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Preface

The International Conference on Formal Methods in Computer Aided Design (FMCAD), held at TU Wien in Vienna, Austria,
from October 2-6 in 2017, is the seventeenth in a series of meetings on the theory and applications of rigorous formal techniques
for the automated design of systems. The FMCAD conference covers formal aspects of specification, verification, synthesis,
testing, and security, and is a leading forum for researchers and practitioners in academia and industry alike.
The program of FMCAD 2017 comprises a tutorial day with three tutorials on security and concurrency (joint with the
collocated MEMOCODE conference), two keynotes on the use of formal methods in industry, a forum for doctoral students,
the Hardware Model Checking Competition 2017, the main program consisting of presentations of the accepted papers, and a
Symposium in Memoriam of Helmut Veith.
The tutorial day features three presentations covering security and weak-memory concurrency (listed in the order of
appearance in the program):
o “How Formal Methods and Analysis Helps Security of Entire Blockchain-based Systems”, by Shin’ichiro Matsuo (MIT
Media Lab, CELLOS Consortium, and BSafe.network)

o “Symbolic Security Analysis using the Tamarin Prover”, by Cas Cremers (Oxford University)

« “Coalition, intrigue, ambush, destruction and pride: herding cats can be challenging”, by Jade Alglave (University College
London and Microsoft Research)

The keynotes focus on the application of formal verification in industry, and on the verification of cloud computing platforms
and dependable systems in particular:

o “Automated Formal Reasoning About AWS Systems” by Byron Cook (Amazon Web Services and University College

London)
¢ “Formal Methods in Industrial Dependable Systems Design - The TTTech Example” by Wilfried Steiner (TTTech
Computertechnik AG)

FMCAD also hosts the fifth edition of the Student Forum, which has been held annually since 2013 and provides a platform
for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD Student Forum
2017 was organized by Keijo Heljanko and features posters and short presentations of thirteen accepted contributions. A detailed
description of the Student Forum, listing all accepted contributions, is provided in the conference proceedings.

The Hardware Model Checking Competition 2017, affiliated with FMCAD 2017 and organized by Armin Biere, Tom van
Dijk, and Keijo Heljanko, is a competitive event for hardware model checking tools from academia and industry. A description
of this year’s competition is provided in the proceedings.

The Symposium in Memoriam Helmut Veith, held on the last day of FMCAD 2017, is dedicated to the memory of Helmut
Veith, who tragically passed away in March 2016. Helmut was one of the organizers of FMCAD 2016 and an active and
much liked member of the FMCAD community. The Symposium honors Helmut and his contributions to the area of formal
methods, which remain highly influential, with talks on model checking, synthesis, distributed algorithms, and security, given
by collaborators, colleagues, and friends of Helmut and based on articles published in a Special Edition of the Journal on
Formal Methods in System Design in Memoriam Helmut Veith. As part of the Symposium, a LogicLounge on Teaching Logic
in Computer Science remembers Helmut’s dedication to mentoring and his achievements in creating and shaping doctoral and
master’s programs on Logic and Computation at TU Wien. The LogicLounge is a series of discussions on computer science
topics targeting a general audience, which was initiated by Helmut Veith at the Vienna Summer of Logic in 2014.

FMCAD 2017 received 87 abstracts, resulting in 67 submissions, of which 25 full papers and 4 short papers were accepted
for publication in the conference proceedings. Each paper received at least four reviews, and the authors were given the
opportunity to address the reviewers’ concerns in a rebuttal phase. The topics of the accepted papers include solvers and
decision procedures, verification of concurrent and distributed systems, analysis of hybrid and probabilistic systems, synthesis,
run-time verification, a number of papers on the IC3 model checking paradigm, and applications of formal methods.

Organizing this event would not have been possible without the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing detailed
and insightful reviews, which helped the authors to improve their submissions and guided the selection of the papers accepted
for publication. We thank each and every one of them for dedicating their time and providing their expertise. Moreover,
we’d like to give special thanks to the sub-committee which agreed to select the recipients of this year’s Best Paper Award.
We thank the Publication Chair Mitra Tabaei Befrouei (TU Wien) for her effort in preparing and assembling the conference
proceedings, and Keijo Heljanko for organizing this year’s FMCAD Student Forum. Our webmaster, Jens Katelaan, has our
gratitude for maintaining and regularly updating the FMCAD website (which now features the new and sleek FMCAD logo
designed by Anna Oberauer). We thank all students who volunteered to help running the event. As always, the help and
expertise of the FMCAD steering committee made the organization of FMCAD much easier. We thank Armin Biere (Johannes
Kepler University in Linz, Austria), Alan Hu (University of British Columbia, Canada), and especially Warren A. Hunt,. Jr.



(University of Texas at Austin) and Vigyan Singhal (Oski Tech) for supporting and encouraging us, and guiding us through
the organization process.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would like
to express our gratitude (in alphabetical order) to our sponsors Amazon, ARM Ltd., Centaur Technology Inc., DiffBlue Ltd.,
Galois Inc., IBM, Microsoft Research, Oski Technology, Real Intent Inc., Synopsis, TTTech Computertechnik AG, and the
Vienna Science and Technology Fund for their financial support of the conference, and the Austrian Ministry for Transport,
Innovation and Technology and the National Science Foundation for their support of the Student Forum.

FMCAD 2017 is in-cooperation with the ACM and its Special Interest Groups on Programming Languages (SIGPLAN) and
on Software Engineering (SIGSOFT). The FMCAD conference also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The conference proceedings will be available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also freely accessible on the FMCAD Website.

Last but not least, we thank all authors who submitted their papers to FMCAD 2017 (accepted or not), and whose contributions
and presentations form the core of the conference. We are grateful to everyone who presented their paper, gave a keynote
or a tutorial, devoting a significant amount of their time to the FMCAD conference. We thank all attendees of FMCAD for
supporting the conference and making FMCAD a stimulating and enjoyable event.

Daryl Stewart and Georg Weissenbacher
FMCAD 2017 Program Chairs
Vienna, Austria, September 2017

FMCAD 2017 is overshadowed by the death of Professor Michael J. C. Gordon, who recently (22 August 2017) passed away at
the age of 69 after a brief illness. Professor Gordon was a leader in the use of mechanized formal methods to analyze hardware
and software, and he was the original developer of the HOL theorem-proving system. Gordon was an expert in program
semantics, and he was elected a Fellow of the Royal Society in 1994. The FMCAD community has benefited tremendously
from Gordon’s many contributions, and no doubt Gordon’s efforts will continue to influence our community for many years to
come. He will be sorely missed, not only for his wisdom and expertise but also for his distinctively generous and friendly spirit.

Warren A. Hunt Jr.
Chairman, FMCAD Steering Committee
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How formal analysis and verification add security to
blockchain-based systems

Shin’ichiro Matsuo
Keio University and BSafe.network

Extended Abstract of Tutorial Talk

Abstract—Blockchain is an integrated technology to ensure
keeping record and process transactions with decentralized
manner. It is thought as the foundation of future decentralized
ecosystem, and collects much attention. However, the maturity
of this technology including security of the fundamental protocol
and its applications is not enough, thus we need more research on
the security evaluation and verification of Blockchain technology
This tutorial explains the current status of the security of this
technology, its security layers and possibility of application of
formal analysis and verification.

Index Terms—Blockchain, Security Evaluation,
Method, Formal Verification, Domain Specific Language

Formal

I. INTRODUCTION

A. Background

There are proposed many applications which aim to use
blockchain technology as a fundamental distributed ledger.
We expect considerable commercial interest in many new
and novel applications using a blockchain. In spite of this
burgeoning interest, academic research on the security model
of blockchain technology and its application are at an early
stage. Due to the Ethereum DAO debacle, the importance
of analysis of the security of blockchain-based systems is
rapidly increasing. Current research issues are to find a good
framework to analyze the security of blockchain technology
including defining the security requirements and the way to
evaluate their security. Several existing researchers deal with
how to figure out the security of blockchain by using formal
analysis. To facilitate this direction of research, we need a
more well-organized framework.

B. Structure of the tutorial

In this tutorial, we firstly figure out the security require-
ments needed for blockchain based systems and smart con-
tracts. Then we propose technology layers for such systems
and application and security considerations for each layer.
Next we explore the applicability of formal analysis for
each layer and pick three layers which are good targets of
evaluation by formal analysis. Then, we propose the frame-
work of applying formal analysis to help secure blockchain-
based systems. An explanation of the limitations of formal
verification follows. At the end of this tutorial, we conclude
the direction to the framework to design application code and
system which facilitate formal analysis and formal verification.

II. SECURITY REQUIREMENTS FOR SYSTEM AND SMART
CONTRACT

The security definition of blockchain backbone protocol
was proposed in [1], [2]. This security definition focuses
on the difficulty of forgery of the block by introducing
CommonPrefix property and Chain Quality property. By using
these properties, we can estimate the probability which the
adversary succeeds to manipulate the blockchain. This is the
requirement only for protocol specification of the backbone
protocol. From the system and application viewpoints, we
should care about more aspects of security. Even on the
protocol security, there are many assumptions in achieving its
security goals. Cryptographic protocol assumes that the private
cryptographic keys are kept secret at all nodes. We should
analyze if the assumption surely holds.

For the application logic, there is possibility that some
critical bugs remain in the program code. An adversary takes
advantage of this bug to attack the application based on
blockchain. The Ethereum DAO case gives us an important
study that such attack may cause a rollback and a hard fork.

From above, we should cover not only the security re-
quirements for backbone blockchain protocol, but also all
mechanisms to ensure the assumptions and scripting language
and codes to realize blockchain-based applications.

III. SECURITY LAYERS
A. Technology layers and security consideration

In [3], Croman et al, proposed the technology layer of
blockchain technology. This layers consist of network plane,
consensus plane, storage plane, view plane and side plane.
This structure is made to rethink the technology to provide
more scalability.

From system and application security viewpoints, we set the
technology layers by the target of evaluation. They consist of
cryptography layer, backbone protocol, application protocol,
application logic, implementation and operation (see Fig.1).

As this figure shows, each layer has international stan-
dards to analyze the security of the security mechanisms,
except application logic. Cryptography layer is covered by
standardization process of ISO, NIST and many effort by
the cryptographic academic community. Security of backbone
protocol is analyzed by using formal analysis and UC (Uni-
versal Composability) framework and ISO/IEC 29128 [8]. The
security of implementation is certified by Common Criteria

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.
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Fig. 1. Technology layers and security consideration

(ISO/IEC 15408) [7] and operation of the system is defined
and audited using ISMS and the framework of ISO/IEC
27000 series. Unfortunately, the application logic layer, which
contains a scripting language for financial transaction and
contract, does not yet have good standard to provide security
analysis. Further research here is clearly required.

IV. APPLYING FORMAL ANALYSIS
A. Abstract of formal analysis and formal verification

Here, we revisit the basis for the formal analysis and formal
verification. Note that we distinguish between these two words.
Formal analysis means evaluating the possibility of attack
on the specification of the protocol, products or system by
conducting some mathematical formalization of the security
requirements, specifications and operational environment (an
adversarial model). Is the description of the state spaces,
axioms and changes both necessary and complete? Formal
verification means to verify the correctness of the specification
of the protocol, products or system formal methods such
as automated axiomatic theorem proving or model checking.
Formal analysis means a manner to use a mathematical formal-
ization to evaluate the security and formal verification means
checking if the specific protocol, product or system is qualified
against the formal specification.

Formal analysis was originally used for check the existence
of a bug in the circuit. Then it is applied to check the
existence of bug in software code, design of the software and
information system and security of cryptographic protocols.

B. State of formal analysis and checking Tools

The term formal methods refers to the use of methods
for the mathematical modeling, calculation, and predication
in the specification, design, analysis, construction, and assur-
ance of hardware and software systems. These methods are
distinguished as having a well-defined syntax, a semantics,
and often a deductive system (or other machinery) for making
semantically-sound statements about systems specified in the

Model checking Theorem proving

Symbolic

NRL £7SCYTHER
EDR ProVerif
i AVISPA
i (TA4sP)

Isabelle/HOL

AVISPA

Crypt hi i
Typtographic i CryptoVerif BPW(in Isabelle/HOL)
H Game-based Security

Proof (in Coq)

Unbounded

Fig. 2. Categorization of Formal Analysis for cryptographic protocol

language of the formal method. Over the last two decades, the
security community has made substantial advances in devel-
oping automated formal methods for analyzing cryptographic
protocols and thereby preventing the kinds of attacks men-
tioned above. These methods and tools could be categorized by
several points of view. Here we categorize them by “Symbolic
versus Cryptographic”, “Bounded versus Unbounded”, and
“Model checking versus Theorem proving” as Fig. 2.

C. Which security layer can formal method be applied?

According to the past results and history of formal analysis,
the following three layers are main targets of evaluation for
formal analysis.

1) Implementation: This layer contains both software and
hardware implementation of security mechanisms includ-
ing cryptographic algorithm, protocols and key management
mechanisms. Especially, crypto-token wallet programs used
in general user device may become the weakest link and
should be carefully implemented. In ISO/IEC 15408, there are
seven EALs(evaluation assurance levels), and EAL 6 requires
semiformal analysis on the design and implementation, and
EAL 7 requires fully formal analysis on the design and
implementation. There are many past examples and result of
formal analysis in this layer.

2) Backbone protocol and application protocol: Formal
analysis on the protocol specification has a long history and
it gives many results to enhance the security of cryptographic
protocols. ISO/IEC 9798 and 11770 are revised from results of
formal analysis [4], [5]. Recently, formal analysis on TLS1.3,
the latest version of TLS protocol, helps its sound development
and the result is used in the IETF standardization process [6].
Recently, combination of mathematically rigorous proof (UC
Framework and game-based proof) and formal analysis are
used to apply formal analysis to a wider and complicated set
of protocols.

3) Language for Smart Contracts: Checking the program
code is the well-known application of formal analysis and we
have extensive research in this area. It is not easy to check the
highly complicated program by using formal analysis, there
are many existing research to realize security assured language
specification. For smart contracts, we will have good applica-
tion by specifically defining new languages that are designed
to lend themselves to formal analysis and verification.

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.
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V. PROPOSAL OF THE FRAMEWORK

A. Implementation

We can apply the same framework and methodology as
Common Criteria (ISO/IEC 15408). Especially, wallet soft-
ware or hardware should be secure against known attacking
methodology like gray-box attack (side-channel attack) and
white-box attack for software-only implementation. FIPS140-
2 is also useful to make the framework for analyzing imple-
mentation. In this tutrial, we will provide past examples of
formal analysis on the cryptographic implementation and how
we can apply it to blockchain-based systems and devices.

B. Protocol

We can apply the same framework and methodology as
ISO/IEC 29128 (verification of cryptographic protocols). It
defines four PALs(Protocol Assurance Levels) according to
the level of formalization for protocol specification, security
requirements and operational environment. This framework
covers combination of mathematical rigorous proof and formal
analysis. In this tutrial, we will provide past examples of
formal analysis on protocol specifications, how we write the
report to align to this standard, and how we can apply it for
analysis on backbone protocol and application protocol.

C. Language for smart contract

Analyzing the existence of bug in the program code is
still fundamental research topic in computer science. We still
do not have perfect results for general purpose language.
The main problem is the openness of general purpose of
programming language. As for the smart contract, Bhargavan
et al. proposed a framework to analyze and verify both the
runtime safety and the functional correctness of a Solidity con-
tract by introducing an intermediate functional programming
language suitable for verification [9]. Although the paper does
not cover all EVM functionality at the time of writing this

tutrial abstract, it seems a good approach to add limitation to
operational environment to facilitate formal analysis.

In this tutrial, we additionally propose another approach
to define a domain specific language for certain application
domain, which has enough capability to write business logic
and also suitable for formal verification. Then, we will present
an example of the domain specific language for trade finance
and trade facilitation.

VI. LIMITATION OF FORMAL VERIFICATION AND HOW WE
FACILITATE THE USE OF IT

In this part of the tutrial, we discuss about the limitation
of the formal verification. Automated and tool-aided formal
verification is strong approach to check the correctness of
specification and code. However, there are two major issues
when we use such automated tool. The first is on the limitation
of the time and memory of the computer which executes
the verification. In many formal methods, the tool finds the
possibility of bug and security problems by exploring as
many execution states as possible. In this case, the upper
bound of runtime memory of the computer and execution
time become the essential limitation for complicated programs
and protocols. While there are many techniques to reduce
the number of states to be explored, they are not generally
sufficient for complicated software implemented in a general
programming language.

The second issue is the correctness of the formalization.
When we use the formal verification tool, we formalize the
specification (code), security goals and operational environ-
ment. The result of execution of the tool depends on the
accuracy of the formalization. However, we do not have a good
tool check the accuracy. For arbitrary formalized systems, we
need to check the correctness by reviewing the formalized code
by humans. This limits the applicability of formal verification
in general. Here, we need some kind of templates and code
patterns in formalization.

From above perspective, limiting the number of states by
tightly defining the language and preparing code patterns or
templates are good direction to facilitate the use of formal
analysis and formal verification. As for the implementation,
the protection profile is the actual template for formalization.
In the verification of cryptographic protools, there already
exists evaluation reports which aligns to ISO/IEC 29128 and
they can be used as templates. As for the language for smart
contract, defining a domain specific language helps to reduce
the number of states to be explored and creates a template of
formalization.

VII. CONCLUSION

In this tutrial, we proposed the way to facilitate the applica-
tion of formal analysis and formal verification by considering
technology layers and their security concerns. We picked three
layers, implementation, protocol and language, as targets of
applications of formal analysis. Then, we propose a framework
to apply formal analysis to each layer by using existing
standards and results. We can use the same framework as
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ISO/IEC15408 for implementation and ISO/IEC 29128 for
protocol analysis. For the language, which was essential prob-
lem with the Ethereum DAO issue, defining a domain specific
language is the new and effective solution and we showed an
example for trade finance and trade facilitation. The domain
specific language should have a design framework which
facilitates formal analysis and, if possible, formal verification.

From the above, formal analysis research and technology
development can deliver immediate value to the investments
in blockchain technology with mutual benefits to all involved.
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Symbolic Security Analysis using the Tamarin
Prover

Cas Cremers
Oxford University

Abstract of Tutorial Talk

In this talk I will present the Tamarin Prover, an analysis tool for symbolic security analysis of systems. A prime example
of systems that fall within its scope are security protocols that are executed in the presence of an active attacker. Tamarins
state-of-the-art analysis of such systems requires dealing with unbounded replication of processes, loops, the prolific behaviour
of the attacker, and equational theories to model cryptographic operations as accurately as possible within the symbolic model.

This tutorial covers Tamarins system specification, execution model, and property specification language. I will demonstrate
how Tamarin can automatically analyse systems, and how its extensive interactive mode aids in the analysis of more complex
systems. Finally, I will touch upon Tamarins more advanced features and larger succesful case studies, such as the upcoming
TLS 1.3 internet standard.
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Coalition, intrigue, ambush, destruction and pride:
herding cats can be challenging.

Jade Alglave
University College London and Microsoft Research Cambridge

Abstract of Tutorial Talk

Abstract—Herding cats can lead to coalition (of cheetahs),
intrigue (of Kkittens), ambush (of tigers), destruction (of wild
cats) or pride (of lions). In this tutorial, I will present the cat
language to write consistency models as a set of constraints on the
executions of concurrent programs. A cat model can be executed
within the herd tool [3], which I will use during the tutorial.

Concurrent programming can be difficult: how are concur-
rent programs supposed to behave? Do they behave correctly
on exotic hardware? Formal consistency models can help
answer these questions. Unfortunately, very often, the con-
sistency models of the machines or operating systems we run
our software on are not precisely defined. Our software itself
may be written in languages whose concurrency semantics is
a work in progress. To try to remedy this, the past decade has
been quite rich in works aiming at describing the consistency
models of hardware [20], [5], [19], [18], [6], [7], [12], [13],
programming languages [10], [9], [8], [17] and more [11].

Most of these models belong to one of two formal styles:
they are operational or axiomatic models. Operational models
describe the executions of a concurrent program as sequences
of steps: for example, reading from memory or writing to a
store buffer. Axiomatic models describe executions as relations
over events which represent the semantics of instructions:
relations represent for example the order in which instructions
are executed, or who reads from where. Both styles have
advantages: operational models can be quite close to hardware
designs, thus becoming a good device to communicate with
hardware folks. Axiomatic models can be quite abstract, which
leads to concise models and efficient verification [2].

The cat language [7] is a domain-specific language which
allows the user to describe axiomatic consistency models as a
set of constraints on executions. It has been used to describe
hardware models such as ARMv7 and IBM Power [7], Nvidia
GPUs [1], HSA GPUs [4], C++ and OpenCL [8]. More
recently, ARM has released an official cat file as part of
their formalisation of their ARMvS8 consistency model [15].
A cat model can be executed by the herd tool [3], to answer
questions about the semantics of concurrent code.

