Probabilistic Model Checking of Systems with a Large State Space: A Stratified Approach

Shou-pon Lin and Nicholas Maxemchuk

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Contributions

- While most methods that cope with state explosion problem aim at reducing the problem size, we attack the problem by directed state traversal -- **prioritizing the more probable states in state traversal**
- If complete state traversal is not possible due to limited memory, we may compute an upper-bound of probability for reaching the acceptance state

Probabilistic safety property

NSF project 1329593

- We check if an MDP $\,M\,$ satisfies a given probabilistic safety property $\langle A\rangle_{>p}$
- where A is a regular safety property and p is a probability bound
- $\circ~M$ satisfies $\langle A\rangle_{\geq p}$ if the probability of satisfying A is at least p for any adversary σ

 $M \models \langle A \rangle_{\geq p} \Leftrightarrow \forall \sigma \in Adv_M \cdot Pr_M^{\sigma}(A) \geq p$ $\Leftrightarrow Pr_M^{\min}(A) \geq p$

Dividing a Markov Decision Process into Layers

- Given a layering parameter $\hat{p}\,$, probabilistic choices are categorized into several discretization levels:
- 1. (s, α, t) is a (level-0) high probability transition if $P(s, \alpha, t) > \hat{p}$
- 2. (s, α, t) is a level-1 low probability transition if $\hat{p} \ge P(s, \alpha, t) > \hat{p}^2$
- 3. (s, α, t) is a level-2 low probability transition if $\hat{p}^2 \ge P(s, \alpha, t) > \hat{p}^3$

4. and so on..

• A reachable state *s* belong to layer *k* if *k* is the minimum possible sum of transition levels on any path that reach *s*

Stratified State Traversal Algorithm

Check if the MDP satisfied probabilistic safety property

Algorithm 1 Stratified Verification of MDP				
1:	1: procedure STRATIFIED-DFS (M', \hat{p})			
2:	Entry[1] $\leftarrow \{s \in S \eta_{\text{init}}(s) > 0\}$			
3:	$k \leftarrow 1$			
4:	while $\exists i \geq k$ s.t. Entry $[i] \neq \phi$ do			
5:	for all $s \in \text{Entry}[k]$ do			
6:	if $s \notin \text{Layer}[i], \forall i \leq k \text{ then}$			
7:	Insert s into Layer $[k]$			
8:	STRATIFIED-DFS-VISIT (M', \hat{p}, s, k)			
9:	end if			
10:	end for			
11:	$k \leftarrow k + 1$			
12:	end while			
13:	end procedure			
14:	procedure STRATIFIED-DFS-VISIT(M', \hat{p}, s, k)			
15:	if $s \in F$ then			
16:	Insert s into F'			
17:	end if			
18:	for all $(s, \alpha, t) \in trans(s)$ do			
19:	if $P(s, \alpha, t) > \hat{p}$ then \triangleright high prob. transition			
20:	if $t \notin \text{Layer}[i], \forall i \leq k \text{ and } t \notin I$ then			
21:	Insert t into Layer $[k]$			
22:	STRATIFIED-DFS-VISIT (M', t, k)			
23:	end if			
24:	else ▷ low prob. transition			
25:	Insert t into $\operatorname{Entry}[k + \lfloor \log_{\hat{p}} P(s, \alpha, t) \rfloor]$			
26:	end if			
27:	end for			
28:	end procedure			

- Given a set of states F', we compute $Pr_M^{\min}(A) = 1 Pr_{M\otimes A^{err}}^{\max}(\Diamond F')$ by solving a linear program
- Suppose the procedure stops at iteration k 1. If $1 - Pr_{M'}^{\max}(\Diamond F' \lor \Diamond U) \ge p$, $\langle A \rangle_{\ge p}$ holds $(M' = M \otimes A^{err})$

2. If $1 - Pr_{M'}^{\max}(\Diamond F') < p$, $\langle A \rangle_{\geq p}$ is violated 3. Otherwise, whether $\langle A \rangle_{\geq p}$ holds or not is uncertain

Results

• We use stratified verification to consider the lock protocol in [1]. It is applied to a 7-vehicle scenario in which there are 5 conflicting

merge requests

• Stratified verification is compared with the explicit engine of PRISM under limited memory constraints. Preliminary results show that stratified verification is able to compute the upper-bound of error probability while PRISM terminates when running out of memory

	Lock with 5 conflicting reqs		
memory budget	PRISM (explicit)	Stratified	
75MB	out of memory	4.00312×10^{-4}	
100MB	out of memory	4.06118×10^{-13}	
150MB	out of memory	9.83204×10^{-18}	

• [1]: Shou-pon Lin and Nicholas F Maxemchuk. The fail-safe operation of collaborative driving systems. Journal of Intelligent Transportation Systems, (ahead-of-print), pp. 1-14, 2014.