
Proceedings of the 17th Conference on
Formal Methods in Computer-Aided Design (FMCAD 2017)

TU Wien, Vienna, Austria, October 2-6, 2017

Edited by
Daryl Stewart and Georg Weissenbacher

In cooperation with
ACM Special Interest Group on Programming Languages
ACM Special Interest Group on Software Engineering

In-Cooperation

Technical co-sponsorship of IEEE





Proceedings of the 17th Conference on

Formal Methods in Computer-Aided Design

FMCAD 2017

October 2-6, 2017

TU Wien, Vienna, Austria

Edited by Daryl Stewart and Georg Weissenbacher

ISBN: 978-0-9835678-7-5
Copyright owned jointly by the authors and FMCAD Inc.
Title page photo: Copyright TU Wien





Preface

The International Conference on Formal Methods in Computer Aided Design (FMCAD), held at TU Wien in Vienna, Austria,
from October 2-6 in 2017, is the seventeenth in a series of meetings on the theory and applications of rigorous formal techniques
for the automated design of systems. The FMCAD conference covers formal aspects of specification, verification, synthesis,
testing, and security, and is a leading forum for researchers and practitioners in academia and industry alike.

The program of FMCAD 2017 comprises a tutorial day with three tutorials on security and concurrency (joint with the
collocated MEMOCODE conference), two keynotes on the use of formal methods in industry, a forum for doctoral students,
the Hardware Model Checking Competition 2017, the main program consisting of presentations of the accepted papers, and a
Symposium in Memoriam of Helmut Veith.

The tutorial day features three presentations covering security and weak-memory concurrency (listed in the order of
appearance in the program):
• “How Formal Methods and Analysis Helps Security of Entire Blockchain-based Systems”, by Shin’ichiro Matsuo (MIT

Media Lab, CELLOS Consortium, and BSafe.network)
• “Symbolic Security Analysis using the Tamarin Prover”, by Cas Cremers (Oxford University)
• “Coalition, intrigue, ambush, destruction and pride: herding cats can be challenging”, by Jade Alglave (University College

London and Microsoft Research)
The keynotes focus on the application of formal verification in industry, and on the verification of cloud computing platforms

and dependable systems in particular:
• “Automated Formal Reasoning About AWS Systems” by Byron Cook (Amazon Web Services and University College

London)
• “Formal Methods in Industrial Dependable Systems Design - The TTTech Example” by Wilfried Steiner (TTTech

Computertechnik AG)
FMCAD also hosts the fifth edition of the Student Forum, which has been held annually since 2013 and provides a platform

for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD Student Forum
2017 was organized by Keijo Heljanko and features posters and short presentations of thirteen accepted contributions. A detailed
description of the Student Forum, listing all accepted contributions, is provided in the conference proceedings.

The Hardware Model Checking Competition 2017, affiliated with FMCAD 2017 and organized by Armin Biere, Tom van
Dijk, and Keijo Heljanko, is a competitive event for hardware model checking tools from academia and industry. A description
of this year’s competition is provided in the proceedings.

The Symposium in Memoriam Helmut Veith, held on the last day of FMCAD 2017, is dedicated to the memory of Helmut
Veith, who tragically passed away in March 2016. Helmut was one of the organizers of FMCAD 2016 and an active and
much liked member of the FMCAD community. The Symposium honors Helmut and his contributions to the area of formal
methods, which remain highly influential, with talks on model checking, synthesis, distributed algorithms, and security, given
by collaborators, colleagues, and friends of Helmut and based on articles published in a Special Edition of the Journal on
Formal Methods in System Design in Memoriam Helmut Veith. As part of the Symposium, a LogicLounge on Teaching Logic
in Computer Science remembers Helmut’s dedication to mentoring and his achievements in creating and shaping doctoral and
master’s programs on Logic and Computation at TU Wien. The LogicLounge is a series of discussions on computer science
topics targeting a general audience, which was initiated by Helmut Veith at the Vienna Summer of Logic in 2014.

FMCAD 2017 received 87 abstracts, resulting in 67 submissions, of which 25 full papers and 4 short papers were accepted
for publication in the conference proceedings. Each paper received at least four reviews, and the authors were given the
opportunity to address the reviewers’ concerns in a rebuttal phase. The topics of the accepted papers include solvers and
decision procedures, verification of concurrent and distributed systems, analysis of hybrid and probabilistic systems, synthesis,
run-time verification, a number of papers on the IC3 model checking paradigm, and applications of formal methods.

Organizing this event would not have been possible without the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing detailed
and insightful reviews, which helped the authors to improve their submissions and guided the selection of the papers accepted
for publication. We thank each and every one of them for dedicating their time and providing their expertise. Moreover,
we’d like to give special thanks to the sub-committee which agreed to select the recipients of this year’s Best Paper Award.
We thank the Publication Chair Mitra Tabaei Befrouei (TU Wien) for her effort in preparing and assembling the conference
proceedings, and Keijo Heljanko for organizing this year’s FMCAD Student Forum. Our webmaster, Jens Katelaan, has our
gratitude for maintaining and regularly updating the FMCAD website (which now features the new and sleek FMCAD logo
designed by Anna Oberauer). We thank all students who volunteered to help running the event. As always, the help and
expertise of the FMCAD steering committee made the organization of FMCAD much easier. We thank Armin Biere (Johannes
Kepler University in Linz, Austria), Alan Hu (University of British Columbia, Canada), and especially Warren A. Hunt,. Jr.



(University of Texas at Austin) and Vigyan Singhal (Oski Tech) for supporting and encouraging us, and guiding us through
the organization process.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would like
to express our gratitude (in alphabetical order) to our sponsors Amazon, ARM Ltd., Centaur Technology Inc., DiffBlue Ltd.,
Galois Inc., IBM, Microsoft Research, Oski Technology, Real Intent Inc., Synopsis, TTTech Computertechnik AG, and the
Vienna Science and Technology Fund for their financial support of the conference, and the Austrian Ministry for Transport,
Innovation and Technology and the National Science Foundation for their support of the Student Forum.

FMCAD 2017 is in-cooperation with the ACM and its Special Interest Groups on Programming Languages (SIGPLAN) and
on Software Engineering (SIGSOFT). The FMCAD conference also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The conference proceedings will be available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also freely accessible on the FMCAD Website.

Last but not least, we thank all authors who submitted their papers to FMCAD 2017 (accepted or not), and whose contributions
and presentations form the core of the conference. We are grateful to everyone who presented their paper, gave a keynote
or a tutorial, devoting a significant amount of their time to the FMCAD conference. We thank all attendees of FMCAD for
supporting the conference and making FMCAD a stimulating and enjoyable event.

Daryl Stewart and Georg Weissenbacher
FMCAD 2017 Program Chairs
Vienna, Austria, September 2017

FMCAD 2017 is overshadowed by the death of Professor Michael J. C. Gordon, who recently (22 August 2017) passed away at
the age of 69 after a brief illness. Professor Gordon was a leader in the use of mechanized formal methods to analyze hardware
and software, and he was the original developer of the HOL theorem-proving system. Gordon was an expert in program
semantics, and he was elected a Fellow of the Royal Society in 1994. The FMCAD community has benefited tremendously
from Gordon’s many contributions, and no doubt Gordon’s efforts will continue to influence our community for many years to
come. He will be sorely missed, not only for his wisdom and expertise but also for his distinctively generous and friendly spirit.