In this tutorial, I will present the cat language and the herd
tool. By the end of this tutorial, you should have the skills re-
quired to build several models amongst the following: Sequen-
tial Consistency [14], Total Store Order [20], IBM Power [7],
ARM [12], Nvidia GPUs [1], C++ [8] and Linux [16]. I hope
to make this tutorial interactive, using the herd tool. For this
to go smoothly, I would suggest downloading and installing
the herd tool from http://diy.inria.fr.
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Automated Formal Reasoning About AWS Systems

Byron Cook
Senior Principal Engineer, Amazon Web Services
Professor, University College London

Abstract of Invited Talk

Automatic and semiautomatic formal verification tools are now being developed and used within Amazon Web Services
(AWS) to find proofs that prove or disprove desired properties of key AWS components. In this session, we outline these
efforts and discuss how tools are used to play and then replay found proofs of desired properties when software artifacts or
networks are modified, thus helping provide security throughout the lifetime of the AWS system.
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Formal Methods in Industrial Dependable Systems
Design - The TTTech Example

Wilfried Steiner
TTTech

Abstract of Invited Talk

Over the last decades the field of dependable computer systems has gained tremendous significance in our modern society.
We rely on the dependability of automobiles, railways, airplanes, medical devices, critical infrastructures, like the electrical grid
or industrial production facilities, and many more. These dependable systems frequently implement non-trivial mechanisms, for
example, to coordinate between redundant components, and a guarantee of correctness of these mechanisms is therefore crucial
to avoid catastrophic incidents. Consequently, formal methods are frequently used in industrial dependable system design and
in this talk I will discuss the various aspects in which formal methods are and have been deployed for specification, verification,
and configuration at TTTech for critical networking products.
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Hardware Model Checking Competition 2017

Armin Biere

armin.biere @jku.at

Johannes Kepler University Linz, Austria

The Hardware Model Checking Competition (HWMCC)
2017 affiliated to the International Conference on Formal
Methods in Computer Aided Design (FMCAD) in 2017 in
Vienna was the 9th competitive event for hardware model
checkers we organized. After HWMCC’15 affiliated with
FMCAD’15 in Austin, the competition took a break in 2016.

The competition has its roots in the model checking com-
munity with focus on hardware verification, a former central
theme in International Conference on Computer-Aided Verifi-
cation (CAV) and the first three incarnations of the competition
in 2007, 2008 and 2010 were affiliated with CAV. This topic
is now more at home at FMCAD, the primary place for
research in formal methods for hardware. Accordingly the
hardware model checking competition stays with FMCAD
(2011,2012,2013,2015,2017) except when CAV is part of the
Federated Logic Conference (FLoC) as in 2014 [4].

The goal in organizing this competition is to keep up the
driving force in improving hardware model checkers. We
also want to motivate implementors to present their work
to a broader audience. Another important objective is to
collect realistic benchmarks and to make them available to the
research community. Both academia and industry is invited to
submit solvers and benchmarks. Competiting model checkers
have to solve benchmarks in the AIGER format [2], [3].

The competition in 2017 had multiple tracks. The most
important track was the single safety property track (SINGLE).
As in previous years we also had a (single) liveness property
track (LIVE), and a deep bound track (DEEP), but no multiple
property track. The winner of the deep bound track received
an award of $500 sponsored by Oski Technology.

The tracks were run in the same way as in the previous four
incarnations of the competition, except that we were using our
new cluster running Ubuntu 16.04.2 64 bit. Each cluster node
had two Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPUs
and 128 GB of main memory.

Each solver had full access to both processors on one node,
thus combined 16 cores (32 virtual cores) and 128 GB of main
memory. Accordingly a memory limit of 120GB was enforced.
As in the last competition in 2015 affiliated to FMCAD’ 15 we
were further using a time limit of 1 hour of wall clock-time.

Also as before the number of submissions was restricted to
at most two model checkers per submitter and model checkers
were required to produce witnesses in the SINGLE track.
These witnesses were checked by the AIGSIM tool, which
is part of the AIGER tools [1].

Supported by Austrian Science Fund (FWF) NFN S11408-N23 (RiSE)

Tom van Dijk
tom.vandijk @jku.at

Keijo Heljanko
keijo.heljanko @aalto.fi
Aalto University, Finland

Except for the new hardware, competition rules, as well
as input and output formats [2] did not change compared to
previous competitions. As starting with HWMCC’12 model
checkers competing in the DEEP bound track were requested
to print the bounds reached during running in the SINGLE
track. In the SINGLE track model checkers were required
to print witnesses traces if a bad state was claimed to be
reachable. These witnesses serve as certificates for satisfiable
bad state properties and were checked for correctness.

Again as in HWMCC’ 14 and HWMCC’15, in order to avoid
glitches in interpreting the format, the SINGLE track only used
AIGER pre 1.9 single property benchmarks [2], with the single
bad state property encoded as an output (MILOA header with
O = 1). All latches were assumed to be initialized implicitly
to zero as it is the default in the pre 1.9 AIGER format [2].

There was no change in the LIVE track which of course
used the AIGER 1.9 format [3] nor in the DEEP track. Solvers
intended to participate in the DEEP track were run in the
SINGLE track and were expected to print reached bounds as
in previous years (see for instance HWMCC’12).

In the previous competition HWMCC’ 15 we were proposing
to completely switch to the AIGER 1.9 format [3] (also in
the SINGLE track), add back the multiple property track,
provide support for fuzzing and delta-debugging, and last but
not least to establish a word-level track. However, due to lack
of resources, we had to postpone these changes again.
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The FMCAD 2017 Graduate Student Forum

Keijo Heljanko
Aalto University, Finland

Abstract—The FMCAD Student Forum provides a platform
for graduate students at any career stage to introduce their
research to the wider Formal Methods community, and solicit
feedback. In 2017, the event took place in Vienna, Austria, as
integral part of the FMCAD conference. Thirteen students were
invited to give a short talk and present a poster illustrating
their work. The presentations covered a broad range of topics
in the field of verification, such as automated reasoning, model
checking of hardware, software, as well as parameterized systems,
verification of concurrent programs, and checking of floating
point properties.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2017 Graduate Student
Forum follows the tradition of its predecessors, which took
place in Mountain View, CA, USA in 2016 [1], Austin, Texas,
USA in 2015 [2], Lausanne, Switzerland in 2014 [3], and in
Portland, Oregon, USA in 2013 [4].

Graduate students were invited to submit short reports
describing their ongoing research in the scope of the FMCAD
conference. Based on the reviews provided by the organizing
committee, 13 high quality submissions were accepted. The
reviews focused on the novelty of the work, the technical
maturity of the submission, and the quality and soundness
of the presentation. The presentations covered a broad range
of topics in the field of verification, such as automated
reasoning, model checking of hardware, software, as well as
parameterized systems, verification of concurrent programs,
and checking of floating point properties.

The following contributions have been accepted:

o Yulia Demyanova, Thomas Pani, Helmut Veith and Flo-
rian Zuleger: Empirical Software Metrics for Benchmark-
ing of Verification Tools

o Sepideh Asadi, Karine Even-Mendoza, Grigory
Fedyukovich, Antti Hyvérinen, Hana Chockler and
Natasha  Sharygina:  HiFrog:  Interpolation-based
Software Verification using Theory Refinement

o Thanh Hai Tran and Jure Kukovec: Pattern-based ab-
stractions for parameterized model checking of dis-
tributed algorithms

o David Declerck, Sylvain Conchon and Fatiha Zaidi: A
Backward Reachability Algorithm for Parameterized Sys-
tems on Weak Memory

o William Hallahan, Ruzica Piskac and Anton Xue: Build-
ing a Symbolic Execution Engine for Haskell

o Samuel Pastva: Discrete Bifurcation Analysis of Reactive
Systems

o Rohit Dureja and Kristin Yvonne Rozier: From One To
Many: Checking A Set Of Models

o Adrian Rebola Pardo: Satisfiability-preserving Reasoning
in Software Verification

o Akos Hajdu and Zoltan Micskei: Towards Using Multiple
Counterexamples for Abstraction Refinement

e Yiji Zhang, Lenore Zuck and Kedar Namjoshi: An LLVM
Refinement Checker and its Applications

o Andreas Fellner: Model-based, mutation-driven test case
generation via heuristic-guided branching search

o Lucas Martinelli Tabajara: Synthesis via CNF Decompo-
sition

o Jaideep Ramachandran:
Floating-Point

Unified Solver Strategy for

The 2017 student forum also featured a Best Contribution
Award (based on the quality of the submission, the poster,
and the presentation), announced during the conference and
publicized on the FMCAD website.

The Student Forum would not have been possible without
the excellent contributions of the student authors. The gener-
ous support of the National Science Foundation and FMCAD’s
sponsors enabled us to subsidize the travel cost of the partici-
pating students. The help and advice of Georg Weissenbacher,
FMCAD 2017 General and PC chair who organized the earlier
FMCAD 2015 student forum was invaluable. Also help from
Warren Hunt and Lindy Aleshire was instrumental in providing
and administering the NSF grant for subsidizing travel costs.
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goSAT: Floating-point Satisfiability as Global
Optimization

M. Ammar Ben Khadra, Dominik Stoffel, Wolfgang Kunz
Department of Electrical and Computer Engineering
University of Kaiserslautern, Germany
{khadra,stoffel ,kunz} @eit.uni-kl.de

Abstract—We introduce goSAT, a fast and publicly available
SMT solver for the theory of floating-point arithmetic. We build
on the recently proposed XSat solver [1] which casts the satisfi-
ability problem to a corresponding global optimization problem.
Compared to XSat, goSAT is an integrated tool combining
JIT compilation of SMT formulas and NLopt, a feature-rich
mathematical optimization backend. We evaluate our tool using
several optimization algorithms and compare it to XSat, Z3, and
MathSat. Our evaluation demonstrates promising results.

Index Terms—satisfiability modulo theories, decision proce-
dure, floating-point, global optimization

I. INTRODUCTION

Automated bit-precise reasoning over floating-point arith-
metic (FPA) is essential for a wide range of applications. For
instance, test generation and program synthesis. SMT solvers
are often used as a backend to implement such reasoning.
Improving the support for FPA theory has been tackled in
several recent works [2]-[5]. Despite these advances, the
performance of SMT solvers regarding FPA theory still suffers
from relatively poor scalability. Moreover, clauses involving
common non-linear functions, e.g., trigonometric, remain par-
ticularly difficult. In fact, modern SMT solvers are based on
DPLL(T) as their central framework. Therefore, their core
SAT engines can be ineffective in deducing facts that might
otherwise be “obvious” at the theory level [3]. In the following,
we elaborate on two key challenges raised by FPA theory.

Standard complexity. The IEEE 754-2008 standard defines
seven core operations that need to be correctly rounded,
namely, {+,—,*,/,rem,sqgrt,fma}. The result of a core oper-
ation is affected by the rounding mode, five defined modes, and
whether it involves a special number {NaN, +oo}. Also, rules
for type conversion and exception handling, e.g., overflow,
need to be considered.

Tunable approximation. FPA is an approximation of reals
by definition. In practice, FPA implementations are funable
depending on the required performance and precision. For
example, the flag —f fast-math instructs GCC to enable FP
optimizations that are less precise. Moreover, a function like
sin might be evaluated using a software library or a single
hardware instruction with potentially different results [6].
Further, function sin might even be evaluated at compile time
with correct rounding'. Therefore, sound reasoning about FPA

!GCC supports compile-time evaluation of built-in functions that have
constant arguments since v4.3: https:/gcc.gnu.org/gce-4.3/changes.html

should take into account the semantics of various approximate
implementations of a single function. This can overwhelm
SMT solvers particularly in the case of non-linear functions.

To address this, Fu et al. recently proposed XSat [1], an
SMT solver for FPA based on mathematical optimization.
XSat works by transforming a quantifier-free SMT instance
F(Z), where & € FP", to a corresponding objective function
G(Z). The latter represents a distance value that needs to be
minimized by Global Optimization (GO) techniques [7]. The
goal is to find an assignment « satisfying G(a) = 0. The
key advantage of XSat is that it doesn’t need to explicitly
encode FPA semantics. Rather, it can guide its reasoning
purely by observing the outputs of G(Z). Consequently, it can
generally reason about any executable function. The original
implementation of XSat consists of (1) a code generator that
generates G(Z) in C language, and (2) a Python tool that
invokes Basin Hopping (BH) [8], a GO algorithm built in
Scipy?, to find a satisfying a. Note that the C code of G()
needs to be compiled as a C extension to Python in a separate
step which makes XSat difficult to use.

In this work, we build on the ideas proposed in XSat. We
make a number of contributions. First, goSAT is an integrated
tool that generates the objective function G(#) using Just-
in-Time (JIT) compilation and directly attempts to solve it
on-the-fly. Second, our backend is based on the feature-rich
non-linear optimization library NLopt [9]. In contrast, XSat is
restricted to the BH algorithm. Third, in addition to its native
solving mode, goSAT has a code generation mode similar to
XSat. This enables experimenting with various optimization
libraries that are not yet natively supported by goSAT. Fourth,
we evaluate our tool on the same benchmarks used in XSat. We
employ various GO algorithms available in NLopt and com-
pare them with the BH algorithm. Finally, we make our tool
publicly available at (https://github.com/abenkhadra/gosat).

II. BACKGROUND

We discuss here the theoretical basis of goSAT. Given an
SMT formula F(Z), where & € FP", we need to systemati-
cally derive a corresponding objective function G(Z). Evalu-
ating G(Z) for a particular assignment « returns a distance
value that becomes smaller as we get closer to the global
minimum at zero. In order to establish the equivalence between

2popular Python library for scientific computing: https://www.scipy.org/
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Formula

gofuncs.c

gofuncs.h H C compiler

libgofuncs

BH solver

‘ libz3 Ff—ﬁ Analyzer H Code gen.
‘ libmcjit H JIT gen. ‘
‘ libnlopt F——ﬁ Backend ‘ NL solver

Fig. 1. goSAT architecture

satisfiability of F(Z) and global optimization of
function G(Z) must satisfy (R1) VZ € FP",G(%)
R2) G(a) =0 & a = F(D).

Consider F(Z) to be in the language Ly, defined over
quantifier-free FPA. Our Ly, is slightly modified to that found
in XSat, namely,

G(Z), the
> 0 and

Boolean constraints

m o= o' | Ame | T Ve | e1 es
Arithmetic expressions e = c|

z|el®e2| H(er,...en)

where e {<,<,>, > ==#}, ® € {+,—,%,/}, cis a
floating-point constant, x is a variable, and H can be any
user-defined function, e.g., logarithm.

Let F.(Z) be F(Z) after eliminating — using De-Morgan’s
law and transforming it to CNF,

_» def
]:c(l‘) d: /\ \/ €i,j D 5 e;’j (D
ieljeJ
we derive G(Z) from F.(Z) as follows:
_\ def
g('r) = ZHd(Nljaeljaez]) )
i€l jeJ
where,
d(<,er,e2) © e <ex 70 Bleren) 3)
d(<,61,€2) déf e < ez 70 9(61,62) +1 (4)
d(>,e1,e3) def e1 >ex 70 : O(er,er) (5)
d(>,€1,€2) déf e1 >ey 70 : 9(61,62) +1 (6)
d(==,e1,e2) o (e1,e2) @)
d(F e, en) E e1#e 70 0 1 ®)

Function 0(x1,x2) represents the distance between bit repre-
sentations of x; and x5. It has the following key properties:

Vay, 2o € FP0(x1,22) > 0 )
Vaq,z9 € FP,H(.’IJl,l’Q) =0 =z =2 (10)
Va1, xe € FPO(x1,22) = 0(x2,21) (11

From equations (2) to (11), it can be shown that G(Z)
satisfies requirements R1 and R2. Consequently, goSAT pro-
vides a sound method for proving FPA satisfiability. However,
completeness of goSAT depends on the applied GO algorithm.

Generally, GO algorithms can be classified into determin-
istic [10] and stochastic [11]. The former are complete by
providing a guarantee of finding a global minimum within a
finite time. However, their applicability usually depends on the
type of considered function, e.g., convex functions. Also, they
often require the user to provide first and/or second derivatives
(gradient and Hessian, respectively). In comparison, stochastic
methods are more flexible by being applicable to functions
as black box. This comes at the expense of not guaranteeing
convergence to global minimum.

III. IMPLEMENTATION DETAILS

Now we discuss the implementation of goSAT. We begin
with its native solving mode. Then, we move to discuss
its code generation mode and helper utilities, namely, NL
solver and BH solver. Finally, we discuss our choice
of optimization algorithms and their parameter tuning. Our
discussion will be based on Fig. 1. Highlighted components
are part of our contribution. Our implementation language is
C++ except for the BH solver which is written in Python.

A. Native solving mode

This is the default mode of goSAT where it accepts an SMT
file as input. The Analyzer parses the input file using the fa-
cilities of 1ibz3 to get an expression (expr) representing the
formula. Then, the Analyzer constructs an LLVM module
that contains the objective function G(&). The latter is passed
to a JIT generator that traverses expr in a post-order
manner in order to generate the corresponding LLVM IR. The
translation process is syntax-directed resembling equations (2)
to (11) discussed previously. Next, function G(Z) is just-in-
time compiled (jitted) and optimized using libmcjit from
the LLVM framework. A pointer to the jitted G(Z) is provided
to our Backend alongside other required data structures.
Finally, the Backend configures and invokes 1ibnlopt on
function G(Z) in order to find a satisfying model.

B. Code generation mode

This tool mode is similar to what is implemented in XSat.
We developed it in order to facilitate experimentation with
GO algorithms that we still do not natively support in goSAT.
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Fig. 2. Topologies of (a) 1evy function compared to (b) £23 function generated by goSAT. Functions generated by goSAT are non-smooth, however, they

exhibit more regularity which is a key property for goSAT to work in practice.

Additionally, we provide two utilities, NL. solver and BH
solver, to demonstrate its use. The former depends on
NLopt as its backend while the latter uses Scipy as its backend.
Note that Scipy currently supports only one GO algorithm,
namely, basin hopping. We were able of reproducing (most)
results published in XSat using our BH Solver.

This goSAT mode is mainly implemented in the code
generation component, refer to Fig. 1, which receives an
expr after parsing the input formula by Analyzer. Code
generation is realized using syntax-directed translation similar
to the native solving mode. The output of this mode are C code
and header files. These need to be compiled to obtain a shared
library 1ibgofuncs. Additionally, goSAT generates an api
text file which is required to properly call the functions in
libgofuncs. The api file, in its simplest forms, lists the
name and dimension (variable count) of each G(Z).

C. Optimization algorithms

We decided to use NLopt as our backend since it is publicly
available and supports several derivative-free non-linear GO
algorithms. There are, however, other open source packages
for large-scale non-linear optimization, e.g., IpOpt [12]. Un-
fortunately, they generally have restrictions regarding the types
of supported functions and the availability of derivatives. Note
that open-source derivative-free GO algorithms still lack in
performance compared to commercial implementations [13].

Our next step was to profile various GO algorithms im-
plemented in NLopt to experiment with their efficiency and
reliability. To this end, we chose several standard functions
that have multiple local minima, e.g., levy, griewank,
and rastrigin. These functions are commonly used for
benchmarking GO algorithms [14]. We ended up choosing
four promising derivative-free algorithms, namely, the de-
terministic algorithm DIRECT and the stochastic algorithms
CRS2, ISRES, and MLSI3. Note that algorithm parameters
play a crucial rule in convergence to global minima. For

3Please refer to NLopt algorithm documentation for further details.

example, consider the levy function depicted in Fig. 2a
which has a global minimum G(Z) = 0 for & = (1,1).
Basin Hopping (BH) with default parameters and an initial
guess x = (—8.2, 1) was unable of “hopping” over the barrier
and was trapped at a local minimum 6.056. Convergence to
the global minimum required increasing the Monte-Carlo step
size to 2.0. Fortunately, the transformation implemented in
goSAT produces functions with more regularity. For example,
consider formula £23 depicted in Fig. 2b which is taken from
the Griggio benchmarks [15]. BH quickly converged to the sat-
isfiable area using default parameters despite setting an initial
guess that is far away at & = (—10%, —107). Actually, it is easy
see, from equations (3)-(8), that G(Z) generated by goSAT are
non-smooth due to the use of conditional statements. However,
they exhibit some regular structure that makes them easier to
solve compared to standard GO benchmarking functions.

IV. EVALUATION

We evaluated goSAT on the entire Griggio benchmark set
(214 instances). The GO algorithms used in the evaluation
are DIRECT, CRS2, ISRES, and MLSL. In order to draw
a comparison with XSat (BH algorithm), we used goSAT
to generate a libgofuncs library representing the same
benchmark instances. Then, we provided 1ibgofuncs as
input to our BH solver.

We “reasonably” tuned algorithm parameters in order to
provide a fair comparison. The initial guess for all algorithms
was set to zeros, step size to 0.5, and timeout to 600s. Each
algorithm was executed once per instance. This makes BH
solver achieve slightly different results to those reported
in XSat. The latter uses a restart strategy using multiple initial
guesses. Note that native goSAT has a small extra overhead
compared to NL. solver since it needs first to parse and JIT
the input formula. We draw a comparison with Z3 v4.5 and
MathSat v5.3.14. Both solvers were used with their default
parameters. Experiments were conducted on a Linux machine
with 8 GB RAM and Intel® Core i7 processors.
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TABLE I
EVALUATION RESULTS
‘ sat ‘ unsat ‘ timeout ‘ errors ‘ avg. time
CRS2 91 123 0 0 2.60
ISRES 88 126 0 0 2.89
BH 89 113 0 12 4.43
MLSL 56 116 0 42 5.30
DIRECT 45 169 0 13.60
MathSat 100 68 46 55.54
73 85 60 65 4 71.39

Results are summarized in Tab. I. We provide the number
of sat, unsat, timeout, and error instances together
with the average query time in seconds (excluding timeout and
error instances). Some GO algorithms faced numerical errors,
e.g., round-off. Z3 encountered 4 out-of-memory exceptions.
In the case of goSAT, error instances can be considered unsat
since GO algorithms are generally incomplete. We used Z3 to
externally validate all sat models returned by goSAT.

