of magnitude. Quip
shines on harder instances and is able to solve significantly
more of them than IC3.

Finally, we give some intuition on the total number of
reachable states typically discovered by Quip and whether
these states are useful for verification. Table II contains the
data for the 131 instances solved by Quip, including the 42
instances not solved by IC3. In the table, the row “#reach.
states” represents a range, the row “#instances” specifies the
number of instances solved by Quip with the total number of
reachable states in this range, and the row “#unique solves”
further specifies the number of instances solved uniquely by
Quip. For example, the third column means that 29 instances
solved by Quip required between 101 and 10,000 reachable
states, and 10 out of 29 are not solved by IC3. We draw
two conclusions. First, even though we use concrete reachable
states (i.e., complete assignment to all state variables), rela-
tively few states had to be discovered. Second, the advantage
of Quip over IC3 is especially pronounced as the number
of learned reachable states increases. For example, from the
61 instances where Quip required less than 100 reachable
states, only 2 are not solved by IC3. However, from the set
of 9 instances where Quip finds more than 10, 001 reachable
states, 8 (i.e., all but 1) are not solved by IC3.

http://arieg.bitbucket.org/quip

VII. RELATED WORK

Computing Maximal Inductive Subset (MIS) is a well-
known problem in both hardware and software verification
(e.g., [12], [13]). Applying MIS to enlarge F∞ in IC3/PDR
is already suggested in [2], but it was not effective since the
cost of computing an MIS out-weighted the gains. In Quip,
the MIS computation is amortized by not limiting Quip/Push
rule to the current bound N (for comparison, see IC3/Push
in Fig. 1) and by discovering MIS opportunistically using
Quip/MaxIndSubset. Thus, even if the MIS computation is
unsuccessful and no new lemmas are added to F∞, the trace
is strengthened for the future runs of the algorithm. In our
experience, extending IC3 in this way is beneficial regardless
of the other Quip rules.

Blocking states that are not necessarily backward reachable
from an error state and separating proof obligations into may
and must was proposed in the context of IC3-based abstraction
refinement [4]. The idea is also implicitly present in computa-
tion of minimal inductive clauses [3] and predicate-abstraction-
based extensions of IC3 to software [14], [15]. In contrast to
the above algorithms, Quip seamlessly integrates must and
may reasoning into one algorithmic procedure without any
specialized refinement steps. More significantly, Quip uses
the reachable states that witness a failure of a may-proof
obligation to improve future lemma generalization. Thus, both
proving and disproving a may-proof-obligation is beneficial to
the overall algorithm.

Extracting forward reachable states from spurious coun-
terexamples also appears in NEWITP [16] as states to re-
finement in the context of interpolation-based model check-
ing. Similar to Quip, these states are used to guide fu-
ture interpolants to avoid reachable states. In essence, Quip
computes both an over-approximation (lemmas) and under-
approximation (REACH) of reachable states. This can be seen
as an extension of over- and under-approximations used in
SPACER [6] from modular to monolithic-proofs. The key
difference is that, SPACER under-approximates summaries of
procedures and not states reachable from an initial state.

Interestingly, CTI’s of Reverse IC3 [17] – a dual
variant of IC3 that recursively enumerates states reachable
from Init and that learns an over-approximation of states
backwards reachable from Bad – are forward reachable states.
Thus, it might be possible to combine IC3 and Reverse
IC3 into an algorithm that computes both forward and back-
ward reachable states and their over-approximations, somewhat
akin to DAR [18]. Although DAR is restricted only to over-
approximations.

VIII. CONCLUSIONS

In this paper, we present an improvement to the core of
the IC3 algorithm. We propose an approach, called Quip,
that is designed to propagate learned lemmas more aggres-
sively, and whose implementation seamlessly integrates must
and may proof-obligations and forward reachable states. The
experimental results show that a naı̈ve implementation of
Quip significantly outperforms a highly-tuned implementation
of IC3/PDR. We believe that the new reasoning capabilities
introduced in Quip open up many opportunities for further
improvements to SAT-based automated verification.

REFERENCES

[1] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, 2011, pp. 70–87.

[2] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in FMCAD, 2011, pp. 125–134.

[3] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, 2013, pp. 157–164.

[4] Y. Vizel, O. Grumberg, and S. Shoham, “Lazy abstraction and sat-
based reachability in hardware model checking,” in Formal Methods
in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October
22-25, 2012, 2012, pp. 173–181.

[5] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
2012, pp. 157–171.

[6] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model
Checking for Recursive Programs,” in Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, 2014, pp. 17–34.

[7] A. Cimatti and A. Griggio, “Software model checking via IC3,” in CAV,
2012, pp. 277–293.

[8] A. Griggio and M. Roveri, “Comparing Different Variants of the
IC3 Algorithm for Hardware Model Checking,” in Proceedings of
International Workshop on Design and Implementation of Formal Tools
and Systems (DIFTS’14), Lausanne, Switzerland, October 2014.

[9] N. Bjørner and A. Gurfinkel, “Property directed polyhedral abstraction,”
in VMCAI, 2015, pp. 263–281.

[10] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, 2004, pp. 159–173.

[11] R. K. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in CAV, 2010, pp. 24–40.

[12] C. A. J. van Eijk, “Sequential Equivalence Checking without State
Space Traversal,” in 1998 Design, Automation and Test in Europe
(DATE ’98), February 23-26, 1998, Le Palais des Congrès de Paris,
Paris, France, 1998, pp. 618–623.

[13] C. Flanagan and K. R. M. Leino, “Houdini, an Annotation Assistant
for ESC/Java,” in FME 2001: Formal Methods for Increasing Software
Productivity, International Symposium of Formal Methods Europe,
Berlin, Germany, March 12-16, 2001, Proceedings, 2001, pp. 500–517.

[14] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in TACAS, 2014, pp. 46–61.

[15] J. Birgmeier, A. R. Bradley, and G. Weissenbacher, “Counterexample
to induction-guided abstraction-refinement (CTIGAR),” in CAV, 2014,
pp. 831–848.

[16] C. Wu, C. Wu, C. Lai, and C. R. Haung, “A counterexample-guided
interpolant generation algorithm for sat-based model checking,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 33, no. 12, pp.
1846–1858, 2014.

[17] F. Somenzi and A. R. Bradley, “IC3: where monolithic and incremental
meet,” in International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November
02, 2011, 2011, pp. 3–8.

[18] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined forward-backward
reachability analysis using interpolants,” in TACAS, 2013, pp. 308–323.

	Introduction
	Background
	QUIP: The Algorithm
	QUIP: Implementation
	The Main Loop
	Recursive Block Cube
	Pushing
	Managing reachable states

	Alternatives
	Reset-free approach
	Garbage-collecting bad lemmas

	Experiments
	Related Work
	Conclusions
	References