Warren A. Hunt Jr.
Chairman, FMCAD Steering Committee
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Klüppelholz, Sascha
Koelbl, Alfred

Koyfman, Shlomit
Kragl, Bernhard
Krakovsky, Roi
Kukovec, Jure
Kusano, Markus

Laarman, Alfons
Lammich, Peter
Lazic, Marijana
Leslie-Hurd, Joe
Liu, Peizun

Malik, Sharad
Marescotti, Matteo
Mencı́a, Carlos
Morgado, Antonio
Märcker, Steffen

Nalla, Pradeep Kumar
Nevo, Ziv

Orni, Avigail

Pani, Thomas
Previti, Alessandro

Rabe, Markus N.
Radicek, Ivan
Ramachandran, Jaideep
Ravitch, Tristan
Rebola Pardo, Adrian
Ritirc, Daniela
Roveri, Marco

Saracino, Andrea
Schlaipfer, Matthias
Sethi, Divjyot
Sewell, Thomas
Singleton, Iain
Sison, Robert
Stoilkovska, Ilina
Sumners, Rob
Sung, Chungha
Swords, Sol

Tanaka, Miki
Tomb, Aaron
Tran, Thanh Hai

Wendler, Philipp
Winwood, Simon
Wu, Meng

Yin, Liangze





Table of Contents

Invited Papers
How formal analysis and verification add security to blockchain-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Shin’Ichiro Matsuo

Symbolic Security Analysis using the Tamarin Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Cas Cremers

Coalition, intrigue, ambush, destruction and pride: herding cats can be challenging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Jade Alglave

Automated Formal Reasoning About AWS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Byron Cook

Formal Methods in Industrial Dependable Systems Design - The TTTech Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Wilfried Steiner

Hardware Model Checking Competition 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Armin Biere, Tom van Dijk and Keijo Heljanko

The FMCAD 2017 Graduate Student Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Keijo Heljanko

Arithmetic

goSAT: Floating-point Satisfiability as Global Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
M. Ammar Ben Khadra, Dominik Stoffel and Wolfgang Kunz

On Sound Relative Error Bounds for Floating-Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Anastasiia Izycheva and Eva Darulova

Column-Wise Verification of Multipliers Using Computer Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Daniela Ritirc, Armin Biere and Manuel Kauers

Solving

Efficient Generation of All Minimal Inductive Validity Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Elaheh Ghassabani, Michael Whalen and Andrew Gacek

Duality-Based Interpolation for Quantifier-Free Equalities and Uninterpreted Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Leonardo Alt, Antti Hyvärinen, Sepideh Asadi and Natasha Sharygina

Solving Linear Arithmetic with SAT-based Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Yakir Vizel, Alexander Nadel and Sharad Malik

Z3str3: A String Solver with Theory-aware Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Murphy Berzish, Vijay Ganesh and Yunhui Zheng

Concurrency and Distributed Systems

Verification of a lazy cache coherence protocol against a weak memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Christopher Banks, Marco Elver, Ruth Hoffmann, Susmit Sarkar, Paul Jackson and Vijay Nagarajan

Safety Verification of Phaser Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Zeinab Ganjei, Ahmed Rezine, Petru Eles and Zebo Peng

Learning to prove safety over parameterised concurrent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Yu-Fang Chen, Chih-Duo Hong, Anthony Widjaja Lin and Philipp Ruemmer

Lasso detection using Partial State Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Rashmi Mudduluru, Pantazis Deligiannis, Ankush Desai, Akash Lal and Shaz Qadeer

Probabilistic Systems

Exact Quantitative Probabilistic Model Checking Using Rational Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Matthew S. Bauer, Umang Mathur, Rohit Chadha, A. Prasad Sistla and Mahesh Viswanathan



Sampling Invariants from Frequency Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Grigory Fedyukovich, Samuel Kaufman and Rastislav Bodik

BDDs

Tagged BDDs: Combining reduction rules from different decision diagram types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Tom van Dijk, Robert Wille and Robert Meolic

First-order Temporal Logic Monitoring with BDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Klaus Havelund, Doron Peled and Dogan Ulus

Factored Boolean Functional Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Lucas Martinelli Tabajara and Moshe Y. Vardi

IC3

Property Directed Reachability with Word-Level Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Yen-Sheng Ho, Alan Mishchenko and Robert Brayton

Learning Support Sets in IC3 and Quip: the Good, the Bad, and the Ugly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Ryan Berryhill, Alexander Ivrii, Neil Veira and Andreas Veneris

K-Induction without Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Arie Gurfinkel and Alexander Ivrii

Designing Parallel PDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Matteo Marescotti, Arie Gurfinkel, Antti Hyvärinen and Natasha Sharygina

FuseIC3: An Algorithm for Checking Large Design Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Rohit Dureja and Kristin Yvonne Rozier

FAR-Cubicle - A new reachability algorithm for Cubicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Sylvain Conchon, Amit Goel, Sava Krstic, Rupak Majumdar and Mattias Roux

Theta: a Framework for Abstraction Refinement-Based Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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How formal analysis and verification add security to 
blockchain-based systems 

Shin’ichiro Matsuo
Keio University and BSafe.network 

Abstract—Blockchain is an integrated technology to ensure
keeping record and process transactions with decentralized
manner. It is thought as the foundation of future decentralized
ecosystem, and collects much attention. However, the maturity
of this technology including security of the fundamental protocol
and its applications is not enough, thus we need more research on
the security evaluation and verification of Blockchain technology
This tutorial explains the current status of the security of this
technology, its security layers and possibility of application of
formal analysis and verification.

Index Terms—Blockchain, Security Evaluation, Formal
Method, Formal Verification, Domain Specific Language

I. INTRODUCTION

A. Background

There are proposed many applications which aim to use
blockchain technology as a fundamental distributed ledger.
We expect considerable commercial interest in many new
and novel applications using a blockchain. In spite of this
burgeoning interest, academic research on the security model
of blockchain technology and its application are at an early
stage. Due to the Ethereum DAO debacle, the importance
of analysis of the security of blockchain-based systems is
rapidly increasing. Current research issues are to find a good
framework to analyze the security of blockchain technology
including defining the security requirements and the way to
evaluate their security. Several existing researchers deal with
how to figure out the security of blockchain by using formal
analysis. To facilitate this direction of research, we need a
more well-organized framework.

B. Structure of the tutorial

In this tutorial, we firstly figure out the security require-
ments needed for blockchain based systems and smart con-
tracts. Then we propose technology layers for such systems
and application and security considerations for each layer.
Next we explore the applicability of formal analysis for
each layer and pick three layers which are good targets of
evaluation by formal analysis. Then, we propose the frame-
work of applying formal analysis to help secure blockchain-
based systems. An explanation of the limitations of formal
verification follows. At the end of this tutorial, we conclude
the direction to the framework to design application code and
system which facilitate formal analysis and formal verification.

II. SECURITY REQUIREMENTS FOR SYSTEM AND SMART
CONTRACT

The security definition of blockchain backbone protocol
was proposed in [1], [2]. This security definition focuses
on the difficulty of forgery of the block by introducing
CommonPrefix property and Chain Quality property. By using
these properties, we can estimate the probability which the
adversary succeeds to manipulate the blockchain. This is the
requirement only for protocol specification of the backbone
protocol. From the system and application viewpoints, we
should care about more aspects of security. Even on the
protocol security, there are many assumptions in achieving its
security goals. Cryptographic protocol assumes that the private
cryptographic keys are kept secret at all nodes. We should
analyze if the assumption surely holds.

For the application logic, there is possibility that some
critical bugs remain in the program code. An adversary takes
advantage of this bug to attack the application based on
blockchain. The Ethereum DAO case gives us an important
study that such attack may cause a rollback and a hard fork.

From above, we should cover not only the security re-
quirements for backbone blockchain protocol, but also all
mechanisms to ensure the assumptions and scripting language
and codes to realize blockchain-based applications.