Our results provide a rough comparison since algorithm
parameters can be tuned further. For instance, using the same
function evaluation limit of 5 x 10°, the deterministic DIRECT
algorithm needed more time and found fewer sat instances
compared to the stochastic CRS2. Fig. 3 compares the solving
time of BH algorithm to CRS2 and DIRECT (fastest and
slowest in goSAT respectively). Note that the performance of
DIRECT varies relatively widely across the benchmarks. Also,
BH needed a maximum of 488s for one instance while CRS2
was able to respond in about 25% of that time at most.

Overall, GO algorithms can provide a viable alternative to
conventional SMT solvers for FPA particularly in the case
of formulas involving non-linear functions. Moreover, they
can assist them in special applications, e.g., in Optimization-
Modulo-Theory (OMT) [16], [17]. Note, however, that SMT
solvers often need to reason about multiple theories which is
still not possible in goSAT. The theory of quantifier-free bit-
vectors (BV) can be particularly relevant in combination with
FPA in the domains of software verification and synthesis.
Recently, Frohlich et al. [18] demonstrated promising results
in applying stochastic search for solving BV satisfiability
directly on the theory level. This provides potential ideas for
combining BV and FPA to be solved using stochastic search.

V. CONCLUSION

We introduced goSAT, an SMT solver for the theory of
FPA. In contrast to XSat, goSAT is capable of natively solving
SMT formulas and is publicly available. Unlike conventional
solvers, goSAT is based on mathematical optimization which
enables it to reason, in principle, about any executable func-
tion. There are, however, several areas for future improvement.
Most notably, we plan to exploit the particular structure of
G(Z) generated by goSAT in order to improve solving effec-
tiveness. Also, our restriction to derivative-free GO algorithms
might be too strict. Relaxing this restriction might be possible
using automatic differentiation techniques.
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Abstract—State-of-the-art static analysis tools for verifying
finite-precision code compute worst-case absolute error bounds
on numerical errors. These are, however, often not a good esti-
mate of accuracy as they do not take into account the magnitude
of the computed values. Relative errors, which compute errors
relative to the value’s magnitude, are thus preferable. While
today’s tools do report relative error bounds, these are merely
computed via absolute errors and thus not necessarily tight or
more informative. Furthermore, whenever the computed value
is close to zero on part of the domain, the tools do not report
any relative error estimate at all. Surprisingly, the quality of
relative error bounds computed by today’s tools has not been
systematically studied or reported to date.

In this paper, we investigate how state-of-the-art static tech-
niques for computing sound absolute error bounds can be
used, extended and combined for the computation of relative
errors. Our experiments on a standard benchmark set show that
computing relative errors directly, as opposed to via absolute
errors, is often beneficial and can provide error estimates up
to six orders of magnitude tighter, i.e. more accurate. We also
show that interval subdivision, another commonly used technique
to reduce over-approximations, has less benefit when computing
relative errors directly, but it can help to alleviate the effects of
the inherent issue of relative error estimates close to zero.

I. INTRODUCTION

Numerical software, common in embedded systems or sci-
entific computing, is usually designed in real-valued arith-
metic, but has to be implemented in finite precision on digital
computers. Finite precision, however, introduces unavoidable
roundoff errors which are individually usually small, but which
can accumulate and affect the validity of computed results. It
is thus important to compute sound worst-case roundoff error
bounds to ensure that results are accurate enough - especially
for safety-critical applications. Due to the unintuitive nature of
finite-precision arithmetic and its discrepancy with continuous
real arithmetic, automated tool support is essential.

One way to measure worst-case roundoff is absolute error:

1, = max | f(z)  f(2)] (1)

where f and z denote a possibly multivariate real-valued
function and variable respectively, and f and Z their finite-
precision counter-parts. Note that absolute roundoff errors are
only meaningful on a restricted domain, as for unrestricted
x the error would be unbounded in general. In this paper, we
consider interval constraints on input variables, that is for each
input variable x € I = [a,b], a,b € R.

Furthermore, we focus on floating-point arithmetic, which
is a common choice for many finite-precision programs, and

for which several tools now exist that compute absolute errors
fully automatically for nonlinear straight-line code [1]-[4].

Absolute errors are, however, not always an adequate mea-
sure of result quality. Consider for instance an absolute error
of 0.1. Whether this error is small and thus acceptable for
a computation depends on the application as well as the
magnitude of the result’s value: if | f(2)| > 0.1, then the error
may be acceptable, while if |f(x)| = 0.1 we should probably
revise the computation or increase its precision. Relative error
captures this relationship:

€TrTrel = Max 7f(f) — /(@) 2
zel f(if)
Note that the input domain needs to be restricted also for
relative errors.

Today’s static analysis tools usually report absolute as well
as relative errors. The latter is, however, computed via absolute
errors. That is, the tools first compute the absolute error and
then divide it by the largest function value:

maxyer ‘f(f) — f(2)
minge; | f(z)|

Clearly, Equation 2 and Equation 3 both compute sound
relative error bounds, but €r7re|_approx 1S an over-approximation
due to the loss of correlation between the nominator and
denominator. Whether this loss of correlation leads to coarse
error bounds in practice has, perhaps surprisingly, not been
studied yet in the context of automated sound error estimation.

Beyond curiosity, we are interested in the automated compu-
tation of relative errors for several reasons. First, relative errors
are more informative and often also more natural for user
specifications. Secondly, when computing sound error bounds,
we necessarily compute over-approximations. For absolute
errors, the over-approximations become bigger for larger input
ranges, i.e. the error bounds are less tight. Since relative errors
consider the range of the expression, we expect these over-
approximations to be smaller, thus making relative errors more
suitable for modular verification.

One may think that computing relative errors is no more
challenging than computing absolute errors; this is not the case
for two reasons. First, the complexity of computing relative
errors is higher (compare Equation 1 and Equation 2) and
due to the division, the expression is now nonlinear even
for linear f. Both complexity and nonlinearity have already

3

€T T'rel_approx —
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been challenging for absolute errors computed by automated
tools, usually leading to coarser error bounds. Furthermore,
whenever the range of f includes zero, we face an inherent
division by zero. Indeed, today’s static analysis tools report no
relative error for most standard benchmarks for this reason.

Today’s static analysis tools employ a variety of differ-
ent strategies (some orthogonal) for dealing with the over-
approximation of worst-case absolute roundoff errors due to
nonlinear arithmetic: the tool Rosa uses a forward dataflow
analysis with a linear abstract domain combined with a nonlin-
ear decision procedure [3], Fluctuat augments a similar linear
analysis with interval subdivision [1], and FPTaylor chooses
an optimization-based approach [2] backed by a branch-and-
bound algorithm.

In this paper, we investigate how today’s methods can
be used, extended and combined for the computation of
relative errors. To the best of our knowledge, this is the
first systematic study of fully automated techniques for the
computation of relative errors. We mainly focus on the issue
of computing tight relative error bounds and for this extend
the optimization based approach for computing absolute errors
to computing relative errors directly and show experimentally
that it often results in tighter error bounds, sometimes by up
to six orders of magnitude. We furthermore combine it with
interval subdivision (we are not aware of interval subdivision
being applied to this approach before), however, we note that,
perhaps surprisingly, the benefits are rather modest.

We compare this direct error computation to forward anal-
ysis which computes relative errors via absolute errors on a
standard benchmark set, and note that the latter outperforms
direct relative error computation only on a single univariate
benchmark. On the other hand, this approach clearly benefits
from interval subdivision.

We also observe that interval subdivision is beneficial for
dealing with the inherent division by zero issue in relative error
computations. We propose a practical (and preliminary) solu-
tion, which reduces the impact of potential division-by-zero’s
to small subdomains, allowing our tool to compute relative
errors for the remainder of the domain. We demonstrate on
our benchmarks that this approach allows our tool to provide
more useful information than state-of-the-art tools.

Contributions:

« We extend an optimization-based approach [2] for bound-
ing absolute errors to relative errors and thus provide the
first feasible and fully automated approach for computing
relative errors directly.

o We perform the first experimental comparison of different
techniques for automated computation of sound relative
error bounds.

e We show that interval subdivision is beneficial for re-
ducing the over-approximation in absolute error compu-
tations, but less so for relative errors computed directly.

« We demonstrate that interval subdivision provides a prac-
tical solution to the division by zero challenge of relative
error computations for certain benchmarks.

We have implemented all techniques within the tool Daisy [5],
which is available at https://github.com/malyzajko/daisy.

II. BACKGROUND

We first give a brief overview over floating-point arithmetic
as well as state-of-the-art techniques for automated sound
worst-case absolute roundoff error estimation.

A. Floating-Point Arithmetic

The error definitions in section I include a finite-precision
function f(Z) which is highly irregular and discontinuous and
thus unsuitable for automated analysis. We abstract it follow-
ing the floating-point IEEE 754 standard [6], by replacing
every floating-point variable, constant and operation by:

xOy=(xoy)(l+e)+d,
T=z(l+4+e)+d vr=r(l+e)+d

where © € {®,6,®,0} and o € {+,—, x,/} are floating-
point and real arithmetic operations, respectively. e is the
relative error introduced by rounding at each operation and is
bounded by the so-called machine epsilon |e| < ep;. Denor-
mals (or subnormals) are values with a special representation
which provide gradual underflow. For these, the roundoff error
is expressed as an absolute error d and is bounded by d,y,
(for addition and subtraction d = 0). This abstraction is valid
in the absence of overflow and invalid operations resulting
in Not a Number (NaN) values. These values are detected
separately and reported as errors. In this paper, we consider
double precision floating-point arithmetic with e, = 2753 and
S = 271975 Our approach is parametric in the precision, and
thus applicable to other floating-point types as well.

Using this abstraction we replace f (z) with a function
f (z,e,d), where = are the input variables and e and d the
roundoff errors introduced for each floating-point operation. In
general, x, e and d are vector-valued, but for ease of reading
we will write them without vector notation. Note that our
floating-point abstraction is real-valued. With this abstraction,
we and all state-of-the-art analysis tools approximate absolute
errors as:

“

erraps < ma; x) — f(z,e,d 5
W5 S X s @) T @e )

B. State-of-the-art in Absolute Error Estimation

When reviewing existing automated tools for absolute
roundoff error estimation, we focus on their techniques for
reducing over-approximations due to nonlinear arithmetic in
order to compute tight error bounds.

Rosa [3] computes absolute error bounds using a forward
data-flow analysis and a combination of abstract domains.
Note that the magnitude of the absolute roundoff error at
an arithmetic operation depends on the magnitude of the
operation’s value (this can easily be seen from Equation 4),
and these are in turn determined by the input parameter ranges.
Thus, Rosa tracks two values for each intermediate abstract
syntax tree node: a sound approximation of the range and
the worst-case absolute error. The transfer function for errors
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uses the ranges to propagate errors from subexpressions and to
compute the new roundoff error committed by the arithmetic
operation in question.

One may think that evaluating an expression in interval
arithmetic [7] and interpreting the width of the resulting
interval as the error bound would be sufficient. While this
is sound, it computes too pessimistic error bounds, especially
if we consider relatively large ranges on inputs: we cannot
distinguish which part of the interval width is due to the input
interval or due to accumulated roundoff errors. Hence, we need
to compute ranges and errors separately.

Rosa implements different range arithmetics with differ-
ent accuracy-efficiency tradeoffs for bounding ranges and
errors. To compute ranges, Rosa offers a choice between
interval arithmetic, affine arithmetic [8] (which tracks linear
correlations between variables) and a combination of interval
arithmetic with a nonlinear arithmetic decision procedure. The
latter procedure first computes the range of an expression
in standard interval arithmetic and then refines, i.e. tightens,
it using calls to the nlsat [9] decision procedure within the
73 SMT solver [10]. For tracking errors, Rosa uses affine
arithmetic; since roundoff errors are in general small, tracking
linear correlations is in general sufficient.

Fluctuat [1] is an abstract interpreter which separates er-
rors similarly to Rosa and which uses affine arithmetic for
computing both the ranges of variables and for the error
bounds. In order to reduce the over-approximations introduced
by affine arithmetic for nonlinear operations, Fluctuat uses
interval subdivision. The user can designate up to two variables
in the program whose input ranges will be subdivided into
intervals of equal width. The analysis is performed separately
and the overall error is then the maximum error over all
subintervals. Interval subdivision increases the runtime of the
analysis significantly, especially for multivariate functions, and
the choice of which variables to subdivide and by how much
is usually not straight-forward.

FPTaylor, unlike Daisy and Fluctuat, formulates the round-
off error bounds computation as an optimization problem,
where the absolute error expression from Equation 1 is to
be maximized, subject to interval constraints on its parame-
ters. Due to the discrete nature of floating-point arithmetic,
FPTaylor optimizes the continuous, real-valued abstraction
(Equation 5). However, this expression is still too complex
and features too many variables for optimization procedures
in practice, resulting in bad performance as well as bounds
which are too coarse to be useful (see subsection V-A for our
own experiments). FPTaylor introduces the Symbolic Taylor
approach, where the objective function of Equation 5 is
simplified using a first order Taylor approximation with respect
to e and d:

.
f(z,e,d) = f(z,0,0) Za—fx0067+R(x6d) (6)

E of
(@, P)yiys + Y o, (2:0,0)ds
i=1 "

R(z,e,d) = 128

1,j=1

where y1 = e1,..., Yk = €r, Y1 = di1,...,y2x = di and
p € R?* such that |p;| < epr fori =1...k and |p;| < 6 for
1 =k+1...2k. The remainder term R bounds all higher order
terms and ensures soundness of the computed error bounds.

The approach is symbolic in the sense that the Taylor
approximation is taken wrt. e and d only and z is a symbolic
argument. Thus, f(z,0,0) represents the function point where
all inputs z remain symbolic and no roundoff errors are
present, i.e. ¢ = d = 0 and f(z,0,0) = f(x). Choosing
e = d = 0 as the point at which to perform the Taylor
approximation and replacing e; with its upper bound e€js
reduces the initial optimization problem to:

& .
ETTabs < €M maxz f (2,0,0)| + Mg @)

where Mp is an upper bound for the error term R(z,e,d)
(more details can be found in [2]). FPTaylor uses interval
arithmetic to estimate the value of My as the term is second
order and thus small in general.

To solve the optimization problem in Equation 7, FPTaylor
uses rigorous branch-and-bound optimization. Branch-and-
bound is also used to compute the resulting real function f(x)
range, which is needed for instance to compute relative errors.
Real2Float [4], another tool, takes the same optimization-
based approach, but uses semi-definite programming for the
optimization itself.

III. BOUNDING RELATIVE ERRORS

The main goal of this paper is to investigate how to-
day’s sound approaches for computing absolute errors fare
for bounding relative errors and whether it is possible and
advantageous to compute relative errors directly (and not
via absolute errors). In this section, we first concentrate on
obtaining tight bounds in the presence of nonlinear arithmetic,
and postpone a discussion of the orthogonal issue of division
by zero to the next section. Thus, we assume for now that
the range of the function for which we want to bound relative
errors does not include zero, i.e. 0 ¢ f(x) and 0 ¢ f(&), for
x,  within some given input domain. We furthermore consider
f to be a straight-line arithmetic expression. Conditionals and
loops have been shown to be challenging [11] even for absolute
errors and we thus leave their proper treatment for future work.
We consider function calls to be an orthogonal issue; they can
be handled by inlining, thus reducing to straight-line code, or
require suitable summaries in postconditions, which is also
one of the motivations for this work.

The forward dataflow analysis approach of Rosa and Fluc-
tuat does not easily generalize to relative errors, as it re-
quires intertwining the range and error computation. Instead,
we extend FPTaylor’s approach to computing relative errors
directly (subsection III-A). We furthermore implement interval
subdivision (subsection III-B), which is an orthogonal measure
to reduce over-approximation and experimentally evaluate
different combinations of techniques on a set of standard
benchmarks (subsection V-A).
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A. Bounding Relative Errors Directly

The first strategy we explore is to compute relative errors
directly, without taking the intermediate step through absolute
errors. That is, we extend FPTaylor’s optimization based
approach and maximize the relative error expression using the
floating-point abstraction from Equation 4:

f(aﬁ __.f(a% e>d)
f(x)

The hope is to preserve more correlations between variables
in the nominator and denominator and thus obtain tighter and
more informative relative error bounds.

We call the optimization of Equation 8 without simpli-
fications the naive approach. While it has been mentioned
previously that this approach does not scale well [2], we
include it in our experiments (in subsection V-A) nonetheless,
as we are not aware of any concrete results actually being
reported. As expected, the naive approach returns error bounds
which are so large that they are essentially useless.

We thus simplify §(z, e, d) by applying the Symbolic Taylor
approach introduced by FPTaylor [2]. As before, we take the
Taylor approximation around the point (z, 0, 0), so that the first
term of the approximation is zero as before: §(x,0,0) = 0.
We obtain the following optimization problem:

max [g(z, e, d)| =

®)

m
z€l,|ei|<en,|di| <8

k f)g
max E (2,0,0)e;
@€l fes|<enr|di| <6 <= | De;
=

+ Mg

where Mpg is an upper bound for the remainder term
R(z,e,d). Unlike in Equation 7 we do not pull the factor e;
for each term out of the absolute value, as we plan to compute
tight bounds for mixed-precision in the future, where the upper
bounds on all e; are not all the same (this change does not
affect the accuracy for uniform precision computations).

Computing Upper Bounds: The second order remainder R
is still expected to be small, so that we use interval arithmetic
to compute a sound bound on Mp (in our experiments R
is indeed small for all benchmarks except ‘doppler’). To
bound the first order terms g Z we need a sound optimization
procedure to maintain overall soundness, which limits the
available choices significantly.

FPTaylor uses the global optimization tool Gelpia [12],
which internally uses a branch-and-bound based algorithm.
Unfortunately, we found it difficult to integrate because of
its custom interface. Furthermore, we observed unpredictable
behavior in our experiments (e.g. nondeterministic crashes and
substantially varying running times for repeated runs on the
same expression).

Instead, we use Rosa’s approach which combines interval
arithmetic with a solver-based refinement. Our approach is
parametric in the solver and we experiment with Z3 [10]
and dReal [13]. Both support the SMT-lib interface, provide
rigorous results, but are based on fundamentally different
techniques. Z3 implements a complete decision procedure
for nonlinear arithmetic [9], whereas dReal implements the
framework of -complete decision procedures. Internally, it is

based on a branch-and-bound algorithm and is thus in principle
similar to Gelpia’s optimization-based approach.

Note that the queries we send to both solvers are
(un)satisfiability queries, and not optimization queries. For
the nonlinear decision procedure this is necessary as it is
not suitable for direct optimization, but the branch-and-bound
algorithm in dReal is performing optimization internally. The
reason for our roundabout approach for dReal is that while
the tool has an optimization interface, it uses a custom input
format and is difficult to integrate. We expect this approach to
affect mostly performance, however, and not accuracy.

B. Interval Subdivision

The over-approximation committed by static analysis tech-
niques grows in general with the width of the input intervals,
and thus with the width of all intermediate ranges. Intuitively,
the worst-case error which we consider is usually achieved
only for a small part of the domain, over-approximating
the error for the remaining inputs. Additionally the domain
where worst-case errors are obtained may be different at
each arithmetic operation. Thus, by subdividing the input
domain we can usually obtain tighter error bounds. Note that
interval subdivision can be applied to any error estimation
approach. Fluctuat has applied interval subdivision to absolute
error estimation, but we are not aware of a combination with
the optimization-based approach, nor about a study of its
effectiveness for relative errors.

We apply subdivision to input variables and thus compute:

max (max |§(a:,e,d)|) ©)

ke[l..m] \ ;€L

where m is an number of subdivisions for each input in-
terval. That is, for multivariate functions, we subdivide the
input interval for each variable and maximize the error over
the Cartesian product. Clearly, the analysis running time is
exponential in the number of variables. While Fluctuat limits
subdivisions to two user-designated variables and a user-
defined number of subdivisions each, we choose to limit the
total number of analysis runs by a user-specified parameter
p. That is, given p, m (the desired number of subdivisions
for each variable), and n (number of input variables), the first
|log,,, (p—n) | variables’ domains are subdivided m times, with
larger input domains subdivided first. The remaining variable
ranges remain undivided.

C. Implementation

We implement all the described techniques in the tool
Daisy [5]. Daisy, a successor of Rosa [3], is a source-to-source
compiler which generates floating-point implementations from
real-valued specifications given in the following format:

def bspline3(u: Real): Real = {
require(0 <= u & u <= 1)
-uxux*xu/6.0

}

Daisy is parametric in the approach (naive, forward dataflow
analysis or optimization-based), the solver used (Z3 or dReal)
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and the number of subdivisions (including none). Any combi-
nation of these three orthogonal choices can be run by simply
changing Daisy’s input parameters.

Furthermore, Daisy simplifies the derivative expressions in
the optimization-based approach (z 40 =z,z X 1 = z, etc.).
Unsimplified expressions may affect the running time of the
solvers (and thus also the accuracy of the error bounds), as
we observed that the solvers do not necessarily perform these
otherwise straight-forward simplifications themselves.

Finally, to maintain soundness, we need to make sure
that we do not introduce internal roundoff errors during the
computation of error bounds. For this purpose we implement
all internal computations in Daisy using infinite-precision
rationals.

