
White-box Software Isolation with Fully Automated Black-Box Proofs

Motivation

Jiaqi Tan, Rajeev Gandhi, Priya Narasimhan
Dept. Of Electrical & Computer Engineering, Carnegie Mellon University

• Software Isolation: No new or unintended
behaviors can be introduced via external inputs

• Software Isolation important for:
› Safely running untrusted code in trusted host,

e.g., running ad hoc crowd-sourced code
› Preventing subversion of critical systems,

e.g., medical devices, avionics systems
• Since Software Isolation is important, we want:

› Strong evidence that critical software is
isolated

› Programmer-evident isolation mechanisms
• Our Approach:

› Formal verification: Provides strong evidence
› Isolation mechanisms: Must be in source-code

Goals / Scope
• Goals:

› Enable white-box software isolation: No
post-compilation modifications required

› Enable black-box software isolation proofs:
• Fully automated proofs
• No specialized inputs, e.g., loop invariants,

function pre-/post-conditions
• Scope: ARM machine-code programs

› ARM: Dominant mobile/embedded platform:
Many critical applications

› Machine-code: Minimizes Trusted Computing
Base (TCB): Excludes compiler from TCB

Architecture

Design and Implementation
• Software Isolation: Memory & Control-flow Safety

› Programmer-evident software isolation: Isolation
mechanisms are programmer-visible

 Automated Safety Property Verification
› Input: Machine-code of program
› Output: Safety proof, or proof failure addresses

• Approach:
› Extends Hoare Logic for ARM machine-code

[Myreen’07] to reason about safety properties
› Abstract Interpretation: Automated proof

obligation discharge with failure termination
› Developed logic framework: AUSPICE [Tan’15]
› Implemented in HOL4 theorem prover

 Isolation-Remedy Hint-Generation
› Input: Machine-code Proof Failure Addresses and

source-code of program
› Output: Source-code hints to remediate isolation

failures
• Approach:

› Walk Abstract Syntax Tree (AST) of source line to
extract offending expression

› Generate hints for source-code to repair isolation
violation at offending location

› Uses LLVM-Clang compiler front-end
• Programmer applies hints to source-code, taking

into account program semantics, and recompiles
program

Machine-
code

Source-code
(e.g., C)

Software
Isolation Proof

Generation

Isolation
Remedy Hint
Generation

Software
Isolation violations
manifest in
machine-code
behavior

Programmers
can only observe
this level of
abstraction

Compilation

Safety Proof
of Isolation

Proof
Failure

Hints for source-code
remedies for safety

violations

Machine-code
Proof-Failure
Addresses

Programmer
applies hints

1

Proof
Success

2

34
Our System

43

1 2

[Tan’15] J. Tan, H. Tay, R. Gandhi, and P. Narasimhan. AUSPICE: Automated Safety Property
Verification for Unmodified Executables. In Working Conference on Verified Software: Tools,
Theories and Experiments (VSTTE). Jul 2015.
[Myreen’07] M. Myreen, A. Fox, and M. Gordon. Hoare Logic for ARM Machine Code. In
Fundamentals of Software Engineering (FSEN), 2007.