III. SECURITY LAYERS

A. Technology layers and security consideration

In [3], Croman et al, proposed the technology layer of
blockchain technology. This layers consist of network plane,
consensus plane, storage plane, view plane and side plane.
This structure is made to rethink the technology to provide
more scalability.

From system and application security viewpoints, we set the
technology layers by the target of evaluation. They consist of
cryptography layer, backbone protocol, application protocol,
application logic, implementation and operation (see Fig.1).

As this figure shows, each layer has international stan-
dards to analyze the security of the security mechanisms,
except application logic. Cryptography layer is covered by
standardization process of ISO, NIST and many effort by
the cryptographic academic community. Security of backbone
protocol is analyzed by using formal analysis and UC (Uni-
versal Composability) framework and ISO/IEC 29128 [8]. The
security of implementation is certified by Common Criteria

Extended Abstract of Tutorial Talk
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Fig. 1. Technology layers and security consideration

(ISO/IEC 15408) [7] and operation of the system is defined
and audited using ISMS and the framework of ISO/IEC
27000 series. Unfortunately, the application logic layer, which
contains a scripting language for financial transaction and
contract, does not yet have good standard to provide security
analysis. Further research here is clearly required.

IV. APPLYING FORMAL ANALYSIS

A. Abstract of formal analysis and formal verification

Here, we revisit the basis for the formal analysis and formal
verification. Note that we distinguish between these two words.
Formal analysis means evaluating the possibility of attack
on the specification of the protocol, products or system by
conducting some mathematical formalization of the security
requirements, specifications and operational environment (an
adversarial model). Is the description of the state spaces,
axioms and changes both necessary and complete? Formal
verification means to verify the correctness of the specification
of the protocol, products or system formal methods such
as automated axiomatic theorem proving or model checking.
Formal analysis means a manner to use a mathematical formal-
ization to evaluate the security and formal verification means
checking if the specific protocol, product or system is qualified
against the formal specification.

Formal analysis was originally used for check the existence
of a bug in the circuit. Then it is applied to check the
existence of bug in software code, design of the software and
information system and security of cryptographic protocols.

B. State of formal analysis and checking Tools

The term formal methods refers to the use of methods
for the mathematical modeling, calculation, and predication
in the specification, design, analysis, construction, and assur-
ance of hardware and software systems. These methods are
distinguished as having a well-defined syntax, a semantics,
and often a deductive system (or other machinery) for making
semantically-sound statements about systems specified in the

Model checking Theorem proving

Symbolic

Cryptographic
CryptoVerif

SCYTHER

ProVerif

Isabelle/HOL

BPW(in Isabelle/HOL)

NRL

FDR

AVISPA
AVISPA

(TA4SP)

Unbounded

Game-based Security 

Proof （in Coq)

Fig. 2. Categorization of Formal Analysis for cryptographic protocol

language of the formal method. Over the last two decades, the
security community has made substantial advances in devel-
oping automated formal methods for analyzing cryptographic
protocols and thereby preventing the kinds of attacks men-
tioned above. These methods and tools could be categorized by
several points of view. Here we categorize them by “Symbolic
versus Cryptographic”, “Bounded versus Unbounded”, and
“Model checking versus Theorem proving” as Fig. 2.

C. Which security layer can formal method be applied?

According to the past results and history of formal analysis,
the following three layers are main targets of evaluation for
formal analysis.

1) Implementation: This layer contains both software and
hardware implementation of security mechanisms includ-
ing cryptographic algorithm, protocols and key management
mechanisms. Especially, crypto-token wallet programs used
in general user device may become the weakest link and
should be carefully implemented. In ISO/IEC 15408, there are
seven EALs(evaluation assurance levels), and EAL 6 requires
semiformal analysis on the design and implementation, and
EAL 7 requires fully formal analysis on the design and
implementation. There are many past examples and result of
formal analysis in this layer.

2) Backbone protocol and application protocol: Formal
analysis on the protocol specification has a long history and
it gives many results to enhance the security of cryptographic
protocols. ISO/IEC 9798 and 11770 are revised from results of
formal analysis [4], [5]. Recently, formal analysis on TLS1.3,
the latest version of TLS protocol, helps its sound development
and the result is used in the IETF standardization process [6].
Recently, combination of mathematically rigorous proof (UC
Framework and game-based proof) and formal analysis are
used to apply formal analysis to a wider and complicated set
of protocols.

3) Language for Smart Contracts: Checking the program
code is the well-known application of formal analysis and we
have extensive research in this area. It is not easy to check the
highly complicated program by using formal analysis, there
are many existing research to realize security assured language
specification. For smart contracts, we will have good applica-
tion by specifically defining new languages that are designed
to lend themselves to formal analysis and verification.
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V. PROPOSAL OF THE FRAMEWORK

A. Implementation

We can apply the same framework and methodology as
Common Criteria (ISO/IEC 15408). Especially, wallet soft-
ware or hardware should be secure against known attacking
methodology like gray-box attack (side-channel attack) and
white-box attack for software-only implementation. FIPS140-
2 is also useful to make the framework for analyzing imple-
mentation. In this tutrial, we will provide past examples of
formal analysis on the cryptographic implementation and how
we can apply it to blockchain-based systems and devices.

B. Protocol

We can apply the same framework and methodology as
ISO/IEC 29128 (verification of cryptographic protocols). It
defines four PALs(Protocol Assurance Levels) according to
the level of formalization for protocol specification, security
requirements and operational environment. This framework
covers combination of mathematical rigorous proof and formal
analysis. In this tutrial, we will provide past examples of
formal analysis on protocol specifications, how we write the
report to align to this standard, and how we can apply it for
analysis on backbone protocol and application protocol.

C. Language for smart contract

Analyzing the existence of bug in the program code is
still fundamental research topic in computer science. We still
do not have perfect results for general purpose language.
The main problem is the openness of general purpose of
programming language. As for the smart contract, Bhargavan
et al. proposed a framework to analyze and verify both the
runtime safety and the functional correctness of a Solidity con-
tract by introducing an intermediate functional programming
language suitable for verification [9]. Although the paper does
not cover all EVM functionality at the time of writing this

tutrial abstract, it seems a good approach to add limitation to
operational environment to facilitate formal analysis.

In this tutrial, we additionally propose another approach
to define a domain specific language for certain application
domain, which has enough capability to write business logic
and also suitable for formal verification. Then, we will present
an example of the domain specific language for trade finance
and trade facilitation.

VI. LIMITATION OF FORMAL VERIFICATION AND HOW WE
FACILITATE THE USE OF IT

In this part of the tutrial, we discuss about the limitation
of the formal verification. Automated and tool-aided formal
verification is strong approach to check the correctness of
specification and code. However, there are two major issues
when we use such automated tool. The first is on the limitation
of the time and memory of the computer which executes
the verification. In many formal methods, the tool finds the
possibility of bug and security problems by exploring as
many execution states as possible. In this case, the upper
bound of runtime memory of the computer and execution
time become the essential limitation for complicated programs
and protocols. While there are many techniques to reduce
the number of states to be explored, they are not generally
sufficient for complicated software implemented in a general
programming language.

The second issue is the correctness of the formalization.
When we use the formal verification tool, we formalize the
specification (code), security goals and operational environ-
ment. The result of execution of the tool depends on the
accuracy of the formalization. However, we do not have a good
tool check the accuracy. For arbitrary formalized systems, we
need to check the correctness by reviewing the formalized code
by humans. This limits the applicability of formal verification
in general. Here, we need some kind of templates and code
patterns in formalization.