IV. HANDLING DIVISION BY ZERO

An important challenge arising while computing relative
errors is how to handle potential divisions by zero. State-
of-the-art tools today simply do not report any error at all
whenever the function range contains zero. Unfortunately, this
is not a rare occurrence; on a standard benchmark set for
floating-point verification, many functions exhibit division by
zero (see Table III for our experiments).

Note that these divisions by zero are inherent to the ex-
pression which we consider and are usually not due to over-
approximations in the analysis. Thus, we can only reduce the
effect of division by zero, but we cannot eliminate it entirely.
Here, we aim to reduce the domain for which we cannot
compute relative errors. Similar to how relative and absolute
errors are combined in the IEEE 754 floating-point model
(Equation 4), we want to identify parts of the input domain on
which relative error computation is not possible due to division
by zero and compute absolute errors. For the remainder of the
input domain, we compute relative errors as before.

We use interval subdivision (subsection III-B), attempting
to compute relative errors (with one of the methods described
before) on every subdomain. Where the computation fails due
to (potential) division by zero, we compute the absolute error
and report both to the user:

relError: 6.6614143807162e-16

On several sub-intervals relative error cannot be computed.
Computing absolute error on these sub-intervals.

For intervals (u -> [0.875,1.0]), absError: 9.66746937132909e-19

While the reported relative error bound is only sound for parts
of the domain, we believe that this information is nonetheless
more informative than either no result at all or only an absolute
error bound, which today’s tools report and which may suffer
from unnecessary over-approximations.

We realize that while this approach provides a practical
solution, it is still preliminary and can be improved in several
ways. First, a smarter subdivision strategy would be beneficial.
Currently, we divide the domain into equal-width intervals, and
vary only their number. The more fine-grained the subdivision,
the bigger part of the domain can be covered by relative
error computations, however the running time increases corre-
spondingly. Ideally, we could exclude from the relative error

computation only a small domain around the zeros of the
function f. While for univariate functions, this approach is
straight-forward (zeros can be, for instance, obtained with a
nonlinear decision procedure), for multivariate functions this
is challenging, as the zeros are not simple points but curves.
Secondly, subdivision could only be used for determining
which sub-domains exhibit potential division by zero. The
actual relative error bound computation can then be performed
on the remainder of the input domain without subdividing it.
This would lead to performance improvements, even though
the ‘guaranteed-no-zero’ domain can still consist of several
disconnected parts. Again, for univariate functions this is
a straight-forward extension, but non-trivial for multivariate
ones. Finally, we could compute max;;ecr;, W .
for some small €, which is a standard approach in scientific
computing. It is not sound, however, so that we do not consider
it here.

V. EXPERIMENTAL EVALUATION

We compare the different strategies for relative error com-
putation on a set of standard benchmarks with FPTaylor
and the forward dataflow analysis approach from Rosa (now
implemented in Daisy) as representatives of state-of-the-art
tools. We do not compare to Fluctuat directly as the underlying
error estimation technique based on forward analysis with
affine arithmetic is very similar to Daisy’s. Indeed experiments
performed previously [2], [11] show only small differences
in computed error bounds. We rather choose to implement
interval subdivision within Daisy.

All experiments are performed in double floating-point
precision (the precision FPTaylor supports), although all tech-
niques in Daisy are parametric in the precision. The ex-
periments were performed on a desktop computer running
Debian GNU/Linux 8 64-bit with a 3.40GHz i5 CPU and
7.8GB RAM. The benchmarks bsplines, doppler, jetEngine,
rigidBody, sine, sqrt and turbine are nonlinear functions
from [3]; invertedPendulum and the traincar benchmarks are
linear embedded examples from [14]; and himmilbeau and
kepler are nonlinear examples from the Real2Float project [4].

A. Comparing Techniques for Relative Error Bounds

To evaluate the accuracy and performance of the different
approaches for the case when no division by zero occurs,
we modify the standard input domains of the benchmarks
whenever necessary such that the function ranges do not
contain zero and all tools can thus compute a non-trivial
relative error bound.

Table I shows the relative error bounds computed with the
different techniques and tools, and Table II the corresponding
analysis times. Bold marks the best result, i.e. tightest com-
puted error bound, for each benchmark. The column ‘Under-
approx’ gives an (unsound) relative error bound obtained with
dynamic evaluation on 100000 inputs; these values provide an
idea of the true relative errors. The ‘Naive approach’ column
confirms that simplifications of the relative error expression are
indeed necessary (note the exponents of the computed bounds).
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TABLE I
RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES

Bench- Under- . Naive Dais DaisyOPT
mark approx Daisy  FPTaylor | 0 sach + sub()l]iv 73 dReal  Z3+subdiv  dReal+subdiv
bspline0 1.46¢-15 4.12e-13  4.26e-13 5.11e+02 744e-14 | 3.00e-15  3.00e-15  3.00e-15 3.00e-15
o bsplinel 791e-16 2.54e-15  3.32e-15 4.16e-01 532e-15 | 3.22e-15 3.22%e-15  3.22e-15 3.22e-15
S bspline2 2.74e-16 11le-15  1.16e-15 5.22e-01 1.6le-15 | 8.92e-16 9.76e-16  8.92e-16 8.92¢-16
S bspline3 5.49¢-16 246e-10  3.07e-10 5.12e+05 523e-11 6.66e-16  6.66e-16  6.66e-16 6.66e-16
8 sine 2.84e-16 8.94e-16  8.27e-16 4.45e-01 1.3%-15 | 7.66e-16 7.66e-16  7.66e-16 7.66e-16
sineOrder3 3.65e-16 1.04e-15  1.10e-15 1.39¢-01 1.99e-15 | 8.94e-16 8.9de-16  8.94e-16 8.94e-16
sqroot 4.01e-16 1.04e-15  1.2le-15 1.02+00 2.20e-15 1.02e-15  1.02e-15  1.02e-15 1.02e-15
doppler 1.06e-15 2.08e-04  6.13e-07 2.09e+08 2.60e-05 1.93e-13  1.94e-13  1.93e-13 1.94e-13
himmilbeau 8.46e-16 6.55¢-13  7.89¢-13 6.69e+02 9.81e-15 | 6.54e-13  1.98¢e-15  7.05e-15 1.99e-15
invPendulum 3.74e-16 2.09e-11  2.48e-11 1.64e+00 1.22e-11 121e-15 135e-15  1.21e-15 1.52e-15
jet 1.45¢-15 926e-15  7.53¢-15 3.87e+00 140e-13 | 4.47e-15  5.12e-15  6.03e-15 6.51e-15
. kepler0 4.39-16 131e-12 1.64e-12 2.16e+03 363e-12 | 3.97e-12  2.39%-15  1.63e-15 2.64e-15
2 keplerl 7.22e-16 217e-11  2.59%-11 7.93¢+04 870e-13 | 3.80e-11  1.29¢-15  2.85e-13 1.71e-15
5 kepler2 5.28¢-16 401e-10  5.65¢-15 4.09e+05 1.35e-11 4.56e-10  2.42e-15  8.58e-12 2.26e-15
£ rigidBodyl 4.49¢-16 877e-11  1.14e-10 1.55+00 2.50e-11 9.78¢-16  127e-15  9.78¢-16 1.46e-15
S rigidBody2 5.48e-16 391e-12 4.73e-12 5.14e+03 1.77e-12 | 2.21e-15  233e-15  2.21e-15 2.96e-15
traincar_state8  2.72e-15 2.16e-13  2.69-13 2.91e+02 216e-13 | 7.67e-14  2.72e-13  7.67e-14 2.50e-13
traincar_state9  8.11e-16 344e-13  431e-13 3.47e+02 1.91e-13 | 345e-14 4.15e-13  3.45e-14 2.38e-13
turbine 1 5.79-16 6.47e-13  1.48e-13 4.16+02 6.81e-13 | 2.06e-15 3.07e-15  2.06e-15 3.90e-15
turbine2 1.03e-15 526e-15  4.25e-15 4.81e+00 1.66e-13 | 4.12e-15 430e-15  4.12e-15 4.33e-15
turbine3 7.41e-16 352e-13  7.43e-14 2.13e+02 391e-13 191e-14  1.92e-14  1.91e-14 1.93e-14
TABLE II

ANALYSIS TIME OF DIFFERENT TECHNIQUES FOR RELATIVE ERRORS ON BENCHMARKS WITHOUT DIVISION BY ZERO

. Naive Daisy DaisyOPT
Benchmark — Daisy — FPTaylor |, 1 vach + subdiv 73 dReal 73 + subdiv  dReal + subdiv
bsplines 6s 13s 13m 25s 0.34s 20s 25s 27s 30s
sines 5s 8s 13m 45s 0.42s 1m 4s 1m 21s 1m 8s 1m 9s
sqroot 3s 6s 6m 4s 0.15s 14s 12s 14s 14s
doppler Ss 2m 11s 2m 14s Is Im 59s 2m 35s 2m 58s 7m 28s
himmilbeau 9s 4s 5m 30s 0.36s 1m 50s 1m 16s 6m 15s 8m 5s
invPendulum 3s 5s Im 31s 0.15s Ts 37s 25s 3m 54s
jet 20s 17s 19m 35s Ts 30m 40s 32m 24s 45m 31s 2 h 20m 49s
kepler 37s 39s 14m 41s Is 3m 27s 16m 29s 12m 20s 27m 56s
rigidBody 11s 8s 10m 4s 0.39s 30s Im 18s Im 26s 8m 37s
traincar 10s 42s 8m 15s 1s Im 1s 10m 43s 4m 7s 18m 35s
turbine 11s 28s 17m 25s 2s S5m 29s 11m 28s 12m 30s 42m 36s
total 1m 60s Sm 1s ‘ 1h 52m 28s 13s ‘ 46m 42s  1h 18m 45s 1h 27m 22s 4h 19m 53s

The last four columns show the error bounds when relative
errors are computed directly using the optimization based
approach (denoted ‘DaisyOPT’) from subsection III-A, with
the two solvers and with and without subdivisions. For subdi-
visions, we use m = 2 for univariate benchmarks, m = 8 for
multivariate and p = 50 for both as in our experiments these
parameters showed a good trade-off between performance and
accuracy. For most of the benchmarks we find that direct eval-
uation of relative errors computes tightest error bounds with
acceptable analysis times. Furthermore, for most benchmarks
73, resp. its nonlinear decision procedure, is able to compute
slightly tighter error bounds, but for three of our benchmarks
dReal performs significantly better, while the running times
are comparable.

Somewhat surprisingly, we note that interval subdivision
has limited effect on accuracy when combined with direct

relative error computation, while also increasing the running
time significantly.

Comparing against state-of-the-art techniques (columns
Daisy and FPTaylor), which compute relative errors via ab-
solute errors, we notice that the results are sometimes several
orders of magnitude less accurate than direct relative error
computation (e.g. six orders of magnitude for the bspline3
and doppler benchmarks).

The column ‘Daisy+subdiv’ shows relative errors computed
via absolute errors, using the forward analysis with subdivi-
sion (with the same parameters as above). Here we observe
that unlike for the directly computed relative errors, interval
subdivision is mostly beneficial.

Finally, for the experiments in Table I, we use as large input
domains as possible, without introducing result ranges which
include zero. When comparing relative error bounds computed
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for smaller and larger input domains, where a small input
domain means that the input intervals have smaller width, we
observe that relative errors computed directly usually scale
better than relative errors computed via absolute errors, i.e. the
over-approximation committed is smaller. For example, (for
space reasons only) for the doppler benchmark we obtain the
following relative errors:

Daisy (via absolute)
1.48e-11
2.08e-04

relative err. directly
1.26e-15
1.93e-13

small input domain
large input domain

B. Handling Division by Zero

To evaluate whether interval subdivision is helpful when
dealing with the inherent division by zero challenge, we now
consider the standard benchmark set, with standard input
domains. Table III summarizes our results. We first note that
division by zero indeed occurs quite often, as the missing
results in the Daisy and FPtaylor columns show.

The last three columns show our results when using interval
subdivision. Note that to obtain results on as many benchmarks
as possible we had to change the parameters for subdivision
to m = 8 and p = 50 for univariate and m = 4,p = 100 for
multivariate benchmarks. The result consists of three values:
the first value is the maximum relative error computed over the
sub-domains where relative error was possible to compute; in
the brackets we report the maximum absolute error for the sub-
domains where relative error computation is not possible, and
the integer is the amount of these sub-domains where absolute
errors were computed. We only report a result if the number
of sub-domains with division by zero is less than 80% of the
total amount of subdomains, as larger numbers would probably
be impractical to be used within, e.g. modular verification
techniques. Whenever we report ’-’ in the table, this means
that division by zero occurred on too many or all subdomains.

We observe that while interval subdivision does not provide
us with a result for all benchmarks, it nonetheless computes
information for more benchmarks than state-of-the-art tech-
niques.

VI. RELATED WORK

The goal of this work is an automated and sound static
analysis technique for computing tight relative error bounds for
floating-point arithmetic. Most related are current static analy-
sis tools for computing absolute roundoff error bounds [1]-[4].

Another closely related tool is Gappa [15], which computes
both absolute and relative error bounds in Coq. It appears
relative errors can be computed both directly and via abso-
lute errors. The automated error computation in Gappa uses
intervals, thus, a computation via absolute errors will be less
accurate than Daisy performs. The direct computation amounts
to the naive approach, which we have shown to work poorly.

The direct relative error computation was also used in the
context of verifying computations which mix floating-point
arithmetic and bit-level operations [16]. Roundoff errors are
computed using an optimization based approach similar to

21

FPTaylor’s. Their approach is targeted to specific low-level
operations including only polynomials, and the authors do not
use Taylor’s theorem. However, tight error estimates are not
the focus of the paper, and the authors only report that they
use whichever bound (absolute or relative) is better. we are not
aware of any systematic evaluation of different approaches for
sound relative error bounds.

More broadly related are abstract interpretation-based static
analyses which are sound wrt. floating-point arithmetic [17],
[18], some of which have been formalized in Coq [19] These
domains, however, do not quantify the difference between the
real-valued and the finite-precision semantics and can only
show the absence of runtime errors such division-by-zero or
overflow.

Floating-point arithmetic has also been formalized in an
SMT-lib [20] theory and solvers exist which include floating-
point decision procedures [20], [21]. These are, however, not
suitable for roundoff error quantification, as a combination
with the theory of reals would be at the propositional level
only and thus not lead to useful results.

Floating-point arithmetic has also been formalized in the-
orem provers such as Coq [22] and HOL Light [23], and
some automation support exists in the form of verification
condition generation and reasoning about ranges [24], [25].
Entire numerical programs have been proven correct and
accurate within these [26], [27]. While very tight error bounds
can be proven for specific computations [28], these verification
efforts are to a large part manual and require substantial user
expertise in both floating-point arithmetic as well as theorem
proving. Our work focuses on a different trade-off between
accuracy, automation and generality.

Another common theme is to run a higher-precision pro-
gram alongside the original one to obtain error bounds by
testing [29]—[32]. Testing has also been used as a verification
method for optimizing mixed-precision computations [33],
[34]. These approaches based on testing, however, only con-
sider a limited number of program executions and thus cannot
prove sound error bounds.

VII. CONCLUSION

We have presented the first experimental investigation into
the suitability of different static analysis techniques for sound
accurate relative error estimation. Provided that the function
range does not include zero, computing relative errors directly
usually yields error bounds which are (orders of magnitude)
more accurate than if relative errors are computed via absolute
errors (as is current state-of-the-art). Surprising to us, while
interval subdivision is beneficial for absolute error estimation,
when applied to direct relative error computation it most often
does not have a significant effect on accuracy.

We furthermore note that today’s rigorous optimization tools
could be improved in terms of reliability as well as scalability.
Finally, while interval subdivision can help to alleviate the
effect of the inherent division by zero issue in relative error
computation, it still remains an open challenge.
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RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES ON STANDARD BENCHMARKS (WITH POTENTIAL DIVISION BY ZERO)

TABLE III

DaisyOPT

Z3 + subdiv

dReal + subdiv

3.00e-15 (1.08¢-18, 1)
3.22¢-15

8.92e-16

6.66e-16 (9.67¢-19, 1)
7.02e-16 (2.02e-16, 2)
8.94e-16 (3.17e-16, 2)
1.92e-15 (3.11e-14, 3)

3.00e-15 (1.08e-18, 1)
3.22e-15

8.92e-16

6.66e-16 (9.67e-19, 1)
7.02e-16 (2.02e-16, 2)
8.94e-16 (3.17e-16, 2)
1.92e-15 (3.11e-14, 3)

1.26e-15

2.57e-14 (1.00e-12, 12)
2.82e-15 (2.60e-14, 32)
2.16e-15 (7.92e-14, 49)

1.07e-15 (2.16e-13, 46)
1.67e-15 (3.65e-11, 50)

1.75e-15
2.74e-15 (1.20e-13, 25)
6.50e-15

1.35e-15

2.84e-15 (1.00e-12, 12)
3.08e-15 (2.60e-14, 32)
3.88e-15 (8.32e-14, 49)

1.78e-15 (2.16e-13, 46)
3.80e-15 (3.65e-11, 50)

5.2le-15
6.97e-14 (3.90e-14, 25)
6.71e-15

. Daisy
Benchmark Daisy FPTaylor + subdiv
bspline0 - - 1.58e-01 (1.08e-18, 1)
bsplinel - 3.32e-15 2.80e-13
bspline2 - 3.50e-15 9.20e-16
bspline3 - - 1.31e-14 (9.67e-19, 1)
sine - - 1.07e-15 (2.00e-16, 2)
sineOrder3 - - 2.29e-15 (3.10e-16, 2)
sqroot - - 7.09e-15 (2.83e-14, 3)
doppler 1.48e-11  4.99¢-12 8.95e-13
himmilbeau - - 3.75e-14 (1.00e-12, 12)
invPendulum - - 4.94¢-15 (2.60e-14, 32)
jet - - -
keplerO 4.35e-15  4.57e-15 2.38e-13 (8.08e-14, 49)
keplerl 1.33e-14  1.17e-14 -
kepler2 - 4.21e-14 -
rigidBody 1 - - 2.29e-14 (2.16e-13, 46)
rigidBody2 - - 2.65e-12 (3.51e-11, 50)
traincar_state§ - - -
traincar_state9 - - -
turbinel 6.12e-14  1.18e-14 6.03e-15
turbine2 - - 5.64e-14 (3.65e-14, 25)
turbine3 1.52e-13  2.2le-14 2.77e-14
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Abstract—Verifying arithmetic circuits, and most prominently
multipliers, is an important problem but in practice still requires
substantial manual effort. Recent work tries to solve this issue
using techniques from computer algebra. The most effective
approach uses polynomial reasoning over pseudo boolean poly-
nomials. In this paper we give a rigorous formalization of this
approach and present a new column-wise verification technique
for the correctness of gate-level multipliers which does not require
the reduction of a full word-level specification. We formally
prove soundness and completeness of our technique, making
use of our precise formalization. Our experiments show that
simple multipliers can be verified efficiently by using off-the-
shelf computer algebra tools, while more complex and optimized
multipliers require more sophisticated techniques. Further, our
paper independently confirms the effectiveness of previous related
work. We make all benchmarks and tools publicly available.

I. INTRODUCTION

Formal verification of arithmetic circuits is motivated by
the necessity to avoid issues like the famous Pentium FDIV
bug, which is reported to have cost Intel almost half a billion
dollar. There have been many attempts since then to verify
such circuits, but even today verifying designs with arithmetic
parts is not considered to be fully automated. For instance,
a common approach is to black-box multipliers and then
verify them separately. This might also require insight into
the multiplier design, which has to be communicated to the
verification tool. Commercial tools can not fully automatically
handle full-sized multipliers [24] or huge multipliers occurring
in cryptographic circuits. In this paper we will focus, as a first
step, on the simplest but also most important arithmetic circuit
verification problem of verifying multipliers.

This lack of automation was a common conclusion in three
plenary talks at the joint FMCAD’ 15 and SAT’15 conferences
in Austin in 2015, by Anna Slobodova on formal verification
of processors, Aaron Tomb on verifying cryptographic circuits,
and, from the academic side, Priyank Kalla on methods for
data path verification. In order to stimulate research into this
direction, particularly the development of fast SAT solving
techniques for arithmetic circuit verification, we collected a
large set of such benchmarks, generated and submitted CNF
encodings of these problems to the SAT 2016 competition
and made them publicly available [4]. The competition results
confirmed that miters of even small multipliers pose a real
challenge to SAT solvers.

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
Y464-N18, SFB F5004.

armin.biere @jku.at

manuel.kauers @jku.at

The weak performance of SAT solvers on these benchmarks
lead to the conjecture that verifying miters of multipliers and
other ring properties after encoding them into CNF needs
exponential sized resolution proofs [5], which would imply
exponential run-time of CDCL SAT solvers. Surprisingly,
however, this conjecture was recently answered negatively [2].
Such ring properties do admit polynomial resolution proofs.
However, proof search is non-deterministic. Thus this theo-
retical result still needs to be transferred into practical SAT
solving. The complexity bounds on proof size given in [2]
involve polynomials of high degree too.

