
Efficient Checking of Thread Refinement
Daniel Poetzl

University of Oxford

References:
[1] R. Morisset, P. Pawan, F. Zappa Nardelli. Compiler Testing via a Theory of Sound Optimisations in the C11/C++11 Memory Model. PLDI ‘13.
[2] J. Sevcik. Safe Optimisations for Shared-Memory Concurrent Programs. PLDI ‘11.

lock L

write x 1

write y 3

unlock L

write x 7

read x 8

lock L

write y 1

write y 2

unlock L

lock L

write y 3

write x 1

unlock L

(+)read x 2

write x 7

lock L

write y 2

unlock L

lock L

write x 1

write y 3

unlock L

write x 7

read x 8

lock L

write y 1

write y 2

unlock L

lock L

write y 3

write x 1

unlock L

read x 2

write x 7

lock L

write y 2

unlock L

{x = 0,

y = 0}

{x = 0,

y = 0}

{x = 0,

y = 0}

{x = 0,

y = 0}

Motivation

Compilers must guarantee observational refinement for
optimized threads. An optimized thread T’ is a refinement
of the original thread T if for all possible thread T1, …, Tn,
the set of final states reachable by T’ ‖ T1 ‖ … ‖ Tn is a
subset of the set of final states reachable by T ‖ T1 ‖ … ‖ Tn.
We assume the “SC for DRF” model, i.e. programs behave
sequentially consistent (SC) if their SC executions are free
of data races, and programs containing data races have
undefined semantics.

Our goal:
• Formal criterion for when a thread T’ is a refinement of

a thread T
Requirements:
• Precision: should validate all existing compiler

optimizations and support potentially new compiler
optimizations

• Efficiency: should support the implementation of
efficient procedures for refinement checking

Current theories specify the allowed optimizations in
terms of which reorderings, eliminations, and
introductions of memory accesses are allowed on thread
execution traces (e.g. [1], [2]). If all execution traces of the
optimized thread T’ can be transformed to an execution
trace of the original thread T via a sequence of such
allowed trace transformations, T’ is considered a
refinement of T.

Our specification approach:
• Require that T’ and T are in the same state at

corresponding lock operations
• Require that the memory locations accessed by T’ in a

segment between two lock operations form a subset of
the memory locations accessed by T in the
corresponding segment

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

C
h

ec
ki

n
g 

ti
m

e 
(i

n
 s

)

Number of locks

Effect of locks

cmmtest tracecheck

Specifying Refinement: Events vs. States

Application: Compiler Testing

Compiler testing method:
1. generate random C program (e.g. with csmith)
2. collect traces of optimized and unoptimized program
3. check traces for refinement

• if trace of optimized program is not a
refinement of trace of unoptimized program
=> compiler bug found

Morisset et al. [1] implemented this approach in the tool
cmmtest, with an event-based trace checking method. Our
tool tracecheck can check traces several orders of
magnitude faster than cmmtest. The time taken by
cmmtest varies with the number of locks in a trace,
whereas tracecheck is insensitive to the number of locks.