From above perspective, limiting the number of states by
tightly defining the language and preparing code patterns or
templates are good direction to facilitate the use of formal
analysis and formal verification. As for the implementation,
the protection profile is the actual template for formalization.
In the verification of cryptographic protools, there already
exists evaluation reports which aligns to ISO/IEC 29128 and
they can be used as templates. As for the language for smart
contract, defining a domain specific language helps to reduce
the number of states to be explored and creates a template of
formalization.

VII. CONCLUSION

In this tutrial, we proposed the way to facilitate the applica-
tion of formal analysis and formal verification by considering
technology layers and their security concerns. We picked three
layers, implementation, protocol and language, as targets of
applications of formal analysis. Then, we propose a framework
to apply formal analysis to each layer by using existing
standards and results. We can use the same framework as

3

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



ISO/IEC15408 for implementation and ISO/IEC 29128 for
protocol analysis. For the language, which was essential prob-
lem with the Ethereum DAO issue, defining a domain specific
language is the new and effective solution and we showed an
example for trade finance and trade facilitation. The domain
specific language should have a design framework which
facilitates formal analysis and, if possible, formal verification.

From the above, formal analysis research and technology
development can deliver immediate value to the investments
in blockchain technology with mutual benefits to all involved.
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Symbolic Security Analysis using the Tamarin
Prover
Cas Cremers

Oxford University

Abstract of Tutorial Talk
In this talk I will present the Tamarin Prover, an analysis tool for symbolic security analysis of systems. A prime example

of systems that fall within its scope are security protocols that are executed in the presence of an active attacker. Tamarins
state-of-the-art analysis of such systems requires dealing with unbounded replication of processes, loops, the prolific behaviour
of the attacker, and equational theories to model cryptographic operations as accurately as possible within the symbolic model.

This tutorial covers Tamarins system specification, execution model, and property specification language. I will demonstrate
how Tamarin can automatically analyse systems, and how its extensive interactive mode aids in the analysis of more complex
systems. Finally, I will touch upon Tamarins more advanced features and larger succesful case studies, such as the upcoming
TLS 1.3 internet standard.
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Coalition, intrigue, ambush, destruction and pride:
herding cats can be challenging.

Jade Alglave
University College London and Microsoft Research Cambridge

Abstract—Herding cats can lead to coalition (of cheetahs),
intrigue (of kittens), ambush (of tigers), destruction (of wild
cats) or pride (of lions). In this tutorial, I will present the cat
language to write consistency models as a set of constraints on the
executions of concurrent programs. A cat model can be executed
within the herd tool [3], which I will use during the tutorial.

Concurrent programming can be difficult: how are concur-
rent programs supposed to behave? Do they behave correctly
on exotic hardware? Formal consistency models can help
answer these questions. Unfortunately, very often, the con-
sistency models of the machines or operating systems we run
our software on are not precisely defined. Our software itself
may be written in languages whose concurrency semantics is
a work in progress. To try to remedy this, the past decade has
been quite rich in works aiming at describing the consistency
models of hardware [20], [5], [19], [18], [6], [7], [12], [13],
programming languages [10], [9], [8], [17] and more [11].

Most of these models belong to one of two formal styles:
they are operational or axiomatic models. Operational models
describe the executions of a concurrent program as sequences
of steps: for example, reading from memory or writing to a
store buffer. Axiomatic models describe executions as relations
over events which represent the semantics of instructions:
relations represent for example the order in which instructions
are executed, or who reads from where. Both styles have
advantages: operational models can be quite close to hardware
designs, thus becoming a good device to communicate with
hardware folks. Axiomatic models can be quite abstract, which
leads to concise models and efficient verification [2].

The cat language [7] is a domain-specific language which
allows the user to describe axiomatic consistency models as a
set of constraints on executions. It has been used to describe
hardware models such as ARMv7 and IBM Power [7], Nvidia
GPUs [1], HSA GPUs [4], C++ and OpenCL [8]. More
recently, ARM has released an official cat file as part of
their formalisation of their ARMv8 consistency model [15].
A cat model can be executed by the herd tool [3], to answer
questions about the semantics of concurrent code.

In this tutorial, I will present the cat language and the herd
tool. By the end of this tutorial, you should have the skills re-
quired to build several models amongst the following: Sequen-
tial Consistency [14], Total Store Order [20], IBM Power [7],
ARM [12], Nvidia GPUs [1], C++ [8] and Linux [16]. I hope
to make this tutorial interactive, using the herd tool. For this
to go smoothly, I would suggest downloading and installing
the herd tool from http://diy.inria.fr.
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Automated Formal Reasoning About AWS Systems
Byron Cook

Senior Principal Engineer, Amazon Web Services
Professor, University College London

Abstract of Invited Talk
Automatic and semiautomatic formal verification tools are now being developed and used within Amazon Web Services

(AWS) to find proofs that prove or disprove desired properties of key AWS components. In this session, we outline these
efforts and discuss how tools are used to play and then replay found proofs of desired properties when software artifacts or
networks are modified, thus helping provide security throughout the lifetime of the AWS system.
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Formal Methods in Industrial Dependable Systems
Design - The TTTech Example

Wilfried Steiner
TTTech

Abstract of Invited Talk
Over the last decades the field of dependable computer systems has gained tremendous significance in our modern society.

We rely on the dependability of automobiles, railways, airplanes, medical devices, critical infrastructures, like the electrical grid
or industrial production facilities, and many more. These dependable systems frequently implement non-trivial mechanisms, for
example, to coordinate between redundant components, and a guarantee of correctness of these mechanisms is therefore crucial
to avoid catastrophic incidents. Consequently, formal methods are frequently used in industrial dependable system design and
in this talk I will discuss the various aspects in which formal methods are and have been deployed for specification, verification,
and configuration at TTTech for critical networking products.
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Hardware Model Checking Competition 2017
Armin Biere Tom van Dijk Keijo Heljanko

armin.biere@jku.at tom.vandijk@jku.at keijo.heljanko@aalto.fi
Johannes Kepler University Linz, Austria Aalto University, Finland

The Hardware Model Checking Competition (HWMCC)
2017 affiliated to the International Conference on Formal
Methods in Computer Aided Design (FMCAD) in 2017 in
Vienna was the 9th competitive event for hardware model
checkers we organized. After HWMCC’15 affiliated with
FMCAD’15 in Austin, the competition took a break in 2016.

The competition has its roots in the model checking com-
munity with focus on hardware verification, a former central
theme in International Conference on Computer-Aided Verifi-
cation (CAV) and the first three incarnations of the competition
in 2007, 2008 and 2010 were affiliated with CAV. This topic
is now more at home at FMCAD, the primary place for
research in formal methods for hardware. Accordingly the
hardware model checking competition stays with FMCAD
(2011,2012,2013,2015,2017) except when CAV is part of the
Federated Logic Conference (FLoC) as in 2014 [4].

The goal in organizing this competition is to keep up the
driving force in improving hardware model checkers. We
also want to motivate implementors to present their work
to a broader audience. Another important objective is to
collect realistic benchmarks and to make them available to the
research community. Both academia and industry is invited to
submit solvers and benchmarks. Competiting model checkers
have to solve benchmarks in the AIGER format [2], [3].

The competition in 2017 had multiple tracks. The most
important track was the single safety property track (SINGLE).
As in previous years we also had a (single) liveness property
track (LIVE), and a deep bound track (DEEP), but no multiple
property track. The winner of the deep bound track received
an award of $500 sponsored by Oski Technology.

The tracks were run in the same way as in the previous four
incarnations of the competition, except that we were using our
new cluster running Ubuntu 16.04.2 64 bit. Each cluster node
had two Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPUs
and 128 GB of main memory.