The first technique which was shown to be able to have
prevented the Pentium bug was based on decision diagrams,
precisely on binary moment diagrams (BMDs) [10] and vari-
ants [11]. While common (gate-level) BDDs are exponential
in size for multipliers [6], BMDs remain linear in the number
of the input bits of a multiplier (using edge weights). However,
the BMD approach is not robust, in the sense that it still
requires structural knowledge of the multipliers to determine
the order in which BMDs are built, which has tremendous
influence on performance. Actually only a row-wise back-
ward substitution approach seems to be feasibly [9], which
in addition assumes a simple carry-save-adder (CSA) design.

Recent algebraically inspired techniques [12], [28] based
on so-called function-extraction also fail for even slightly op-
timized multiplier designs. On the positive side, this technique
is able to handle very large clean multipliers.

In even more recent work [24] substantial progress was
made. The authors use a dedicated polynomial reduction
engine and also gave various optimizations (discussed further
down), which made their algebraic technique scale to large
non-trivial multiplier designs of various architectures [16]
(called AOKI benchmarks in the following) even with and
without Booth reencoding. It is still unclear however, whether
their technique is robust under synthesis or technology map-
ping. Their arguments for soundness and completeness are
rather imprecise. Their tool is not available, nor details about
the experiments. Benchmarks have not been published either.

There is a substantial amount of previous work for arith-
metic circuit verification. We focus on comparing our approach
to the currently most successful techniques for verifying
multipliers, which all are using some form of algebraic rea-
soning [28], [24]. For an up-to-date discussion of related work
and a more comprehensive list see the recent article [28].
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II. ALGEBRA

Following [21], [23], [12], [28], we model the behavior
of circuits using multivariate polynomials. There will be a
variable for every input and every output of each gate, and
the specification of each gate is translated into a polynomial
relation among these variables. All these polynomials together
form a description of the circuit, and we will prove the cor-
rectness of a given circuit by showing that the desired relation
between input and output is implied by the polynomials that
describe the circuit on the gate level.

The appropriate formalism for such a reasoning is the theory
of Grobner bases [8], [13]. Basic facts are:

e QX] = Q[x1,...,z,] denotes the ring of polynomials
in variables x1, ..., z, with coefficients in the field Q.

o A term (or power product) is a polynomial of the form
x7t - xtn for certain eq,...,e, € N. A monomial is a
constant multiple of a term.

o Fix an order < on the set of terms such that for all terms
T7,01,02 we have 1 < 7 and 01 < 09 = 701 < TO9.

o Every polynomial p # 0 contains only finitely many
terms, the largest of which (w.r.t. the chosen order <)
is called the leading term and denoted by lt(p).

o If p=cr+--- and It(p) = 7, then lc(p) = c is called the
leading coefficient and lm(p) = cr is called the leading
monomial of p.

o A nonempty subset I C Q[X] is called an ideal if
Vpgel:p+gelandVpeQ[X|Vqgel:pgel

o If I C Q[X] is an ideal, then a set {p1,...,pm} C Q[X]
is called a basis of I if I = {q1p1 + -+ + ¢mPm |
q1,---,qm € Q[X]}, i.e., if I consists of all the linear
combinations of the p; with polynomial coefficients.

e A basis {g1,...,9n} of an ideal I C Q[X] is called a
Grobner basis (w.r.t. the fixed order <) if the leading
term of every nonzero element of [ is a multiple of (at
least) one of the leading terms 1t(g1),...,1t(gn).

 Every ideal of Q[X] has a Grobner basis, and there is
an algorithm which, given an arbitrary basis of an ideal,
computes a Grobner basis of it.

The theory of Grobner bases offers a decision procedure for
the ideal membership problem: given a polynomial ¢ € Q[X]
and a basis {p1,...,pm} C Q[X], it is a priori not obvious
how to check whether ¢ belongs to the ideal generated by
Dis- .., Pm. However, if {p1,...,pm} is a Grobner basis, then
the question can be answered using a multivariate version of
polynomial division with remainder. It can be shown that when
G is a Grobner basis, then g belongs to the ideal generated by
G iff the remainder of division of ¢ by G is zero.

Example 1.

1) Consider ¢ = 2? + 4z + 3, p = v+ 1 € Q[x]. Since
2 +4x+3 = (2+3)(x+1)+0, it follows that ¢ belongs to the
ideal I generated by = + 1 in Q[z]. On the other hand, taking
G = 2%+ 4x +5, division with remainder gives 2% +4x +5 =
(x+3)(zx+1)+2, and thus ¢ & I.

L

Fig. 1. AIGs [20] used in Example 1 and Sect. IV.

2) For the AIG [20] on the left of Fig. 1, we have the relation
g =a(l—=0) for all a,b,g € {0,1}. Furthermore, we always
have g(g—1) = a(a—1) = b(b—1) =0 forall a,b,g € {0,1}.
To show that we always have gb = 0, it is therefore enough
to check if the polynomial gb € Qlg, a, b] belongs to the ideal
I C Q[g, a,b] generated by

{-g+a(1-10),9(9—1),a(a—1),b(b - 1)}.

Multivariate polynomial division yields
gb=(=b) (—g+a(l—b)) + (—a)b(b— 1) +0,

therefore gb € I and thus gb = 0 in the left AIG of Fig. 1.

remainder

As illustrated in the second example, we can view an
ideal I C Q[X] as an equational theory, with a basis
{p1,...,pm} asits set of axioms. Indeed, the ideal I generated
by pi, ..., pm contains exactly those polynomials g for which
the equation “q = 0” can be deduced from the assumptions
“p1 = --- = pm = 07 through repeated application of the
rulesu =0ANv=0=u+v=0andu=0=uw=0
(compare the two defining properties for ideals quoted above).

We will need a few more facts about Grobner bases and
multivariate polynomial division.

Lemma 1.

1) Let ¢ € Q[X] and P = {p1,...,pm} C Q[X]. The
remainder 7 of the division of ¢ by P is a polynomial such
that ¢ — r is in the ideal generated by P and r is reduced
w.r.t. P, which means it does not contain any term that is a
multiple of one of the leading terms lt(p1), ..., 1t(pm).

2) Let G C Q[X] \ {0}, and define

p q
spol(p, q) := lem(lt(p),lt(q < — )
(p.0) = lem(t(). 1) s~
for all p, ¢ € Q[X]\ {0}, with lcm the least common multiple.
Then G is a Grobner basis if and only if the remainder of the
division of spol(p, ¢) by G is zero for all pairs (p,q) € GxG.

3) If p,g € Q[X]\ {0} are such that their leading terms
1t(p),1t(¢) have no variables in common, then the division
of spol(p, ¢) with {p, ¢} has remainder zero.

Proof. 1) is Prop. 1 in Chap. 2 §6 of [13]; 2) is Thm. 6 in
Chap. 2 §6 of [13]; 3) is Prop. 1 in Chap. 2 §10 of [13]. O
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III. IDEALS ASSOCIATED TO CIRCUITS

We consider circuits with 2n inputs ag,...,a,—1 and
bo, ..., bn—_1, 2n outputs sq, ..., S2,—1, and a number of logi-
cal gates. The output of some gate may be input to some other
gate, but cycles are not allowed. In addition to the variables
for input and output, we also associate one variable to each
internal edge of the circuit, say g1, ..., gx. By R we denote the
ring @[ao, ceeyn—1, bo, ceey bn,]dg]_7 ey Gk S0y e ey Sgn,]_].

The semantics of the circuit gates imply polynomial rela-
tions among these variables, such as the following ones:

U= —w implies 0=—-u+1—wv

u=vAw implies 0= —u+ovw 1)
u=ovVw implies 0=—-u+v+w—ovw
u=v@®w implies 0= —u+v+w-— 2vw.

We also have the relations u(u — 1) = 0 for each variable u,
because the circuit operates with boolean values.

Since logical gates are functional, the values of all the
variables ¢i,...,9k,So0,-..,S2,—1 IN a circuit are uniquely
determined as soon as ag, ..., an—1,b0,...,bp—1 € {0,1} are
fixed. This motivates the following definition.

Definition 1. Let C be a circuit.

1) A polynomial p € R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(ao, ey Qp—1, bo, ey bnfl) c {O, 1}2n

and resulting values g1, ..., gk, So, - - -, Son—1 implied by the
gates of C the substitution of these values into p gives zero.

2) The set of all PCCs for C is denoted by I(C).

It is easy to see that I(C) is in fact an ideal of R. By
definition, this ideal contains all the relations that hold among
the values at the different points in the circuit. In particular,
it “knows” everything about how input and output are related.
Therefore, the circuit fulfills a certain specification if and only
if the polynomial relation corresponding to the specification is
contained in I(C). This motivates the next definition.

Definition 2. A circuit C' is called a multiplier if

2n—1

; 2s; — (21 2ia1-> <nz_§ 2ibi> € I(C).

Checking whether a given circuit C' is a multiplier thus
reduces to an ideal membership test. Definition 1 does not
provide us with a basis of I(C'), so Grobner basis technology
is not directly applicable. However, we can deduce at least
some elements of 7(C') from the semantics of circuit gates.

Definition 3. Let C be a circuit. Let G C R be the set which
contains for each gate of C the corresponding polynomial
of (1) (with w,v,w replaced by the variables of the edges
attached to the gate), as well as the polynomials a;(a; — 1)
and b;(b; — 1) for 0 < ¢ < n, called input field polynomials.
Then the ideal generated by G in R is denoted by J(C).

25

As a basis of J(C) is explicitly known, we can decide
membership using Grobner bases. Consider a verifier for
circuits which checks for a given C and a given specifica-
tion polynomial p whether p belongs to J(C'). Because of
J(C) C I(C), such a verifier is certainly sound. In order to
prove that it is also complete, we need to show J(C) 2 I(C).
For doing so, we recall a crucial observation which for instance
already appears in [26], [21].

Theorem 1. Let C be a circuit, and let G be as in Def. 3. Let
< be a lexicographic term order for a variable order such that
the variable attached to the output edge of a gate is always
greater than the variables attached to the input edges of that
gate. Then G is a Grobner basis with respect to <.

Proof. By the constraint on the term order and the form of
the equations (1), the leading term of each gate polynomial is
simply the output variable of the corresponding gate. Further,
the leading terms of the polynomials a;(a; — 1) and b;(b; — 1)
are a? and b?. Therefore, by part 3 of Lemma 1, division of
spol(p, q) by {p,q} gives the remainder zero for any choice
P, q € G. Then, since {p,q} C G forall p,q € G, also division
of spol(p, q) by G gives the remainder zero for all p,q € G,
and then, by part 2 of Lemma 1, the claim follows. O

Theorem 2. For all acyclic circuits C, we have J(C) = I(C).

Proof. “C” (soundness) Clear by definition of J(C').

“D” (completeness) Let p € I(C). We have to show that
p € J(C). Since C is acyclic, there is a way to order the
variables such as to meet the requirement of Thm. 1. Let r
be the remainder of the division of p by G, where G is the
Grobner basis of Thm. 1. Then p —r € J(C) by part 1 of
Lemma 1, so r € J(C) <= p € J(C). Furthermore,
p € I(C)and p—r € J(C) C I(C) implies r € I(C). It is
therefore sufficient to show that r € J(C).

By the choice of the term order and the observations made
in the previous proof about the leading terms in G, part 1 of
Lemma 1 also implies that r only contains input variables
ag,-«.,0ap-1,b0,...,b,_1, and none of them appears with
degree greater than one. At the same time, since r € I(C), all
the evaluations of 7 for all choices a;,b; € {0,1} are zero.

We show that » = 0, and thus r € J(C). Suppose r # 0.
Let m be a monomial of r with a minimal number of variables,
which includes the case where m is constant. Since exponents
are at most one, the set of variables of monomials in » differ
by at least one variable. Now choose a; (b;) to evaluate to
1 iff a; € m (b; € m). By this choice all monomials of r
except m vanish (evaluate to zero). Thus r evaluates to the
(non-zero) coefficient of m, in contradiction to r € I(C). O

Let us conclude the theoretical part of this paper with the
following simple but important observations.

First, I(C) is by definition a so-called vanishing ideal.
Therefore, the theorem implies that J(C) is a radical ideal.
This explains why ideal membership is sufficient for our
purpose, and there is no need to use the stronger radical
membership test (cf. Chap. 4 §2 of [13]).
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Second, note that I(C') = J(C) contains the set F' of all
field polynomials z(x — 1) for all variables x, not only for
inputs, thus we may add them to G.

Third, in the standard Grobner basis for gate-level circuits
defined above in Def. 3 using Eqn. (1) all polynomials have
a leading coefficient of 1 and thus during reduction never
introduce any coefficient outside of Z (with non-trivial de-
nominator). So all coefficient computations actually remain in
Z. This formally proves that dedicated implementations, e.g.,
those from [28], [24], used for determining ideal membership
to verify properties of gate-level circuits, can rely on compu-
tation in Z only without loosing soundness nor completeness
(assuming the same term order as in Thm. 1 is used).

Fourth, from a technical point of view, we do not need to use
Z as coefficient ring if we employ computer algebra systems,
but can simply use any field containing Z, e.g., Q. This
actually speeds up the computation, since computer algebra
systems are optimized for this case. In our experiments, using
rational coefficients made a huge difference for Singular [14]
(but did not have any effect in Mathematica [27]).

Fifth, given circuit C', checking that there exists an assign-
ment to the inputs which yields a certain value, at an output
is of course the same as (circuit) SAT, and thus NP complete:

Corollary 1. Checking ideal membership over Q[X] even in
terms of a given Grobner basis is co-NP-hard.

Similar results but for Z, and 7Z instead of Q and without
assuming a Grobner basis can be found in [1], [18].

Finally, the last part in the proof of Thm. 2 allows us to
determine a concrete input evaluation in case a polynomial
g fails the membership test, e.g., an evaluation for which g
does not vanish. In our application of multiplier verification
these evaluations provide counter-examples, in case a circuit
is determined not to be a multiplier (Alg. 1 returns false).

We claim that this section is a first simple and precise
mathematical characterization of recent successful algebraic
approaches [24], [28] to the verification of gate-level integer
multipliers (without overflow), where we formally prove not
only soundness but also completeness. Soundness corresponds
to I C J and completeness to I O J in Thm. 2.

In previous work soundness and completeness was formally
proven too but only for other polynomial rings, i.e., over Foq
to model circuits implementing Galois-field multipliers [21],
[23], or for polynomial rings over Zss to model arithmetic
circuit verification with overflow semantics [26].

In [28] soundness and completeness is discussed too, but
instead of giving proofs only refers to [21], [23] which
as discussed above uses coefficients in Fo¢ and not Z, the
coefficient ring the approach [28] is actually working with.

IV. OPTIMIZATIONS

Following the argument of Cor. 1 in the previous section,
simply reducing the specification in the constructed Grobner
basis may lead and in general has to lead (unless P = NP) to
an exponential number of monomials in intermediate results.

Thus in practice to use polynomial reduction to verify specific
circuits tailored heuristics become very important.

To reduce the number of monomials in [24] a logic
reduction rewriting scheme consisting of XOR-Rewriting
and Common-Rewriting is proposed. It is further combined
with eliminating monomials which fulfill certain Vanishing-
Constraints. In the following we show how these techniques
can be applied to computer algebra systems.

The technique of XOR-Rewriting [24] ensures that in the
Grobner basis all variables which do not correspond to an
output nor input of an XOR-gate, nor primary input, nor output
of the circuit, are eliminated from the Grobner basis up-front.

We adopt this rewriting for AIGs by matching XOR patterns
in the AIG which represents an XOR or XNOR, e.g., we find
nodes of the form s = (a Ab) A (@ADb). We then define
the polynomial of the parent in terms of the grandchildren
instead of the immediate children. For instance, in order to
apply XOR-Rewriting in the middle AIG in Fig. 1 we only
use the polynomial —s + a + b — 2ab as definition for the
XOR output instead of all the polynomials —I + ab, as well
as —r+(1—a)(1—b), and —s+ (1 —1)(1 —r). This removes
defining polynomials for all children of XOR gates.

The technique of Common-Rewriting [24] eliminates all
nodes which have exactly one parent. In the right AIG of
Fig. 1 Common-Rewriting eliminates gates ¢, u, v, and w,
assuming r occurs twice, but ¢, u, v and w only once. Thus
r is directly expressed in terms of a,b, c. This technique is
actually similar to what bounded variable elimination in SAT
would do [15] after encoding a circuit to CNF by say Tseitin
encoding. It would also eliminate all variables in the CNF
representing gates in the circuit with only one parent [17].

In [24] an important optimization was a specific “vanishing
rule”, called XOR-AND Vanishing Rule. This rule can be
derived from the middle AIG in Fig. 1, a half adder, where [
represents the carry (AND) and s represents the sum (XOR) of
the two inputs. In a half adder both the carry bit [ and the sum
bit s can never be 1 at the same time. Thus sl = 0, and [24]
suggests to remove monomials containing s and [ immediately.
We simulate the effect of this rule by searching for (negated)
children or grand-children of certain AND-gates and adding
appropriate polynomial constraints to our reduction basis.

V. ORDER

According to Thm. 1 the choice of the reverse topological
term order does not influence the correctness of the procedure.
However in [28] it is shown empirically that the number of
monomials during the reduction process varies substantially
for different reverse topological orders.

Given the planar two dimensional “shape” of multipliers,
two approaches of ordering are quite natural, namely a row-
wise approach and a column-wise approach. Basically the idea
is to partition the gates into slices, which are totally ordered,
i.e., row-wise or column-wise, and then order the gates within
a slice (row or column) topologically. The combined total
order has to be topological, which then gives a valid term
order and thus a Grobner basis according to Thm. 1.
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Fig. 2. Classical row-wise slicing (left) versus our column-wise slicing approach (right) for clean 3-bit input (6-bit output) CSA multiplier.

The idea of the row-wise approach is to order the gates
according to their backward level. The intuition of row-wise
slicing is outlined in the left side of Fig. 2. It shows how
full adders are partitioned in a “clean” (CSA) multiplier.
Informally, we call a multiplier without gate synthesis, nor
mapping and where the XOR-gates and the half/full adders
can easily be identified, as clean. If a multiplier is not clean,
it is called dirty. Thus the AOKI benchmarks [16], [24] already
discussed in the introduction are considered to be dirty.

Previous papers [28], [10] use a row-wise approach. In [28]
gates are ordered by the logic level seen from the circuit inputs.
In [10] the order is only given for clean CSA multipliers,
such that a word-level spec for a CSA step can be given. It is
unclear how to apply this order to dirty multipliers, like the
AOKI benchmarks. Unfortunately, the description of the order
in [24] stays on a very high level. The tool is not available.

In the column-wise approach, cf. right side of Fig. 2, the
multiplier is partitioned vertically, where each slice contains
exactly one output bit. Our proposal is to use a column-wise
order which gives a more robust incremental checking method.

VI. COLUMN-WISE CHECKING

The goal of using a column-wise term order is to divide the
problem into smaller more manageable sub-problems, which
can be verified incrementally.

Definition 4. Let C be a circuit (as in Sect. III).

1) A sequence of 2n + 1 polynomials Cy,...,Ca, over the
variables of C' is called a carry sequence of carry polynomials.

2) For column ¢ with 0 < i < 2n let P, = Zk+l=1‘, arb; be
the partial product sum (of column 7).

3) For 0 < < 2n, carry polynomial C; and output s, let
—C;+2Ci1+5— B

denote the carry recurrence relation R; for column 4.

4) Then R; holds on C if it vanishes in I(C), i.e., R; € I(C).

With these definitions we obtain an abstract theorem which
can be used to verify multipliers independent how the carry
sequence is actually constructed.

Theorem 3. Let C be a circuit where all carry recurrence
relations hold as defined in Def. 4. Then C' is a multiplier in
the sense of Def. 2, if and only if Cy — 22"Cs,, € I(C).

Proof. By the condition of Def. 4, we have (modulo I(C))

2n—1 2n—1
D 2= > 2P+ Ci —2Cip)
=0 =0

2n—1 2n—1

=Y 2P+ ) (2Ci-2MCin).
i=0 1=0

CO _ 22”0271
It remains to show S0 20P; = (Y217 20a,) (3002, 27bi),
which is a rather straight forward calculation. O

To obtain our column-wise checking algorithm we define
slices incrementally. For each output bit s; we determine its
input cone, namely the gates which s; depends on (cf. Fig. 3):

I; := {gate g | g is in input cone of output s;}
We define slices .S; as the difference of consecutive cones I;:

SO = IO Si-i—l = Ii+1 \ U Sj
7=0

Definition 5 (Sliced Grobner Bases). Let G; be the set of
polynomial representations of the gates in slice S;, cf. Eqn. 1.

Algorithm 1: Multiplier Checking Algorithm
Input : Circuit C' with sliced Grobner bases G;
Output: Determine whether C' is a multiplier

1 Cyy, + 0

2 for i < 2n —1to 0 do

3 ‘ C; < Remainder 2C; 1 +s; — P;, G;UF)

4 end

5 return Cy =0

In Alg. 1 we start at the last output bit s; with ¢ = 2n — 1.
Then C; is computed recursively by taking the remainder of
2Ci+1 + s; — P; modulo the sliced Grobner basis G; and
(all) field polynomials F' in order to make sure that the carry
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(4a, + 2a, + lay) = (4b, +
13
’ l I, 0, \ab,
FA
a,b, a, b,
FA FA
a, b, a, b, ayb, I,
FA FA FA—0
| | |
325, + l6s, + 8s; + 45, + 25, + s,

Fig. 3. Input cones of outputs to determine column slices.

recurrence relation R; holds. Thus C; is uniquely defined given
the sum of the partial products P; of column i, the output bit s;
and the previous carry polynomial C; ;. It remains to fix the
boundary carry polynomial Cy,,. In our algorithm we actually
always simply use Cy,, = 0.

Theorem 4. Algorithm 1 returns true iff C' is a multiplier.

Proof. By definition R; := —C; + 2C;41 + s; — P; vanishes
on the ideal generated by G; U F’ which is a subset of the ideal
generated by G U F since G; C G. Thus R; € J(C) = I(C).

We can show inductively that C; is reduced w.r.t. H; with
H; :=J,5,(G;UF). This induction requires that s; and P; are
reduced w.r.t. to H; 1 which holds due to the construction of
the sliced Grobner bases. With Hy = GU F' we then get Cj is
reduced w.r.t. GUF thus Cy = Cy —22"Cy, € I(C) = J(C)
iff Cy = 0, which concludes the proof using Thm. 3. O

For incorrect multipliers Alg. 1 returns false, i.e., Cy # 0.
As described after Cor. 1 this easily yields a concrete counter-
example. In this case it might further be possible to abort
the algorithm earlier if partial products aib; of higher slices
k +1 > i not occurring in S; with ¢ < j remain in C;.

VII. ENGINEERING

Our tool AIGMULTOPOLY takes an AIG describing a
circuit as input and produces output which can be passed to the
computer algebra systems Mathematica [27] and Singular [14].

Algorithm 2: Outline of AIGMULTOPOLY
Input : Circuit in AIG format
Output: File f for computer algebra system
1 for i< 0to2n—1do
2 Define-Cones-of-Influence ();
3 Merge (5;);
4 Promote (S;);
5 Levelize (S;);
6
7
8
9

Search-for-Common-Rewriting (.S;);
Identify-Vanishing-Constraints (.5;);

end
f + Print to file;

For dirty multipliers slicing based on input cones, (Sect. VI),
is not precise enough. It regularly happens, that gates are
allocated to later slices, if they are not used to compute the
output value of the slice. This frequently happens for carry
outputs of full/half-adders (or combined carry outputs) and
results in larger carry polynomials C; than necessary.

To avoid this performance issue we eagerly move gates
between slices, in a kind of peephole optimization, which
makes sure that the overall number of carries decreases:

Definition 6. We define those gates in S; used as children of
gates in slice S; with ¢ > j as carries of S;.

The following technique reduces the support of carry poly-
nomials increasing the chances for cancellation of monomials.

Merge: Whenever we find an AND-gate g (not matched to
be an XOR- gate) in slice S; with children [, r in smaller
slices S; and Sy, we move g back to S; with [ = max(j, k).
The procedure is depicted on the left side of Fig. 4. Thus after
merging g, the gates [, are less likely to be carry variables
any more. We apply merging repeatedly until completion and
S; and S; are updated after each application.

In some multipliers it happens that a gate g in the carry
depends on two other gates in the carry. We decrease the
number of carries by promoting ¢ to the next bigger slice:

Promote: We search for gates ¢ in slice S;_; with again
exactly one parent, which in addition is required to be part of
some larger slice S; where j > . Furthermore the children of
g also have to be in slice S;_; and have at least one parent
in some later slice S; with j > i. We decrease the number of
carries by promoting g to slice .S;, cf. right side of Fig. 4.

A gate g which is merged can not be promoted back to
its original slice, because the requirements for the children of
g differ. This prevents cyclic rule applications. After merging
and promoting, the association of gates to slices is fixed. We
order the gates in a slice by levelization from inputs.

In order to simulate Common-Rewriting, we factor out from
S; the set U; of “unique gates”, i.e., all gates g of S; not
used in another slice with exactly one parent in slice S;.
Polynomials of gates which remain in \S; and depend on gates
in U; are reduced first by polynomials of gates in U; and field
polynomials F' before computing the remainder in Alg. 1.

As last step we search for Vanishing Constraints in S;,
namely gate products which always evaluate to zero, e.g.,
Example 1. We store such constraints in a corresponding set
V; and during remainder computation reduce against elements
of V; too. Because of Thm. 2, we can add these polynomials
to the ideal without violating the Grdbner basis property.

Finally, in AIGMULTOPOLY the optimization of “XOR-
Rewriting” is handled implicitly during printing by producing
polynomials for XOR-gates instead of AND-gates.

All optimizations either maintain the crictical criteria of
keeping the reduction order topologically sorted, add vanishing
constraints of the circuit ideal, or are standard techniques used
in computer algebra, e.g., autoreduction, and thus do not affect
correctness of our claims.
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Promote

Fig. 4. Locally optimizing number of carries (gates used in later slices) by moving gates backward (Merge) and forward (Promote). Inputs are on the left,
outputs on the right of AND-gates, which is the more common order used in visualizing circuits, but reversed compared to the column order in Fig. 2.

VIII. EXPERIMENTS

As in previous work we focus on (integer) multipliers with
two n-bit vectors as inputs and 2n output bits. In [28], [12]
the authors used clean CSA multipliers, handcrafted from [19],
for verifying their results. In [24] several architectures from
the AOKI benchmarks are used in their experiments. In our
experiments we use the multiplier types “btor”, “sp-ar-rc” and
“abc”. The “btor” benchmarks are generated from Boolec-
tor [22] and can be considered as clean multipliers. The “sp-ar-
rc” multipliers are part of the AOKI benchmarks [16] and can
be considered as dirty multipliers. The “abc” benchmarks are
generated with ABC [3]. The different versions of synthesis
and technology mapping should be the same as in [28], [12].

We used a standard Ubuntu 16.04 Desktop machine with
Intel i7-2600 3.40GHz CPU and 16 GB of main memory.
The (wall-clock) time limit was set to 1200 seconds and
main memory was limited to 14GB. An extended set of
experimental data, as well as source code, benchmarks, and
scripts are available at http:/fmv.jku.at/cwmulverca. Beside
those benchmarks used in our experiments we also include the
AIGs we derived for other multipliers used in [28], [24]. More
information on the structure of the multipliers used in our
experiments can be found in [16], [28], [12] and the README
files which come with the experimental data.

In all our experiments the times are listed in seconds (wall-
clock time). We measure the time from starting our tool until
Mathematica resp. Singular are finished or we reach the time
limit (TO), the memory limit (MO), or reach an error state
(EE). An error state occurrs in Singular when more than 32767
ring variables are allocated. Our results include the time which
our tool AIGMULTOPOLY needs to generate the files for the
computer algebra system. This time is in the worst case around
3 seconds for 128 bit multipliers. The results also include the
time to launch Mathematica resp. Singular.

In Table I we compare our incremental column-wise reduc-
tion, outlined in Alg. 1 against the non-incremental approach,
where the word-level specification of Def. 2 is reduced against
the whole circuit. We apply the non-incremental reduction
for column-wise and row-wise ordering. All optimizations
(XOR-Rewriting, Common-Rewriting, Vanishing Constraints,
Merge, Promote) are enabled. The results in Table I show
that in Mathematica and Singular our approach is faster and
needs less memory than any non-incremental approach. In
the non-incremental experiments, the results between column-
wise and row-wise do not really differ. Generally Singular is

TABLE 1
INCREMENTAL (+INC) VS. COLUMN- AND ROW-WISE NON-INCR. (-INC).
Mathematica Singular
mult| n|+inc -inc +inc -inc
col | row col | row

btor | 16 41 12| 12 1 2 2

btor| 32| 35|531|491| 16| 53| 58
btor | 64| 409 | MO |MO | MO | MO | MO
btor | 128 | TO| TO| TO| EE| EE| EE

sp-ar-rc | 16 7| TO| TO 1| TO| TO
sp-ar-rc| 32| 67| TO| TO| 39| TO| TO

sp-ar-rc | 64| 841 | MO | MO | MO | MO | MO
TABLE 11
EFFECT OF TURNING OFF OPTIMIZATIONS.
Mathematica Singular
mult| nl— -
+inc | -xor | -com | -cs | +inc | -xor | -com | -cs

btor | 16 4| TO 1| TO 1 2 1 1
btor | 32| 35| TO 7| TO| 16| 64 6| 19

btor| 64| 409| TO| 65| TO| MO |MO| MO |MO
btor | 128 | TO| TO| 823 | TO| EE| EE| EE| EE
sp-ar-rc | 16 71 30| TO| 7 1 71 TO 2
sp-ar-rc| 32| 67|373| TO| 64| 39|266| TO| 34
sp-ar-rc | 64| 841| TO| TO|805| MO| EE| MO | MO

faster than Mathematica, but it also needs more memory than
Mathematica. For multiplier “btor-128” we get an error state.
In the experiments shown in Table II we investigate the ef-
fects of turning off optimizations in our column-wise approach
and compare these variants to the “+inc” columns of Table I.
The results differ for clean and dirty multipliers. For the clean
“btor” multipliers turning off Common-Rewriting surprisingly
improves the reduction. In this case there are only few gates
outside of XORs with only one parent, and splitting remainder
computation just increases run-time and space usage. In dirty
multipliers, structures like carry trees containing gates with
only one parent occur much more frequently. If we turn off
Common-Rewriting remainder computation slows down a lot
in this case. Turning off XOR-Rewriting influences both clean
and dirty multipliers and slows down the reduction (especially
in Mathematica), whereas turning off Vanishing Constraints
has only a bad effect for clean multipliers in Mathematica,
in Singular the results are nearly the same. In summary, the
optimizations described in [24] have both positive and negative
effects in our experiments, depending on the type of multiplier
considered and the computer algebra system used.
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TABLE III
DIFFERENCE OF TURNING OFF MERGE AND PROMOTE
Mathematica Singular
mult| n— -
+inc | -merge | -prom | +inc | -merge | -prom
sp-ar-rc | 16 7 8 TO 1 1 TO
sp-ar-rc | 32| 67 72 TO| 39 42| MO
sp-ar-rc | 64 | 841 912 TO | MO MO| MO
TABLE IV
DIRTY SYNTHESIZED AND MAPPED MULTIPLIERS
mult | n | Mathematica | Singular
abc| 8 2 1
abc| 16 4 1
abc-resyn3-no-comp | 8 351 3
abc-resyn3-no-comp | 16 TO TO
abc-resyn3-comp | 8 TO TO

The experiments shown in Table III compare the effects
of turning off our Merge and Promote optimizations on dirty
multipliers. In clean multipliers (such as “btor”) no gates are
merged nor promoted. The running times of Merge enabled or
disabled can be considered to be the same. The difference is
the size of the carry polynomials, e.g., in sp-ar-rc-8 the carry
polynomials have up to 38 monomials with Merge disabled.
In our default setting with Merge enabled the biggest carry
polynomial contains only 8 monomials and is linear.

In Table IV we also consider synthesized and mapped
versions of multipliers. Synthesizing a circuit makes it very
hard to verify. When complex mapping is applied it gets even
harder and the 8-bit version cannot be verified any more,
neither in Mathematica nor Singular confirming [12], [28].

IX. CONCLUSION

We give a simple and precise mathematical formalization
of recent successful algebraic approaches to the verification of
multiplier circuits, including rigorous proofs of soundness and
completeness. We further show how to effectively make use
of computer algebra systems. Our main technical contribution
is a new incremental column-based verification approach to
multipliers, which is an order of magnitude faster than previ-
ous row-based approaches relying on reducing a global spec.
We further confirm the effectiveness of the algebraic approach
and make all data, benchmarks and tools publicly available.

As future work, we want to analyze complexity of previous
and our new column-wise approach similar to [7] and [2] and
extend our methods to floating-points (following [25]) and
other word-level operators. We also want to consider overflow-
semantics and negative numbers. An experimental comparison
with BMD based techniques should also be performed.

We would like to thank Paul Beame for sharing drafts of [2],
Mathias Soeken helping to synthesize AOKI multipliers [16]
used in their DATE’16 paper [24], Naofumi Homma send-
ing 128-bit versions of these benchmarks, Maciej Ciesielski
explaining the experimental set-up in [12], [28], and finally
Deepak Kapur for pointing us to related work [1], [18].
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Abstract—Symbolic model checkers can construct proofs of
safety properties over complex models, but when a proof suc-
ceeds, the results do not generally provide much insight to
the user. Recently, proof cores (alternately, for inductive model
checkers, Inductive Validity Cores (IVCs)) were introduced to
trace a property to a minimal set of model elements necessary
for proof. Minimal IVCs facilitate several engineering tasks,
including performing traceability and analyzing requirements
completeness, that usually rely on the minimality of IVCs.
However, existing algorithms for generating an IVC are either
expensive or only able to find an approximately minimal IVC.

Besides minimality, computing all minimal IVCs of a given
property is an interesting problem that provides several useful
analyses, including regression analysis for testing/proof, determi-
nation of the minimum (as opposed to minimal) number of model
elements necessary for proof, the diversity examination of model
elements leading to proof, and analyzing fault tolerance.

This paper proposes an efficient method for finding all
minimal IVCs of a given property proving its correctness and
completeness. We benchmark our algorithm against existing IVC-
generating algorithms and show, in many cases, the cost of finding
all minimal IVCs by our technique is similar to finding a single
minimal IVC using existing algorithms.

Keywords-Inductive Validity Cores; UNSAT-core generation;
SMT-based model checking; Inductive proofs;

I. INTRODUCTION

Most modern sequential model checking techniques for
safety properties, including IC3/PDR [1] and k-induction [2],
use a form of induction to establish proof. These techniques
are very powerful, and can often reason successfully over very
large or even infinite state spaces. The proofs provided by
these tools can provide rigorous evidence that a software or
hardware system works as intended.

On the other hand, there are many situations in which
properties can be proved, but systems still will not perform
as intended. Issues such as vacuity [3], incorrect environ-
mental assumptions [4], and errors either in English language
requirements or formalization [5] can all lead to failures of
“proved” systems. Thus, even if proofs are established, one
must approach verification with skepticism.

Recently, proof cores [6] have been proposed as a mecha-
nism to determine which elements of a model are used when
constructing a proof. This idea is formalized by Ghassabani et
al. for inductive model checkers in [7] as Inductive Validity

Andrew Gacek
Rockwell Collins
Advanced Technology Center
IA, USA
andrew.gacek @rockwellcollins.com

Cores (IVCs). IVCs offer proof explanation as to why a
property is satisfied by a model in a formal and human-
understandable way. The idea lifts UNSAT cores [8] to the
level of sequential model checking algorithms using induc-
tion. Informally, if a model is viewed as a conjunction of
constraints, a minimal IVC (MIVC) is a set of constraints
that is sufficient to construct a proof such that if any con-
straint is removed, the property is no longer valid. IVCs and
MIVCs can be used for several purposes, including performing
traceability between specification and design elements [9],
assessing model coverage [10], and explaining unsatisfiable
test obligations when using model checkers for test case
generation. Ghassabani et al. [7] presented two algorithms: one
that computes an approximately minimal IVC using UNSAT
cores (IvC_uc) that is computationally inexpensive, and a
more accurate algorithm that usually produces a minimal IVC
using a brute-force post-processing step (IVC_UCBF) that is
considerably more expensive to compute.'

The IVC and proof core ideas share many similarities
with approaches for computing minimal invariant sets for
inductive proofs (such as is performed for inductive proof
certificates [11], [12]), and in fact the IvC_uc algorithm
performs a minimal lemma set computation. However, there is
a substantive difference: to find a minimal set of constraints, it
is usually necessary to find new proofs involving new lemmas
not used in the original proof, which accounts for the expense
of the TvC_UCBF algorithm.

It is often the case that there are multiple MIVCs for a
given property. In this case, computing a single IVC provides,
at best, an incomplete picture of the traceability information
associated with the proof. Depending on the model and prop-
erty to be analyzed, there is often substantial diversity between
the IVCs used for proof, and there can also be a substantive
difference in the size of a minimal IVC and a minimum IVC,
which is the (not necessarily unique) smallest MIVC. If all
MIVCs can be found, then several additional analyses can be
performed:

o Coverage Analysis: MIVCs can be used to define cov-

'In [7] it is shown that minimization is as hard as model checking, so
for model checking problems that generally undecidable, the minimization
process is also generally undecidable, so the ITVC_UCBF algorithm may
time out and return an approximate result.
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erage metrics by examining the percentage of model
elements required for a proof. However, since MIVCs are
not unique, there are multiple, equally legitimate coverage
scores possible. Having all MIVCs allows one to define
additional metrics: coverage of MAY elements, coverage
of MUST elements, as well as policies for the existing
MIVC metric: e.g., choose the smallest MIVC [10].

« Optimizing Logic Synthesis: synthesis tools can benefit
from MIVCs in the process of transforming an abstract
behavior into a design implementation. A practical way
of calculating all MIVCs allows to find a minimum
set of design elements (optimal implementation) for a
certain behavior. Such optimizations can be performed at
different levels of synthesis.

o Impact Analysis: Given all MIVCs, it is possible to de-
termine which requirements may be falsified by changes
to the model. This analysis allows for selective regression
verification of tests and proofs: if there are alternate proof
paths that do not require the modified portions of the
model, then the requirement does not need to be re-
verified [9].

« Robustness Analysis: It is possible to partition the model
elements into MUST and MAY sets based on whether
they are in every MIVC or only some MIVCs, respec-
tively. This may allow insight into the relative importance
of different model elements for the property. For example,
if the MUST set is empty, then the requirement has been
implemented in multiple ways, such as would be expected
in a fault-tolerant system [9].

In addition, the Requirements Engineering community is
keenly interested in approaches to manage requirements trace-
ability. In most cases, it is assumed that there is a single
“golden” set of trace links that describes how requirements
are implemented in software [13]-[15]. However, if there are
multiple MIVCs, then it is possible that there are several
equally valid sets of trace links. Examining the diversity of all
MIVCs could lead to changes in how traceability is performed
for critical systems.

In this paper, we propose a new method for computing all
IVCs that is always minimal for decidable model checking
problems and usually (and detectably) minimal for model-
checking problems that are generally undecidable. In recent
years, a number of efficient algorithms for extracting minimal
UNSAT subformulae (MUSes) have been proposed [16], most
of which are focused on computing a single MUS [17]-[21].
In this paper, we adapt the recent work by Liffiton et al.
[22] from the generation of MUSes from UNSAT-cores to all
IVCs for inductive model checking. This requires changing the
underlying mechanisms that are used to construct candidate
solutions and also changing the structure of the proof of
correctness. In addition, we demonstrate that the approach can
terminate with all minimal IVCs even if the witness generator
only generates approximately minimal IVCs (utilizing the
“fast” 1vCc_uc algorithm from [7]). In our empirical results,
this allows our algorithm to be quite efficient to the extent

node asw (altl, alt2: int) returns (doi_on: bool);

var
al_below, a2_below, al_above, a2_above,

one_below, both_above, on_p : bool;
let
(1) al_below = (altl < THRESHOLD);
(2) a2_below = (alt2 < THRESHOLD);
(3) al_above = (altl >= T_HYST);
(4) a2_above = (alt2 >= T_HYST);
(5) one_below = al_below or a2_below;
(6) both_above = al_above and a2_above;
(7) doi_on = if one_below then true

else if both_above then false
else (false -> pre(doi_on));

(8) on_p = ((altl < THRESHOLD) and
(alt2 < THRESHOLD)) => doi_on;

tel;

Fig. 1. Altitude Switch Model

that in many cases, the cost of extracting all minimal IVCs is
similar to the cost of finding a single guaranteed-minimal IVC,
and on average is approximately 1.6x the cost of determining
a single minimal IVC. The contributions of the work are
therefore as follows:

o An algorithm for computing all minimal IVCs.

o A proof of correctness and completeness of the algorithm.

e An evaluation of the algorithm for performance and

diversity of result sets against a benchmark suite.

Several commercial tools produce proof-cores [6], [23],
which we believe to be similar to IVCs/MIVCs, but are
not presented at a level of formality to perform a precise
comparison. However, to the best of our knowledge, none of
these tools offer to calculate all proof-cores. Our work can
also be useful towards the support of this capability in future
editions of these tools.

The rest of the paper is organized as follows. Section
II introduces a running example used to illustrate concepts
and our method. Section III covers the formal preliminaries
for the approach. In Section IV, we present our method for
enumerating all minimal IVCs, which is illustrated in Section
V. In Sections VI and VII we talk about implementation
and evaluation of our method. Finally, Section VIII mentions
conclusions and future work.

II. RUNNING EXAMPLE

We will use a very simple system from the avionics domain
to illustrate our approach. An Altitude Switch (ASW) is a
hypothetical device that turns power on to another subsystem,
the Device of Interest (DOI), when the aircraft descends below
a threshold altitude, and turns the power off again after the
aircraft ascends over the threshold plus some hysteresis factor.
An implementation of an ASW containing two altimeters writ-
ten in the Lustre language (simplified and adapted from [24])
is shown in Fig. 1. If either altimeter is below the constant
THRESHOLD, then it turns on the DOI; else, if the system is
inhibited or both altimeters are above the threshold plus the
hysteresis factor T_HYST, then the DOI is turned off, and if
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neither condition holds, then in the initial computation it is
false and thereafter retains its previous value. The notation
(false -> pre(doi_on)) in equation (7) describes an ini-
tialized register in Lustre: in the first step, the expression is
false, and thereafter it is the previous value of doi_on. A
simple property on_p states that if both altimeters are under
the threshold, then the DOI is turned on. This property can
easily be proved over the model using a k-induction based
verifier such as JKind [25].