Each solver had full access to both processors on one node,
thus combined 16 cores (32 virtual cores) and 128 GB of main
memory. Accordingly a memory limit of 120GB was enforced.
As in the last competition in 2015 affiliated to FMCAD’15 we
were further using a time limit of 1 hour of wall clock-time.

Also as before the number of submissions was restricted to
at most two model checkers per submitter and model checkers
were required to produce witnesses in the SINGLE track.
These witnesses were checked by the AIGSIM tool, which
is part of the AIGER tools [1].

Supported by Austrian Science Fund (FWF) NFN S11408-N23 (RiSE)

Except for the new hardware, competition rules, as well
as input and output formats [2] did not change compared to
previous competitions. As starting with HWMCC’12 model
checkers competing in the DEEP bound track were requested
to print the bounds reached during running in the SINGLE
track. In the SINGLE track model checkers were required
to print witnesses traces if a bad state was claimed to be
reachable. These witnesses serve as certificates for satisfiable
bad state properties and were checked for correctness.

Again as in HWMCC’14 and HWMCC’15, in order to avoid
glitches in interpreting the format, the SINGLE track only used
AIGER pre 1.9 single property benchmarks [2], with the single
bad state property encoded as an output (MILOA header with
O = 1). All latches were assumed to be initialized implicitly
to zero as it is the default in the pre 1.9 AIGER format [2].

There was no change in the LIVE track which of course
used the AIGER 1.9 format [3] nor in the DEEP track. Solvers
intended to participate in the DEEP track were run in the
SINGLE track and were expected to print reached bounds as
in previous years (see for instance HWMCC’12).

In the previous competition HWMCC’15 we were proposing
to completely switch to the AIGER 1.9 format [3] (also in
the SINGLE track), add back the multiple property track,
provide support for fuzzing and delta-debugging, and last but
not least to establish a word-level track. However, due to lack
of resources, we had to postpone these changes again.
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The FMCAD 2017 Graduate Student Forum
Keijo Heljanko

Aalto University, Finland

Abstract—The FMCAD Student Forum provides a platform
for graduate students at any career stage to introduce their
research to the wider Formal Methods community, and solicit
feedback. In 2017, the event took place in Vienna, Austria, as
integral part of the FMCAD conference. Thirteen students were
invited to give a short talk and present a poster illustrating
their work. The presentations covered a broad range of topics
in the field of verification, such as automated reasoning, model
checking of hardware, software, as well as parameterized systems,
verification of concurrent programs, and checking of floating
point properties.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2017 Graduate Student
Forum follows the tradition of its predecessors, which took
place in Mountain View, CA, USA in 2016 [1], Austin, Texas,
USA in 2015 [2], Lausanne, Switzerland in 2014 [3], and in
Portland, Oregon, USA in 2013 [4].

Graduate students were invited to submit short reports
describing their ongoing research in the scope of the FMCAD
conference. Based on the reviews provided by the organizing
committee, 13 high quality submissions were accepted. The
reviews focused on the novelty of the work, the technical
maturity of the submission, and the quality and soundness
of the presentation. The presentations covered a broad range
of topics in the field of verification, such as automated
reasoning, model checking of hardware, software, as well as
parameterized systems, verification of concurrent programs,
and checking of floating point properties.

The following contributions have been accepted:
• Yulia Demyanova, Thomas Pani, Helmut Veith and Flo-

rian Zuleger: Empirical Software Metrics for Benchmark-
ing of Verification Tools

• Sepideh Asadi, Karine Even-Mendoza, Grigory
Fedyukovich, Antti Hyvärinen, Hana Chockler and
Natasha Sharygina: HiFrog: Interpolation-based
Software Verification using Theory Refinement

• Thanh Hai Tran and Jure Kukovec: Pattern-based ab-
stractions for parameterized model checking of dis-
tributed algorithms

• David Declerck, Sylvain Conchon and Fatiha Zaidi: A
Backward Reachability Algorithm for Parameterized Sys-
tems on Weak Memory

• William Hallahan, Ruzica Piskac and Anton Xue: Build-
ing a Symbolic Execution Engine for Haskell

• Samuel Pastva: Discrete Bifurcation Analysis of Reactive
Systems

• Rohit Dureja and Kristin Yvonne Rozier: From One To
Many: Checking A Set Of Models

• Adrian Rebola Pardo: Satisfiability-preserving Reasoning
in Software Verification

• Ákos Hajdu and Zoltan Micskei: Towards Using Multiple
Counterexamples for Abstraction Refinement

• Yiji Zhang, Lenore Zuck and Kedar Namjoshi: An LLVM
Refinement Checker and its Applications

• Andreas Fellner: Model-based, mutation-driven test case
generation via heuristic-guided branching search

• Lucas Martinelli Tabajara: Synthesis via CNF Decompo-
sition

• Jaideep Ramachandran: Unified Solver Strategy for
Floating-Point

The 2017 student forum also featured a Best Contribution
Award (based on the quality of the submission, the poster,
and the presentation), announced during the conference and
publicized on the FMCAD website.1

The Student Forum would not have been possible without
the excellent contributions of the student authors. The gener-
ous support of the National Science Foundation and FMCAD’s
sponsors enabled us to subsidize the travel cost of the partici-
pating students. The help and advice of Georg Weissenbacher,
FMCAD 2017 General and PC chair who organized the earlier
FMCAD 2015 student forum was invaluable. Also help from
Warren Hunt and Lindy Aleshire was instrumental in providing
and administering the NSF grant for subsidizing travel costs.
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Abstract—We introduce goSAT, a fast and publicly available
SMT solver for the theory of floating-point arithmetic. We build
on the recently proposed XSat solver [1] which casts the satisfi-
ability problem to a corresponding global optimization problem.
Compared to XSat, goSAT is an integrated tool combining
JIT compilation of SMT formulas and NLopt, a feature-rich
mathematical optimization backend. We evaluate our tool using
several optimization algorithms and compare it to XSat, Z3, and
MathSat. Our evaluation demonstrates promising results.

Index Terms—satisfiability modulo theories, decision proce-
dure, floating-point, global optimization

I. INTRODUCTION

Automated bit-precise reasoning over floating-point arith-
metic (FPA) is essential for a wide range of applications. For
instance, test generation and program synthesis. SMT solvers
are often used as a backend to implement such reasoning.
Improving the support for FPA theory has been tackled in
several recent works [2]–[5]. Despite these advances, the
performance of SMT solvers regarding FPA theory still suffers
from relatively poor scalability. Moreover, clauses involving
common non-linear functions, e.g., trigonometric, remain par-
ticularly difficult. In fact, modern SMT solvers are based on
DPLL(T) as their central framework. Therefore, their core
SAT engines can be ineffective in deducing facts that might
otherwise be “obvious” at the theory level [3]. In the following,
we elaborate on two key challenges raised by FPA theory.

Standard complexity. The IEEE 754-2008 standard defines
seven core operations that need to be correctly rounded,
namely, {+,-,*,/,rem,sqrt,fma}. The result of a core oper-
ation is affected by the rounding mode, five defined modes, and
whether it involves a special number {NaN, ±∞}. Also, rules
for type conversion and exception handling, e.g., overflow,
need to be considered.

Tunable approximation. FPA is an approximation of reals
by definition. In practice, FPA implementations are tunable
depending on the required performance and precision. For
example, the flag -ffast-math instructs GCC to enable FP
optimizations that are less precise. Moreover, a function like
sin might be evaluated using a software library or a single
hardware instruction with potentially different results [6].
Further, function sin might even be evaluated at compile time
with correct rounding1. Therefore, sound reasoning about FPA

1GCC supports compile-time evaluation of built-in functions that have
constant arguments since v4.3: https://gcc.gnu.org/gcc-4.3/changes.html

should take into account the semantics of various approximate
implementations of a single function. This can overwhelm
SMT solvers particularly in the case of non-linear functions.

To address this, Fu et al. recently proposed XSat [1], an
SMT solver for FPA based on mathematical optimization.
XSat works by transforming a quantifier-free SMT instance
F(x⃗), where x⃗ ∈ FPn, to a corresponding objective function
G(x⃗). The latter represents a distance value that needs to be
minimized by Global Optimization (GO) techniques [7]. The
goal is to find an assignment α satisfying G(α) = 0. The
key advantage of XSat is that it doesn’t need to explicitly
encode FPA semantics. Rather, it can guide its reasoning
purely by observing the outputs of G(x⃗). Consequently, it can
generally reason about any executable function. The original
implementation of XSat consists of (1) a code generator that
generates G(x⃗) in C language, and (2) a Python tool that
invokes Basin Hopping (BH) [8], a GO algorithm built in
Scipy2, to find a satisfying α. Note that the C code of G(x⃗)
needs to be compiled as a C extension to Python in a separate
step which makes XSat difficult to use.

In this work, we build on the ideas proposed in XSat. We
make a number of contributions. First, goSAT is an integrated
tool that generates the objective function G(x⃗) using Just-
in-Time (JIT) compilation and directly attempts to solve it
on-the-fly. Second, our backend is based on the feature-rich
non-linear optimization library NLopt [9]. In contrast, XSat is
restricted to the BH algorithm. Third, in addition to its native
solving mode, goSAT has a code generation mode similar to
XSat. This enables experimenting with various optimization
libraries that are not yet natively supported by goSAT. Fourth,
we evaluate our tool on the same benchmarks used in XSat. We
employ various GO algorithms available in NLopt and com-
pare them with the BH algorithm. Finally, we make our tool
publicly available at (https://github.com/abenkhadra/gosat).

II. BACKGROUND

We discuss here the theoretical basis of goSAT. Given an
SMT formula F(x⃗), where x⃗ ∈ FPn, we need to systemati-
cally derive a corresponding objective function G(x⃗). Evalu-
ating G(x⃗) for a particular assignment α returns a distance
value that becomes smaller as we get closer to the global
minimum at zero. In order to establish the equivalence between

2Popular Python library for scientific computing: https://www.scipy.org/
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Fig. 1. goSAT architecture

satisfiability of F(x⃗) and global optimization of G(x⃗), the
function G(x⃗) must satisfy (R1) ∀x⃗ ∈ FPn,G(x⃗) ≥ 0 and
(R2) G(α) = 0 ⇔ α |= F(x⃗).

Consider F(x⃗) to be in the language Lfp defined over
quantifier-free FPA. Our Lfp is slightly modified to that found
in XSat, namely,

Boolean constraints π := ¬π′ | π1 ∧ π2 | π1 ∨ π2 | e1 ▷◁ e2

Arithmetic expressions e := c | x | e1 ⊗ e2 | H(e1, ...en)

where ▷◁∈ {<, ≤, >, ≥, ==, ̸=}, ⊗ ∈ {+, −, ∗, /}, c is a
floating-point constant, x is a variable, and H can be any
user-defined function, e.g., logarithm.

Let Fc(x⃗) be F(x⃗) after eliminating ¬ using De-Morgan’s
law and transforming it to CNF,

Fc(x⃗)
def
=

∧

i∈I

∨

j∈J

ei,j ▷◁i,j e′
i,j (1)

we derive G(x⃗) from Fc(x⃗) as follows:

G(x⃗)
def
=

∑

i∈I

∏

j∈J

d(▷◁i,j , ei,j , e
′
i,j) (2)

where,

d(≤, e1, e2)
def
= e1 ≤ e2 ? 0 : θ(e1, e2) (3)

d(<, e1, e2)
def
= e1 < e2 ? 0 : θ(e1, e2) + 1 (4)

d(≥, e1, e2)
def
= e1 ≥ e2 ? 0 : θ(e1, e2) (5)

d(>, e1, e2)
def
= e1 > e2 ? 0 : θ(e1, e2) + 1 (6)

d(==, e1, e2)
def
= θ(e1, e2) (7)

d( ̸=, e1, e2)
def
= e1 ̸= e2 ? 0 : 1 (8)

Function θ(x1, x2) represents the distance between bit repre-
sentations of x1 and x2. It has the following key properties:

∀x1, x2 ∈ FP,θ(x1, x2) ≥ 0 (9)
∀x1, x2 ∈ FP,θ(x1, x2) = 0 ⇒ x1 = x2 (10)
∀x1, x2 ∈ FP,θ(x1, x2) = θ(x2, x1) (11)

From equations (2) to (11), it can be shown that G(x⃗)
satisfies requirements R1 and R2. Consequently, goSAT pro-
vides a sound method for proving FPA satisfiability. However,
completeness of goSAT depends on the applied GO algorithm.

Generally, GO algorithms can be classified into determin-
istic [10] and stochastic [11]. The former are complete by
providing a guarantee of finding a global minimum within a
finite time. However, their applicability usually depends on the
type of considered function, e.g., convex functions. Also, they
often require the user to provide first and/or second derivatives
(gradient and Hessian, respectively). In comparison, stochastic
methods are more flexible by being applicable to functions
as black box. This comes at the expense of not guaranteeing
convergence to global minimum.

III. IMPLEMENTATION DETAILS

Now we discuss the implementation of goSAT. We begin
with its native solving mode. Then, we move to discuss
its code generation mode and helper utilities, namely, NL
solver and BH solver. Finally, we discuss our choice
of optimization algorithms and their parameter tuning. Our
discussion will be based on Fig. 1. Highlighted components
are part of our contribution. Our implementation language is
C++ except for the BH solver which is written in Python.

A. Native solving mode

This is the default mode of goSAT where it accepts an SMT
file as input. The Analyzer parses the input file using the fa-
cilities of libz3 to get an expression (expr) representing the
formula. Then, the Analyzer constructs an LLVM module
that contains the objective function G(x⃗). The latter is passed
to a JIT generator that traverses expr in a post-order
manner in order to generate the corresponding LLVM IR. The
translation process is syntax-directed resembling equations (2)
to (11) discussed previously. Next, function G(x⃗) is just-in-
time compiled (jitted) and optimized using libmcjit from
the LLVM framework. A pointer to the jitted G(x⃗) is provided
to our Backend alongside other required data structures.
Finally, the Backend configures and invokes libnlopt on
function G(x⃗) in order to find a satisfying model.

B. Code generation mode

This tool mode is similar to what is implemented in XSat.
We developed it in order to facilitate experimentation with
GO algorithms that we still do not natively support in goSAT.
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Fig. 2. Topologies of (a) levy function compared to (b) f23 function generated by goSAT. Functions generated by goSAT are non-smooth, however, they
exhibit more regularity which is a key property for goSAT to work in practice.

Additionally, we provide two utilities, NL solver and BH
solver, to demonstrate its use. The former depends on
NLopt as its backend while the latter uses Scipy as its backend.
Note that Scipy currently supports only one GO algorithm,
namely, basin hopping. We were able of reproducing (most)
results published in XSat using our BH Solver.

This goSAT mode is mainly implemented in the code
generation component, refer to Fig. 1, which receives an
expr after parsing the input formula by Analyzer. Code
generation is realized using syntax-directed translation similar
to the native solving mode. The output of this mode are C code
and header files. These need to be compiled to obtain a shared
library libgofuncs. Additionally, goSAT generates an api
text file which is required to properly call the functions in
libgofuncs. The api file, in its simplest forms, lists the
name and dimension (variable count) of each G(x⃗).