III. PRELIMINARIES

Given a state space U, a transition system (I,7) consists
of an initial state predicate I : U — bool and a transition
step predicate 7' : U x U — bool. We define the notion of
reachability for (I,7') as the smallest predicate R : U — bool
which satisfies the following formulas:

Yu. I(u) = R(u)
Yu,u'. R(u) AT (u,u') = R(u')

A safety property P : U — bool is a state predicate. A safety
property P holds on a transition system (7, T") if it holds on all
reachable states, i.e., Vu. R(u) = P(u), written as R = P for
short. When this is the case, we write (I,7") - P. We assume
the transition relation has the structure of a top-level conjunc-
tion. Given T'(u,v') = T1 (u, v’ )A- - - AT (u, u') we will write
T = \,_, ,, Ti for short. By further abuse of notation, 7 is
identified with the set of its top-level conjuncts. Thus, T; € T’
means that 7; is a top-level conjunct of 7', and S C T means
all top-level conjuncts of S are top-level conjuncts of 7. When
a top-level conjunct T; is removed from T', we write T'\ {7} }.
Such a transition system can easily encode our example
model in Section II, where each equation defines a conjunct
within 7" that we will denote by the variable assigned; so,
T =
one_below, both_above, doi_on, on_p }

The idea behind finding an IVC for a given property
P [7] is based on inductive proof methods used in SMT-
based model checking, such as K-induction and IC3/PDR
[1], [26], [27]. Generally, an IVC computation technique aims
to determine, for any subset S C T, whether P is provable
by S. Then, a minimal subset that satisfies P is seen as a
minimal proof explanation called a minimal Inductive Validity
Core. Theorem 1 demonstrates that the minimization process
is as hard as model checking, so finding a minimal inductive
validity core may not be possible for some model checking
problems.

Definition 1. Inductive Validity Core (IVC) [7]: S C T
for (I,T) - P is an Inductive Validity Core, denoted by
wc(p,S), iff (1,S)+ P.

Definition 2. Minimal Inductive Validity Core (MIVC) [7]:
S C T is a minimal Inductive Validity Core, denoted by
MIVC(P,S), iff IVC(P,S)AVT; € S. (I,S\{T;}) ¥ P.

{ al_below, a2_below, al_above, a2_above,

Theorem 1. Determining if an IVC is minimal is as hard as
model checking.
Proof: see [7]. L]
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"""""""""""" o7 MIVCH2
MIVC#1 S
one_below both_above *,
doi_on al_above
a2_above .~

Fig. 2. Graphical representation of MIVCs for the model in Fig. 1 with
P = (on_p)

Note that, given (I,7) F P, P always has at least one
MIVC, and it may also have many distinct MIVCs correspond-
ing to different proof paths. To capture the latter, the all MIVCs
(AIV C) relation has been introduced in [9].

Definition 3. All MIVCs (AIVC): Given (I,T) + P,
AIVC(P) is an association to all MIVCs for P:

AIVC(P)={ S| SCTAMIVC(P,S)}

Fig. 2 illustrates these notions by a graphical representation
of IVCs for property P = (on_p) in the example presented
in Section II. As shown in the picture, this property has
two distinct MIVCs, which means the model satisfies P
in two different ways: {{al_below, one_below, doi_on,
on_p}, {a2_below, one_below, doi_on, on_p}}, This
is because in the implementation, the DOI is turned
on when either of the altimeters is below the thresh-
old, while our property states that they both must be
below. Note that there is a subset of model elements,
{al_above, a2_above, both_above}, that does not show
up in AIVC(P). Elements in such a subset do not affect the
satisfaction of P. In the complete ASW model in [24] there
are additional properties that use these elements, but they are
not necessary for the discussion in this paper.

IV. METHOD

Considering the definition of a MIVC, a brute-force tech-
nique for enumerating all MIVCs would be the same as
exploring the power set of T' (denoted by P(T")). Basically,
the algorithm needs to explore the provability of a given
property by any subset of 7', which would be computationally
expensive. Our approach is an adaptation of the the work
of MARCO for generating all minimal unsatisfiable subsets
(MUSes) in [22], and only needs to explore a (small) portion
of P(T') in order to compute AIVC. In fact, it can be viewed
as an instantiation of the MARCO proof schema for the richer
theory of sequential model checking. We begin by introducing
several additional notions and definitions, most of which are
analogous or equivalent to those in [22].

Definition 4. Maximal Inadequate Set (MIS): S C T for
(I,T) b P is a Maximal Inadequate Set (MIS) iff (I,S) ¥ P
and VT, e T\ S. (I, SU{T;}) - P.
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Given (I,T) + P, for every S € P(T), we have either
(I,S) F P or (I,S) ¥ P. In the former case, we say S is
adequate for P; in the latter, we say that S is inadequate for
the proof of P. Note that every /IVC is an adequate set for P,
and every MIS is an inadequate set.

Lemma 1. For (I,T)+ P, if S C T is adequate for property
P, then all of its supersets are adequate for P as well:

VS, C Sy CT. (I,S))F P = (I,S3)F P

Proof: From S; C S; we have Sy = S;. Thus the
reachable states of (I,.S3) are a subset of the reachable states
of (I, 51) |

Corollary 1. For (I,T) & P, if a given subset S is inadequate,
then all of its subsets are inadequate as well:

VS C Sy CT. (I,S))¥ P=(I,S))¥ P

Proof: Immediate from Lemma 1. |

The basic idea behind an algorithm for computing
AIVC(P) is the same as exploration of P(7T'), with two major
performance improvements. First, Lemma 1 and Corollary 1
are used to block large portions of P(T") from consideration.
For example, if a set S € P(T) is found to be inadequate,
then all subsets of .S are also inadequate and do not need to
be explicitly considered. Second, if a set S € P(T) is found
to be adequate, then a fast algorithm (such as 1vc_uc from
[7]) is used to find a smaller S’ C S which is still adequate.
This feeds into the first optimization since now all supersets
of S’ rather than S are blocked from future consideration.

To guide our algorithm, we now introduce a way of ex-
ploring P(T) which allows us to eliminate all subsets or
supersets of any given set. We use a Boolean expression called
map, which is in conjunctive normal form (CNF) and built
gradually as the algorithm proceeds. Satisfying assignments
for map correspond to elements of P(T"). For each S € P(T)
that the algorithm determines to be adequate or inadequate, a
corresponding clause is added to map which blocks S and all
supersets or subsets, respectively, from consideration. When
a clause is added to map, the corresponding S € P(T)
is called explored. The supersets or subsets of S which are
blocked from consideration are called excluded. The remaining
elements of P(T') are unexplored.

More precisely, given 1" with n top-level conjuncts, we
define an ordered set of activation literals A = {ay,...,ay},
where each a; has type Boolean. We assume the function
ACTLIT : T' — A is a bijection assigning every T; € T
to an a; € A and vice versa. Then, a map for AIVC(P) is
a CNF formula built over the elements of A such that:

o Initially map is T since all of P(T) is unexplored.

o When map is satisfiable, a model of it is a set M € P(A)
consisting of those a € A which are assigned true.

o Every model M of map corresponds to a set S €
P(T) such that S = J,. ¢,y ACTLIT '(a;) and M =
Ur,es ACTLIT(T;).

« For every explored set S € P(T):

— if S is adequate for P, then map contains a clause
V1, es "ACTLIT(T;). This clause blocks all super-
sets of S from future consideration which is consis-
tent with Lemma 1.

— if S is inadequate for P, then map contains a
clause \/7, ¢\ ) ACTLIT(T;). This clause blocks
all subsets of S from future consideration which is
consistent with Corollary 1.

Lemma 2. When map is satisfiable with model M, set
S = Us,em ACTLIT (a;) is not equal to any adequate
or inadequate explored set, nor a subset (superset) of any
inadequate (adequate) explored set in P(T).

Proof: Proof by contradiction. Case 1: Suppose there is
an adequate set Fx C S that has been already explored.
Therefore, according to the definition, map contains a clause
C = Vrpep, "ACTLIT(T}), and since Ex C S, it is
impossible for the model M = Jr, ¢, ACTLIT(T;) to satisfy
C'; hence, the assumption is false.

Case 2: Suppose there is an inadequate set F'z such that
S C FEx and Ex has been already explored. Therefore,
according to the definition, map contains a clause C' =
V1,er\s) ACTLIT(T}), and since S C Ew, it is impossible
for the model M = {J;, .5 ACTLIT(T;) to satisfy C; so, the
assumption is false.

From Case 1 and Case 2, there is no model of map whose
corresponding set in P(7T) is a non-strict subset (superset) of
any inadequate (adequate) explored set. [ |

Lemma 3. For (I,T) + P, map is satisfiable iff at least one
S € AIVC(P) or one MIS of T is unexplored.

Proof: Let map is satisfiable with a model M, and let
S =Uaem ACTLIT™ *(a;) be the corresponding set of P(T).
If S is adequate, then it contains a MIVC. That MIVC must
not be explored since otherwise S would have been blocked
from consideration. The MIVC must not be excluded since it
is not a strict superset of any adequate set (by minimality)
nor a subset of any inadequate set (by Corollary 1). Thus the
MIVC must be unexplored. The case where S is inadequate is
symmetric.

In the other direction, let S C T be an unexplored MIVC.
Then consider the model M = (J;, g ACTLIT(T;). We will
show that each clause of map is satisfied by M. There are two
types of clauses to consider. A clause \/, ., "ACTLIT(T;) is
in map only if S’ is adequate. M would falsify this clause only
if S’ C S which is impossible by minimality of S. A clause
V1,e(\s7) ACTLIT(T}) is in map only if S” is inadequate. M
would falsify this clause only if S C S’ which is imposssible
by Corollary 1. Thus M is a model for map. The case for an
unexplored MIS is symmetric. ]

Corollary 2. For (I,T) b P, map is unsatisfiable iff every
S € P(T) has been explored or excluded.

Proof: Immediate from the definition of map and Lemma
3. ]
Algorithm 1 shows the process of capturing all MIVCs,
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which are kept in set A, along with a warning flag, explained
below. In line 2, we create the set of activation literals used
by function ACTLIT. Line 3 initializes map with T over the
set of literals we have. The main loop of state exploration
starts at line 4 and continues until map becomes UNSAT
which means all the MIVCs have been found. We assume we
have a function CHECKSAT that determines if an existentially
quantified formula is satisfiable or not.> As long as map is
satisfiable, the algorithm computes a maximal SAT model for
it (line 5). In this context, a maximal SAT model is a model
with as many true assignment as possible without violating
a clause; this problem, is equivalent to the MaxSAT problem,
which has been well studied in the literature [29], [30].> So,
we assume there is a method by which we are able to have
a maximal model of map. Line 6 extracts a set M € P(A)
of literals assigned to ¢rue in the model. Then, we need to
obtain the corresponding set of .S in P(T"), which is done with
function ACTLIT™! in line 7.

We also assume there is a function CHECKADQ that checks
whether or not P is provable by a given subset of 7. Note
that from Theorem 1, finding a minimal is undecidable if the
original checking problem is undecidable. Thus, for undecid-
able model checking problems, CHECKADQ can return UN-
KNOWN (after a user-defined timeout) as well as ADEQUATE
or INADEQUATE. For a given set S, if our implementation is
unable to prove the property, we conservatively assume that
the property is falsifiable and set a warning flag w to the
user that the results may be approximate. if S is adequate,
a MIVC is computed by GETIVC and added to set A (lines
10-11).* In this case map is constrained by a new clause in a
way described before and shown in line 12. However, in the
case that S is inadequate or unknown, map is constrained by
the corresponding literals from 7"\ S in line 14. Finally, if S
is unknown, the warning flag w is set to true, as the results
may be approximate (lines 15-16).

Theorem 2. Algorithm 1 will terminate.

Proof: We assume that CHECKADQ has a finite timeout,
so all operations within the loop require finite time. Each
iteration of the while loop in Algorithm 1 blocks at least one
element of P(7T") which was not previously blocked. Since
P(T) is finite, the algorithm terminates. ]

Theorem 3. If no approximation warning is returned (w is
FALSE), Algorithm I enumerates all MISes and MIVCs.

2We assume readers are familiar with the Boolean satisfiability problem,
which is the problem of determining whether there exists an assignment that
satisfies a given propositional formula. For more information, refer to [28].

3MaxSAT is defined as the problem of satisfying as many (weighted)
clauses as possible in a SAT instance. For IV variables, similar to the MaxSAT
problem, each clauses is weighted at /N 4 1 and extra unit-weight clauses are
added forcing each variable to 1.

“Note that CHECKADQ can be any method that verifies a safety property,
such as K-induction, and the GETIVC function can be any function that re-
turns an (approximately) minimal IVC, such as the IVC_UC or IVC_UCBF
algorithms from [7]. The only requirement is that it follows the definition of
an inductive validity core, that is: S’ <— GETIVC(P, S) implies that S’ C S
and (I,S") + P.
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Algorithm 1: Algorithm a11_1vCs for computing AIV C
input : (I,T)+F P
output: ATV C(P), Approximation warning flag w

1 A<+ &; w < FALSE

2 Create activation literals {aq,...,a,}

3map < T

4 while CHECKSAT(map) do

5 model < build a maximal model of map
M <+ extract the set of variables assigned {rue in

model

7 | S < U,,en ACTLIT ' (a;)
res + CHECKADQ(P, S)

9 if res = ADEQUATE then

10 S’ «+ GETIVC(P, S)

u A+ AU{S"}

12 map < map A (\/ r,cg ~ACTLIT(T}))

13 else

14 map < map A (V 1,¢p\s) ACTLIT(T;))

15 if res = UNKNOWN then

16 | w ¢+ TRUE

-

7 return A, w

Proof: By Theorem 2 the algorithm terminates. This
means map is eventually unsatisfiable. If w = FALSE then
all model checking problems are solved definitively (no UN-
KNOWN results), so by Lemma 3, all MISes and MIVCs are
either explored or excluded. However, by maximality and
Lemma 1, an MIS can never be excluded. Similarily, by
minimality and Corollary 1, a MIVC can never be excluded.
Thus all MISes and MIVCs are explored and are elements of
A by the end of the algorithm.

|

Note that none of the proofs above require that GETIVC
returns a minimal IVC. From [7], it is computationally cheap
to find an approximately minimal /VC using the algorithm
1vC_uc; however, using the better, usually minimal /VC using
the IvC_UCBF algorithm is computationally expensive. For
efficiency reasons, it is much better to use the approximate
1vCc_uc algorithm to compute the set of all MIVCs. The
IVC_UCBF algorithm attempts to repeatedly prove the property
by brute-force removing elements (BF = “brute force”), so
does much of the work of Algorithm 1 in a way that is not
effective towards finding other IVCs. The overhead of the
1vC_uc algorithm is on average 10% over the baseline proof,
as opposed to 882% for the 1vC_UCBF algorithm. In addition,
the average increase in size of IVCs returned by Ivc_uc is
approximately 10% of the IvCc_UCBF algorithm.

On the other hand, if GETIVC does not return minimal
adequate sets, at the end of the process, set A may contain
both MIVCs and some supersets of MIVCs. To make sure that
the algorithm only returns the minimal adequate sets (MIVCs),
all we need is to remove any supersets of other sets in A. We
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can do this “on the fly” by changing line 11 to the following:
A+ AU{SI\{S | S € AANS" C S}. Obviously, the closer
to minimal the results of GETIVC are, the fewer iterations
are required for Algorithm 1 to terminate. Each non-minimal
adequate set returned by GETIVC will induce an additional
iteration for Algorithm 1.

V. ILLUSTRATION

To illustrate the A11_1vCs algorithm we use the example
presented in Section II with P = (on_p) . For better descrip-
tion, we view T as an ordered set of its top-level conjuncts; i.e.
T = { al_below, a2_below, al_above, a2_above,
one_below, both_above, doi_on, on_p }. The algo-
rithm starts with creating activation literals for each T; €
T. Let the ordered set of Boolean variables {ai,...,as}
be the corresponding literals to the elements of 7' (e.g.
ACTLIT(al_below) = a; and ACTLIT(on_p) = as). Then,
line 3 initializes map with T.

In the first iteration of the while loop, since map is empty,
it is satisfiable, and a model for it can be any subset of literals.
So obviously, the first maximal model of map contains all the
literals, which means, in line 6, M = {aq,...,as}, and in
line 7, S = T. Since S is adequate for P, the GETIVC module
is called in line 10. Suppose the returned MIVC by this
function is S’ = {al_below, one_below, doi_on, on_p};
this set is added to A in line 11, and thus it comes to
adding a new clause to map (line 12), which makes map =
(—may V —as V —ar V —ag). As discussed, this constraint marks
all the supersets of S’ as blocked and prunes them off the
search space.

For the second iteration, map 1is still satisfiable, so the
algorithm gets to find a maximal model of it in line 5. Suppose
this time, the maximal model makes M = {ai,...,ar},
which leads to S = T \ {on_p} in line 7. Since S is
inadequate for P, the algorithm jumps to line 12 updating
map as map < map A ag. Adding this new clause removes
all the subsets of T'\ {on_p} from the search space. Similarly,
in the third iteration, if the maximal model of map yields
M = {al, .., Q4,06,. .., as}, then S =T \ {one_below}
will be another inadequate set that makes map become
map < map A as in line 14.

Suppose, in the fourth iteration, the maximal model leads
to M = {as,...,as} and S = T\ {al_below} in lines 6
and 7. Since this S is adequate for P, GETIVC computes
a new MIVC in line 10. Let the new MIVC be S =
{a2_below, one_below, doi_on, on_p}; after adding this
set to A, it is time to constrain map by a new clause in line 11,
which results in map < map A (—az V —as V —ar V —ag).

After these iterations, map is still satisfiable, and the
maximal model is S = T \ {al_below,a2_below} in
line 7. In this case, S is inadequate, so we update map as
map < map A (a1 V az) (line 14). After adding this new
clause to map, all the subsets of 7'\ {al_below,a2_below}
will be blocked. The algorithm continues similar to the forth
iteration leading to S (in line 7) and map (in line 14) to be
as S =T\ {doi_on} and map < map A as.

Finally, after the sixth iteration, map becomes UNSAT and
the algorithm terminates. Note that M [Ses and IV Cs may
be discovered in different orders from what explained here.
The order by which sets are explored is quite dependent on
the maximal model returned in line 5 as well as the MIVCs
returned in line 10 because there could be several distinct
maximal models (MISes) and MIVCs. For this example with
a |T| =8 and |P(T)| = 28, a brute force approach of power
set exploration needs to look into 256 cases. However, the
All_1vCs algorithm only explored 6 cases to cover the entire
power set.

VI. IMPLEMENTATION

We have implemented the A11_1vCs algorithm in an indus-
trial model checker called JKind [25], which verifies safety
properties of infinite-state synchronous systems. It accepts
Lustre programs [31] as input. The translation of Lustre into a
symbolic transition system in JKind is straightforward and is
similar to what is described in [32]. Verification is supported
by multiple “proof engines” that execute in parallel, including
K-induction, property directed reachability (PDR), and lemma
generation engines that attempt to prove multiple properties in
parallel. To implement the engines, JKind emits SMT prob-
lems using the theories of linear integer and real arithmetic.
JKind supports the 723, Yices, MathSAT, SMTInterpol,
and CvC4 SMT solvers as back-ends. When a property is
proved and IVC generation is enabled, an additional parallel
engine executes the IvC_uc algorithm [7] to generate an
(approximately) minimal IVC. To implement our method, we
have extended JKind with a new engine that implements
Algorithm 1 on top of Z3. We use the JKind IVC generation
engine to implement the GETIVC procedure in Algorithm 1.

As mentioned in Section IV the CHECKADQ procedure may
not terminate. In our implementation, we measure the time
required to prove the property and the initial given the full
model (proof-time), and the time required to calculate the first
(approximate) IVC using 1vC_ucC (1vC_Uc-time). We then set
a timeout for each iteration of the A11_IvCs algorithm to (30
sec + 5 X (proof-time + 1vC_UC-time)). In almost all cases
in our experiment and our use of the tools, this timeout is
sufficient to ensure exact results. In the experiment, only 15
of 475 models (3%) had potentially approximate results. It is
important to note that by increasing the timeout, it is possible
that in some cases smaller IVCs can be generated, but the
general problem will remain due to the undecidability of the
model checking problem.

VII. EXPERIMENT

We are interested in examining the efficacy and efficiency of
generating all minimal IVCs, as compared to algorithms for
computing a single approximately minimal IVC, and a minimal
IVC as implemented in [7] using the IvC_UC and IVC_UCBF
algorithms, respectively. We would also like to know how
performance is affected by the size of models and number of
minimal IVCs. Finally, we are also interested in determining
whether the A11_1vCs algorithm generates smaller cores than
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Fig. 3. Runtime of A11_IVCs, IVC_UCBF, and IVC_UC algorithms

are generated by the IvC_UCBF algorithm that generates a
single MIVC. Therefore, we investigate the following research
questions:

« RQ1: How expensive is it to compute the A11_1vCs al-
gorithm for determining all minimal IVCs when com-
pared to the 1vc_uc and Ivc_UCBF algorithms, which
find a single approximately minimal and guaranteed min-
imal IVC?

« RQ2: How is the verification time of the A11_1vCs algo-
rithm affected by the baseline proof time and the number
of IVCs that can be found for a property?

« RQ3: How large are the IVCs produced by the 211_1VCs
algorithm compared to those of I1vC_UC and 1vC_UCBF?