C. Optimization algorithms

We decided to use NLopt as our backend since it is publicly
available and supports several derivative-free non-linear GO
algorithms. There are, however, other open source packages
for large-scale non-linear optimization, e.g., IpOpt [12]. Un-
fortunately, they generally have restrictions regarding the types
of supported functions and the availability of derivatives. Note
that open-source derivative-free GO algorithms still lack in
performance compared to commercial implementations [13].

Our next step was to profile various GO algorithms im-
plemented in NLopt to experiment with their efficiency and
reliability. To this end, we chose several standard functions
that have multiple local minima, e.g., levy, griewank,
and rastrigin. These functions are commonly used for
benchmarking GO algorithms [14]. We ended up choosing
four promising derivative-free algorithms, namely, the de-
terministic algorithm DIRECT and the stochastic algorithms
CRS2, ISRES, and MLSL3. Note that algorithm parameters
play a crucial rule in convergence to global minima. For

3Please refer to NLopt algorithm documentation for further details.

example, consider the levy function depicted in Fig. 2a
which has a global minimum G(x⃗) = 0 for x⃗ = (1, 1).
Basin Hopping (BH) with default parameters and an initial
guess x = (−8.2, 1) was unable of “hopping” over the barrier
and was trapped at a local minimum 6.056. Convergence to
the global minimum required increasing the Monte-Carlo step
size to 2.0. Fortunately, the transformation implemented in
goSAT produces functions with more regularity. For example,
consider formula f23 depicted in Fig. 2b which is taken from
the Griggio benchmarks [15]. BH quickly converged to the sat-
isfiable area using default parameters despite setting an initial
guess that is far away at x⃗ = (−109,−109). Actually, it is easy
see, from equations (3)-(8), that G(x⃗) generated by goSAT are
non-smooth due to the use of conditional statements. However,
they exhibit some regular structure that makes them easier to
solve compared to standard GO benchmarking functions.

IV. EVALUATION

We evaluated goSAT on the entire Griggio benchmark set
(214 instances). The GO algorithms used in the evaluation
are DIRECT, CRS2, ISRES, and MLSL. In order to draw
a comparison with XSat (BH algorithm), we used goSAT
to generate a libgofuncs library representing the same
benchmark instances. Then, we provided libgofuncs as
input to our BH solver.

We “reasonably” tuned algorithm parameters in order to
provide a fair comparison. The initial guess for all algorithms
was set to zeros, step size to 0.5, and timeout to 600s. Each
algorithm was executed once per instance. This makes BH
solver achieve slightly different results to those reported
in XSat. The latter uses a restart strategy using multiple initial
guesses. Note that native goSAT has a small extra overhead
compared to NL solver since it needs first to parse and JIT
the input formula. We draw a comparison with Z3 v4.5 and
MathSat v5.3.14. Both solvers were used with their default
parameters. Experiments were conducted on a Linux machine
with 8 GB RAM and Intel R⃝ Core i7 processors.
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TABLE I
EVALUATION RESULTS

sat unsat timeout errors avg. time

CRS2 91 123 0 0 2.60

ISRES 88 126 0 0 2.89

BH 89 113 0 12 4.43

MLSL 56 116 0 42 5.30

DIRECT 45 169 0 0 13.60

MathSat 100 68 46 0 55.54

Z3 85 60 65 4 71.39

Results are summarized in Tab. I. We provide the number
of sat, unsat, timeout, and error instances together
with the average query time in seconds (excluding timeout and
error instances). Some GO algorithms faced numerical errors,
e.g., round-off. Z3 encountered 4 out-of-memory exceptions.
In the case of goSAT, error instances can be considered unsat
since GO algorithms are generally incomplete. We used Z3 to
externally validate all sat models returned by goSAT.

Our results provide a rough comparison since algorithm
parameters can be tuned further. For instance, using the same
function evaluation limit of 5×105, the deterministic DIRECT
algorithm needed more time and found fewer sat instances
compared to the stochastic CRS2. Fig. 3 compares the solving
time of BH algorithm to CRS2 and DIRECT (fastest and
slowest in goSAT respectively). Note that the performance of
DIRECT varies relatively widely across the benchmarks. Also,
BH needed a maximum of 488s for one instance while CRS2
was able to respond in about 25% of that time at most.

Overall, GO algorithms can provide a viable alternative to
conventional SMT solvers for FPA particularly in the case
of formulas involving non-linear functions. Moreover, they
can assist them in special applications, e.g., in Optimization-
Modulo-Theory (OMT) [16], [17]. Note, however, that SMT
solvers often need to reason about multiple theories which is
still not possible in goSAT. The theory of quantifier-free bit-
vectors (BV) can be particularly relevant in combination with
FPA in the domains of software verification and synthesis.
Recently, Fröhlich et al. [18] demonstrated promising results
in applying stochastic search for solving BV satisfiability
directly on the theory level. This provides potential ideas for
combining BV and FPA to be solved using stochastic search.

V. CONCLUSION

We introduced goSAT, an SMT solver for the theory of
FPA. In contrast to XSat, goSAT is capable of natively solving
SMT formulas and is publicly available. Unlike conventional
solvers, goSAT is based on mathematical optimization which
enables it to reason, in principle, about any executable func-
tion. There are, however, several areas for future improvement.
Most notably, we plan to exploit the particular structure of
G(x⃗) generated by goSAT in order to improve solving effec-
tiveness. Also, our restriction to derivative-free GO algorithms
might be too strict. Relaxing this restriction might be possible
using automatic differentiation techniques.
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Fig. 3. Solving time of CRS2 and DIRECT compared to BH used in XSat.
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Abstract—State-of-the-art static analysis tools for verifying
finite-precision code compute worst-case absolute error bounds
on numerical errors. These are, however, often not a good esti-
mate of accuracy as they do not take into account the magnitude
of the computed values. Relative errors, which compute errors
relative to the value’s magnitude, are thus preferable. While
today’s tools do report relative error bounds, these are merely
computed via absolute errors and thus not necessarily tight or
more informative. Furthermore, whenever the computed value
is close to zero on part of the domain, the tools do not report
any relative error estimate at all. Surprisingly, the quality of
relative error bounds computed by today’s tools has not been
systematically studied or reported to date.

In this paper, we investigate how state-of-the-art static tech-
niques for computing sound absolute error bounds can be
used, extended and combined for the computation of relative
errors. Our experiments on a standard benchmark set show that
computing relative errors directly, as opposed to via absolute
errors, is often beneficial and can provide error estimates up
to six orders of magnitude tighter, i.e. more accurate. We also
show that interval subdivision, another commonly used technique
to reduce over-approximations, has less benefit when computing
relative errors directly, but it can help to alleviate the effects of
the inherent issue of relative error estimates close to zero.

I. INTRODUCTION

Numerical software, common in embedded systems or sci-
entific computing, is usually designed in real-valued arith-
metic, but has to be implemented in finite precision on digital
computers. Finite precision, however, introduces unavoidable
roundoff errors which are individually usually small, but which
can accumulate and affect the validity of computed results. It
is thus important to compute sound worst-case roundoff error
bounds to ensure that results are accurate enough - especially
for safety-critical applications. Due to the unintuitive nature of
finite-precision arithmetic and its discrepancy with continuous
real arithmetic, automated tool support is essential.

One way to measure worst-case roundoff is absolute error:

errabs = max
x∈I

∣∣∣f(x)− f̂(x̂)
∣∣∣ (1)

where f and x denote a possibly multivariate real-valued
function and variable respectively, and f̂ and x̂ their finite-
precision counter-parts. Note that absolute roundoff errors are
only meaningful on a restricted domain, as for unrestricted
x the error would be unbounded in general. In this paper, we
consider interval constraints on input variables, that is for each
input variable x ∈ I = [a, b], a, b ∈ R.