A. Experimental Setup

The benchmark contains 475 Lustre models, 395 from [32]
and 80 industrial models derived from [33] and other sources.
Most of the benchmark models from [32] are small (10kB
or less, with 6-40 equations) and include a range of hardware
benchmarks and software problems involving counters that are
difficult to solve inductively. The 80 industrial models each
contain over 600 equations and are each >80kB in size.

We selected only benchmark problems consisting of a
Lustre model with properties that JKind could prove with an
hour timeout. For each test model, we computed A11_IVCs,
IVC_UcC, and IvC_UCBF algorithms in a configuration with the
73 solver and the “fastest” mode of JKind (which involves
running the k-induction and PDR engines in parallel and
terminating when a solution is found). The experiments were
run on an Intel(R) i5-4690, 3.50GHz, 16 GB memory machine
running Linux, and are available at [34].

B. Experimental Results

In this section, we examine our experimental results to
address the research questions defined in the experiment.

1) RQI: To address RQ1, we measured the performance
overhead of the various IVC algorithms against the base-
line time necessary to find a proof using inductive model
checking. Fig. 3 provides an overview of the overhead of
the A11_1vCs algorithm in comparison with the IvC_ucC and
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TABLE 1
RUNTIME AND OVERHEAD OF DIFFERENT COMPUTATIONS
l runtime (sec) H min l max mean stdev
proof-time 0.016 25.489 1.250 2.381
All_TIVCs 0.009 792.01 16.457 | 64.491
IVC_UCBF 0.163 | 996.734 11.987 | 68.525
IvC_ucC 0.003 1.126 0.078 0.158

IVC_UCBF algorithms. In the figure, each curve is ranked along
the x-axis according to the time required for the algorithm
to terminate for each analysis problem. Table I provides a
summary of the computation time and the overhead of different
algorithms. The 1vc_uc algorithm imposes a 1.25x overhead
to the baseline proof time, whereas both the IvC_UCBF
and Al11_1vCs algorithms add a substantial time penalty:
IVC_UCBF and All_IvCs add a (mean) 18.8x and 31.3x
overhead, respectively, to the proof time. For small models,
much of this penalty is due to starting many instances of
the SMT solver; if we examine models that require > 1s
of analysis time, the mean overhead of A11_1vCs over the
baseline analysis drops from 31.3x to 9.7x.

2) RQ?2: For this question, we examine how the proof time
of the original model and the number of MIVCs associated
with the property affects the analysis time of the A11_IvCs
algorithm. Fig. 4 provides an overview of this data. The data
in Fig. 4 is sorted twice along the x-axis: the major axis is the
number of MIVCs that exist for the model, and the minor axis
is the analysis time of the baseline model. In this graph, the
graph shows how both factors effect the performance of the
Al1l_1vCs algorithm. Note that there are two scales for the y-
axis: the scale on the left is a logarithmic scale of performance
in terms of the run time; the scale on the right is a linear scale
based on the number of minimal IVCs discovered.

Fig. 4 shows two distinct trends. First, for models whose
baseline proofs are inexpensive and that only have a single
MIVC, the A11_1vCs is roughly equivalent in performance
to the TvC_UCBF. However, as proofs become more expensive
for a single MIVC, the A11_1VvCs begins to underperform the
IVC_UCBF, this is the case for the properties with one MIVC.
In the cases where several MIVCs are found, the performance
of the A11_1vCs is driven to a large degree by the number
of MIVCs that exist: the more MIVCs associated with a
property, the higher the expense of A11_IvCs as compared
to the TvC_UCBF algorithm.

3) RQ3: For this research question, we analyzed the min-
imality of the discovered IVC by each algorithm (Figure 5).
Since 394 of the models had only one MIVC, for these models,
the size of the minimum model produced by the A11_IvCs
algorithm should be the same as the 1vc_UcCBF algorithm. For
the remainder, even when multiple MIVCs were produced, in
only 12 cases did the A11_1vCs produce smaller minimal
IVCs. For these 12 models, the smallest MIVC was 16% the
size of the MIVC produced by 1vC_ucBF, and in the most
dramatic case, the number of elements shrank from 30 to 5.
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Fig. 5. Size of the IVC sets produced by different algorithms

VIII. CONCLUSIONS & FUTURE WORK

The idea of extracting a minimal IVC for a given property
and its applications was recently introduced in [7]. However,
a single IVC often does not provide a complete picture of the
traceability from a property to a model. In this paper, we have
addressed the problem of extracting all minimal TVCs. We
have shown the correctness and completeness of our method
and algorithm. In addition, we have a substantial evaluation
that shows that the practicality and efficiency of our technique.

Our method is inspired by a recent work in the domain of
satisfiability analysis [22]. One interesting future direction is to
devise similar MIVC enumeration algorithms based on other
studies on MUSes extraction such as [21]. We are also looking
into improving our implementation by using more efficient
methods for the CHECKADQ and GETIVC modules used by
our algorithm. Another interesting direction is to parallelize
the enumeration process: it is certainly possible to ask for
multiple distinct maximal models to be solved in parallel.

We also plan to investigate additional applications of the
idea. When performing compositional verification, the All-
IVCs technique may be able to determine minimal component
sets within an architecture that can satisfy a given set of
requirements, which may be helpful for design-space explo-
ration and synthesis. Finally, we are interested in adapting
the notion of (all) validity cores for bounded model checking
for quantifying how much of models have been explored by
bounded analysis.
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Abstract—Interpolating, i.e., computing safe over-
approximations for a system represented by a logical formula,
is at the core of symbolic model-checking. One of the central
tools in modeling programs is the use of the equality logic
and uninterpreted functions (EUF), but certain aspects of
its interpolation, such as size and the logical strength, are
still relatively little studied. In this paper we present a
solid framework for building compact, strength-controlled
interpolants, prove its strength and size properties on EUF,
implement and combine it with a propositional interpolation
system and integrate the implementation into a model checker.
We report encouraging results on using the interpolants both
in a controlled setting and in the model checker. Based on
the experimentation the presented techniques have potentially
a big impact on the final interpolant size and the number of
counter-example-guided refinements.

I. INTRODUCTION

An important skill in constructing mathematical proofs is
to identify the aspects of the problem that are relevant. When
applied to formal reasoning about the correctness of software
this means ignoring the parts of the system that play no
role in its correctness. One such approach that works well in
automated software verification based on satisfiability modulo
theories (SMT) engines (see, e.g, [1]) is to employ the Equality
Logic and Uninterpreted Functions (EUF) when applicable: in
some cases it suffices to assume that a given function returns
the same value when invoked with the same arguments. This
technique is particularly useful, for example, when modeling
memory or arrays [2], proving program equivalence [3], or
as a technique for avoiding flattening in solving bit-vector
problems [4], [5].

Generalizing a formula over the states reachable by a
program is a natural subtask when summarizing the behavior
of a procedure [6], or computing a fixed-point of a tran-
sition function [7], [8]. These techniques are now popular
in software model-checking [9], [10], and together with the
theory-based abstraction result in a growing interest in an over-
approximation technique known as interpolation.

In this paper we present the EUF-interpolation system
which aims at specializing and tailoring interpolants for
the needs of interpolation-based model-checking. The paper
contributes to the state-of-the-art by (i) providing the first
approach for controlling the strengths of EUF interpolants;
(ii) identifying a strength lattice of interpolation algorithms;
and (iii) proving under certain assumptions the size order for
the interpolants produced by the system. In addition we (iv)

provide an implementation of the system; (v) integrate and
experiment with the system on a model checker; and (vi) study
the combination of labeled interpolation systems for EUF and
propositional logic. The EUF-interpolation operates on the
proof of unsatisfiability in EUF based on a recursive algorithm
for building a final interpolant from partial interpolants and
uses duality of interpolants, a logical relation between an
interpolant and its negation discussed below, to control the
strength of the constructed partial and final interpolants.

The system 1is implemented in the SMT solver
OpenSMT2 [11], and used in a model-checking algorithm
based on the interpolating incremental C verifier HiFrog [6].
This gives us the advantage of making a direct connection
between the theoretical contributions and practice. We
evaluate the efficiency of the EUF-interpolation system with
two major experiments. In the first experiment we verify a set
of C software verification problems produced by HiFrog, and
in the second experiment we study different combinations of
propositional and EUF interpolation algorithms on a set of
instances from the SMT-LIB benchmark collection. Based
on the results the system has a big impact on the generated
interpolants, and the interpolants seem to be very useful
in our application to model-checking. To the best of our
knowledge our work is the first to consider the duality of
interpolants in constructing EUF interpolants recursively, and
to report experiments with EUF interpolation together with
incremental verification.

a) Related work : Recent work on labeled interpola-
tion systems (LIS) addresses interpolation in propositional
logic [12], [13], [14], [15] by providing control over fitting
the interpolant strength and size to particular model-checking
applications. Our approach extends the work on propositional
interpolation to SMT theories and in particular to EUF. In-
terpolation procedures for EUF have been introduced in [16],
[17]. The interpolation procedure given in [16] provides a way
of computing a single interpolant from a given proof. The
technique is extended in [17] to allow construction of several
interpolants through the coloring of congruence graphs edges.
Our work differs fundamentally from both these approaches by
using duality for controlling the interpolant strength, a feature
not available in earlier formalizations.

The parametric interpolation frameworks presented in [18]
and [19] generalize first-order interpolation procedures. The
former provides labeled interpolation systems for hyper-
resolution proofs which are then extended to first order in-
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terpolation systems for local proofs; the latter generalizes the
former further to non-local proofs. Both of these techniques
provide control on the propositional level. Unlike ours, they
are not specialized and optimized for EUF and, to the best of
our knowledge, have not been implemented.

Other orthogonal procedures exist for the quantifier-free
fragments of the theories of linear integer arithmetics [20],
[21], linear real arithmetics [16], [22], [23], and Arrays [24],
while [25] provides a labeled interpolation system for Non-
linear Real Arithmetics. On a high level, we believe that the
duality-based approach followed in this work can be applied
also in these fields.

This paper is organized as follows: Sec. II presents a general
algorithmic framework for interpolation as a preliminary for
the EUF-interpolation system. The main result on the EUF-
interpolation system is presented in Sec. III The experiments
are reported in Sec. IV, and the paper concludes in Sec. V. For
lack of space the proofs are available in the extended version
of the paper, available with the implementation and more
experimental results at http://verify.inf.usi.ch/euf-interpolation.

II. PRELIMINARIES

This paper considers the extension of propositional logic
to Boolean variables that are interpreted as equalities over
uninterpreted functions. Following [26], we call this extension
the theory of equality logic and uninterpreted functions (EUF).
For example —(a = b) V f(a) = f(b) is an EUF formula
containing the uninterpreted functions a, b, and f, embedded
in a Boolean structure. Given an EUF formula F', we call the
equality (=), and the Boolean connectives (e.g. —, A, V) the
logical symbols, while the Boolean variables and uninterpreted
functions are its non-logical symbols, denoted by Vars(F').

Given an unsatisfiable conjunction A A B of EUF formulas
A and B, an interpolation instance is a pair (A, B), and
an interpolant for (A, B) is a formula I(A, B) such that (i)
A — I(A,B), (ii) I(A,B) A B is unsatisfiable, and (iii)
Vars(I(A,B)) C Vars(A) N Vars(B). When B is clear
from context, we refer to I(A, B) as an interpolant for A. In
general several interpolants can be computed for an instance
(A, B). We denote an algorithm computing an interpolant
I(A, B) by Iip(A, B), and, with a slight abuse of the no-
tation, use Itp(A, B) to denote the interpolant I(A, B) when
the interpolation algorithm needs to be specified. A central
concept to this paper is the duality between interpolation
algorithms: Given an interpolation algorithm Itp(A, B), also
the algorithm Itp~ (A, B) returning —Iip(B, A) computes an
interpolant for (A, B), as can be seen from the following rea-
soning: By definition, Itp~ (A, B) = —Iip(B, A). Itp(B, A)
satisfies (i) B — Iip(B, A); (i) Itp(B,A) — —A; and
(iii) Vars(Itp(B,A)) C Vars(A) N Vars(B). By rewriting,
from (ii) follows that (iv) A — —Iip(B, A), and from (i)
that (v) —Itp(B,A) — —B. From (iii), commutativity of
intersection, and definition of non-logical symbols, follows (vi)
Vars(—Itp(B, A)) C Vars(B) N Vars(A).

In this work we consider algorithms that build interpolants
based on the unsatisfiability proof of A A B. We make this

Algorithm 1 Congruence closure
1: procedure CONGRUENCECLOSURE(T', Eq)
2 Initialize £ < 0 and G < (T, E)
3 repeat pick x,y € T such that (z ¢ y)
4 if (a) (zx =vy) € Eq or

5: b) zis f(z1,...,2k), yis f(y1,...

6‘

7

8

9

,Yk), and
(x1 ~ yl), ceey (:L‘k ~ yk) then
E+— EU{(z,y)}
until no such z,y can be chosen so that £ would grow
return G

explicit by denoting the interpolation algorithm (and the re-
sulting interpolant) by Itp(A, B, R), where R is the refutation
representing the proof of unsatisfiability. In this work we
are particularly interested in ordering interpolation algorithms
with respect to the strength of the interpolants they compute.
An interpolant [ is stronger than an interpolant I’ if T — I’
We extend the strength relation to interpolation algorithms: if
Itp®(A, B, R) — Itp” (A, B, R) for algorithms Itp® and Itp"
for all interpolation instances (A, B), then Itp® is stronger
than Itp™. If the strength relation can be established between
the algorithms Itp and Itp~, we call the algorithm computing
the stronger interpolant the base and the weaker the dual
interpolation algorithm and denote them by Itp and Itp’,
respectively.

A. EUF Preliminaries

This section describes our interpolation system for EUF. The
presentation is based on [17] and uses the congruence graph
as the refutation.

Many EUF solvers rely on the congruence closure algo-
rithm [27] to decide the satisfiability of a set of equalities
and disequalities. The algorithm, described in Alg. 1, takes as
input a finite set Fq of equalities, and the subterm-closed set T’
over which Ejq is defined. During the execution the algorithm
builds an undirected congruence graph G using the set T' as
nodes. We write (x ~ y) if there is a path in G connecting x
and y and denote this path by zy.

Theorem 1 (c.f. [27]): Let S be a set of EUF disequal-
ities © # y over the terms 7. The set S U Fq is satisfi-
able if and only if the congruence graph G constructed by
CONGRUENCECLOSURE(T, Eq) has no path (z ~ y) such
that (r # y) € S.

During the creation of G, an edge (z,y) is added only
if (z ~ y) does not hold, which ensures that G is acyclic.
Therefore, for any pair of terms x and y such that (z ~ y)
holds in G, the path Ty connecting these terms is unique. The
path z is called an empty path. For an arbitrary path 7, we
use the notation [[7r] to represent the equality of the terms that
7 connects. If, for example, 7 = Ty, then 7] := (z = y).
We also extend this notation over sets of paths P so that
[P] = A, cplol

An edge may be added to a congruence graph G because of
two different reasons in Alg. 1 at line 7. Edges added because
of Condition (a) are called basic, while edges added because
of Condition (b) are called derived. Let e be a derived edge
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(f(z1,...,2k), f(y1,...,yk)). The k parent paths of e are
T1Y1,. .., ZKYk- Given a congruence graph G and two terms
x,y such that x ~ y we denote by G[Zy] the congruence graph
obtained from the graph G by including the edges and terms
that appear on the path Ty and recursively all its parent paths.

To compute an interpolant for (A, B), the congruence graph
needs to be annotated with the information on which equalities
and terms belong to A and which to B. This information
is encoded using colors. Let F' be a set of equalities and
disequalities, A U B a partition of F, and (z < y) € F
an equality or a disequality over the terms z and y (i.e.,
<€ {=,#}). A term is a-colorable if all its non-logical
symbols occur in A; b-colorable if all its non-logical symbols
occur in B; and ab-colorable if both a and b-colorable.
Given a set of edges E of a congruence graph, a coloring
C : E — {a,b} assigns a color a or b to each edge in E
considering two restrictions: (i) basic edges ¢ = (x,y) must
be colored a if (x =y) € A and b if (z = y) € B; and (ii) if
an edge (x,y) has color « € {a, b}, both x and y must be «-
colorable. In particular a derived or basic edge e = (z, y) such
that both x and y are ab-colorable can be coloured arbitrarily.
A path in a congruence graph is colorable if all its edges are
colorable, and a congruence graph is colorable if all its edges
are colorable.

While it is possible to construct a non-colorable congruence
graph, the following lemma and its constructive proof in [17]
state that we may assume without loss of generality that
congruence graphs are colorable.

Lemma 1 (c.f. [17]): Let (A, B) be an interpolation instance
over EUF. If x and y are colorable terms and if A, B = (z =
y), then there exist a term set 7" and a colorable congruence
graph over the equalities contained in A U B U T in which
(x ~y).

We denote a congruence graph G colored with a function C'
by G€. A path is called an a-path if all its edges are colored
a, and a b-path if all its edges are colored b. A factor of a path
in G¢ is a maximal subpath such that all its edges have the
same color. Notice that every path is uniquely represented as
a concatenation of the consecutive factors of opposite colors.

Example 1: Let A == {(v1 = f(y1)), (f(y2) = v2), (41 =
t1), (t2 = y2), (s1 = f(r1)), (f(r2) = s2), (11 = wa), (w2 =
r2)} and B := {(z1 = v1), (v2 = 22), (t1 = f(21)), (f(22) =
tg),(zl = 81),(52 = ZQ),(’LLl = UQ), (171 7é Ig)} Figure 1
shows a colored congruence graph G built while proving
the unsatisfiability of A and B with Alg. 1. The curvy edges
with the labels s or w in G¢ are not relevant for this example
and are used later in Section III. The congruence graph G¢
demonstrates the joint unsatisfiability of A and B, since it
proves (x1 = x2) and (x1 # x2) is an original term. Edges
are represented by thick lines, and dotted arrows point to
the parents of derived edges. We present a-colorable nodes
(terms) and a-colored edges by black circles and solid lines,
b-colorable nodes and b-colored edges by white circles and
dashed lines, and ab-colorable nodes by gray circles. In the
first (top) path of G¢, we see that basic edges (original
equalities from A U B) are used to prove (ry = r3). This
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Figure 1. Congruence graph GC that proves the unsatisfiability of AU B

fact is used to infer (f(r1) = f(r2)), which is in turn used
as a derived edge in the path below, proving (z; = 23). The
equality (f(z1) = f(z2)) is then inferred and used to prove
(y1 = y2) in the path below. In the last (bottom) path of G,
the derived edge representing (f(y1) = f(y=2)) is created and
finally (z1 = x2) is proved.

III. THE EUF INTERPOLATION SYSTEM

In this section we present the EUF-interpolation system
which extends the approach described in [17] with a modular
use of dual interpolants. Our main novelty is the control over
the interpolant strength. Due to lack of space all the proofs of
the theorems in this section are presented in Appendix ??.

Intuitively, the approach computes partial interpolants with
either a base or a dual interpolation algorithm using the
structure of a congruence graph. We show that while inter-
polating on a fixed congruence graph the liberty in choosing
between the two interpolation algorithms allows computing
several interpolants that can be partially ordered with respect
to their strength. To make this choice explicit we introduce the
labeling functions L for the EUF-interpolation system, and the
algorithm I¢p; for computing the interpolants.

Definition 1 (Labeling function): Let G[Tg]¢ be a colored
congruence graph and W its factors. A labeling function
L : WU {Zy} — {s,w} labels the factors and the path
corresponding to the conflict x # y as s or w.

We emphasize that colors, described in Sec. II-A, and labels
are different concepts. The colors a, b tell if an edge belongs
to A or B, whereas labels s, w determine whether to use the
primal or the dual interpolant.

Given an (unsatisfiable) interpolation instance (A, B), an
EUF interpolation algorithm Itp; (A, B, G[zy]¢) computes an
interpolant for (A, B); G[zy] is a congruence graph with
coloring C'; Ty a path such that (xr ~ y) is in G and the
disequality (z # y) exists in AU B; and L is a labeling
function. We omit A, B, G¢ and L when they are clear
from the context, referring to the interpolation algorithm and
the corresponding interpolant as [tp(Zy). Given an arbitrary
path o we define separately two constant labeling functions
Ls(0) =Ly = s and L, (o) = L, = w that will be useful in
the following analysis.

The interpolation algorithms in [16] and [17] essentially
compute an interpolant by collecting the A-factors that prove
(r = y) in GC. To maintain the unsatisfiability with the B
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part of the problem, the A factors will then be implied by their
B-premise set. A premise set for factor of a given color is the
set of equalities of the opposite color justifying the existence
of the factor’s parent edges. More technically, the B-premise
set B for a path 7 is

(U{B(o)|o is a factor of 7},if 7 has > 2 factors;
B(r) - {n},if w is a B-path; and
e U{B(o)|o is a parent path of an edge of 7},
if 7 is an A-path.

ey
As stated in Sec. II, it is also possible to compute a dual
interpolant for A as the negation of an interpolant for B. To
compute the dual interpolant we similarly collect the B-factors
that prove (z = y) in G, implied by their A-premise set. The
A-premise set A for a path 7 is defined as

U{A(0)]o is a factor of 7},if 7 has > 2 factors;
Ar) = {m},if 7 is an A-path; and
i U{A(o)|o is a parent path of an edge of 7},
if 7 is a B-path.
2
We extend the notation of A and B over a set S of pa