Furthermore, we focus on floating-point arithmetic, which
is a common choice for many finite-precision programs, and

for which several tools now exist that compute absolute errors
fully automatically for nonlinear straight-line code [1]–[4].

Absolute errors are, however, not always an adequate mea-
sure of result quality. Consider for instance an absolute error
of 0.1. Whether this error is small and thus acceptable for
a computation depends on the application as well as the
magnitude of the result’s value: if |f(x)| � 0.1, then the error
may be acceptable, while if |f(x)| ≈ 0.1 we should probably
revise the computation or increase its precision. Relative error
captures this relationship:

errrel = max
x∈I

∣∣∣∣∣
f(x)− f̂(x̂)

f(x)

∣∣∣∣∣ (2)

Note that the input domain needs to be restricted also for
relative errors.

Today’s static analysis tools usually report absolute as well
as relative errors. The latter is, however, computed via absolute
errors. That is, the tools first compute the absolute error and
then divide it by the largest function value:

errrel_approx =
maxx∈I

∣∣∣f(x)− f̂(x̂)
∣∣∣

minx∈I |f(x)|
(3)

Clearly, Equation 2 and Equation 3 both compute sound
relative error bounds, but errrel_approx is an over-approximation
due to the loss of correlation between the nominator and
denominator. Whether this loss of correlation leads to coarse
error bounds in practice has, perhaps surprisingly, not been
studied yet in the context of automated sound error estimation.

Beyond curiosity, we are interested in the automated compu-
tation of relative errors for several reasons. First, relative errors
are more informative and often also more natural for user
specifications. Secondly, when computing sound error bounds,
we necessarily compute over-approximations. For absolute
errors, the over-approximations become bigger for larger input
ranges, i.e. the error bounds are less tight. Since relative errors
consider the range of the expression, we expect these over-
approximations to be smaller, thus making relative errors more
suitable for modular verification.

One may think that computing relative errors is no more
challenging than computing absolute errors; this is not the case
for two reasons. First, the complexity of computing relative
errors is higher (compare Equation 1 and Equation 2) and
due to the division, the expression is now nonlinear even
for linear f . Both complexity and nonlinearity have already
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been challenging for absolute errors computed by automated
tools, usually leading to coarser error bounds. Furthermore,
whenever the range of f includes zero, we face an inherent
division by zero. Indeed, today’s static analysis tools report no
relative error for most standard benchmarks for this reason.

Today’s static analysis tools employ a variety of differ-
ent strategies (some orthogonal) for dealing with the over-
approximation of worst-case absolute roundoff errors due to
nonlinear arithmetic: the tool Rosa uses a forward dataflow
analysis with a linear abstract domain combined with a nonlin-
ear decision procedure [3], Fluctuat augments a similar linear
analysis with interval subdivision [1], and FPTaylor chooses
an optimization-based approach [2] backed by a branch-and-
bound algorithm.

In this paper, we investigate how today’s methods can
be used, extended and combined for the computation of
relative errors. To the best of our knowledge, this is the
first systematic study of fully automated techniques for the
computation of relative errors. We mainly focus on the issue
of computing tight relative error bounds and for this extend
the optimization based approach for computing absolute errors
to computing relative errors directly and show experimentally
that it often results in tighter error bounds, sometimes by up
to six orders of magnitude. We furthermore combine it with
interval subdivision (we are not aware of interval subdivision
being applied to this approach before), however, we note that,
perhaps surprisingly, the benefits are rather modest.

We compare this direct error computation to forward anal-
ysis which computes relative errors via absolute errors on a
standard benchmark set, and note that the latter outperforms
direct relative error computation only on a single univariate
benchmark. On the other hand, this approach clearly benefits
from interval subdivision.

We also observe that interval subdivision is beneficial for
dealing with the inherent division by zero issue in relative error
computations. We propose a practical (and preliminary) solu-
tion, which reduces the impact of potential division-by-zero’s
to small subdomains, allowing our tool to compute relative
errors for the remainder of the domain. We demonstrate on
our benchmarks that this approach allows our tool to provide
more useful information than state-of-the-art tools.

Contributions:

• We extend an optimization-based approach [2] for bound-
ing absolute errors to relative errors and thus provide the
first feasible and fully automated approach for computing
relative errors directly.

• We perform the first experimental comparison of different
techniques for automated computation of sound relative
error bounds.

• We show that interval subdivision is beneficial for re-
ducing the over-approximation in absolute error compu-
tations, but less so for relative errors computed directly.

• We demonstrate that interval subdivision provides a prac-
tical solution to the division by zero challenge of relative
error computations for certain benchmarks.

We have implemented all techniques within the tool Daisy [5],
which is available at https://github.com/malyzajko/daisy.

II. BACKGROUND

We first give a brief overview over floating-point arithmetic
as well as state-of-the-art techniques for automated sound
worst-case absolute roundoff error estimation.

A. Floating-Point Arithmetic

The error definitions in section I include a finite-precision
function f̂(x̂) which is highly irregular and discontinuous and
thus unsuitable for automated analysis. We abstract it follow-
ing the floating-point IEEE 754 standard [6], by replacing
every floating-point variable, constant and operation by:

x� y = (x ◦ y)(1 + e) + d,

x̃ = x(1 + e) + d
√
x◦ =
√
x(1 + e) + d

(4)

where � ∈ {⊕,	,⊗,�} and ◦ ∈ {+,−,×, /} are floating-
point and real arithmetic operations, respectively. e is the
relative error introduced by rounding at each operation and is
bounded by the so-called machine epsilon |e| ≤ εM . Denor-
mals (or subnormals) are values with a special representation
which provide gradual underflow. For these, the roundoff error
is expressed as an absolute error d and is bounded by δM ,
(for addition and subtraction d = 0). This abstraction is valid
in the absence of overflow and invalid operations resulting
in Not a Number (NaN) values. These values are detected
separately and reported as errors. In this paper, we consider
double precision floating-point arithmetic with εM = 2−53 and
δM = 2−1075. Our approach is parametric in the precision, and
thus applicable to other floating-point types as well.

Using this abstraction we replace f̂(x̂) with a function
f̃(x, e, d), where x are the input variables and e and d the
roundoff errors introduced for each floating-point operation. In
general, x, e and d are vector-valued, but for ease of reading
we will write them without vector notation. Note that our
floating-point abstraction is real-valued. With this abstraction,
we and all state-of-the-art analysis tools approximate absolute
errors as:

errabs ≤ max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣f(x)− f̃(x, e, d)
∣∣∣ (5)

B. State-of-the-art in Absolute Error Estimation

When reviewing existing automated tools for absolute
roundoff error estimation, we focus on their techniques for
reducing over-approximations due to nonlinear arithmetic in
order to compute tight error bounds.

Rosa [3] computes absolute error bounds using a forward
data-flow analysis and a combination of abstract domains.
Note that the magnitude of the absolute roundoff error at
an arithmetic operation depends on the magnitude of the
operation’s value (this can easily be seen from Equation 4),
and these are in turn determined by the input parameter ranges.
Thus, Rosa tracks two values for each intermediate abstract
syntax tree node: a sound approximation of the range and
the worst-case absolute error. The transfer function for errors
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uses the ranges to propagate errors from subexpressions and to
compute the new roundoff error committed by the arithmetic
operation in question.

One may think that evaluating an expression in interval
arithmetic [7] and interpreting the width of the resulting
interval as the error bound would be sufficient. While this
is sound, it computes too pessimistic error bounds, especially
if we consider relatively large ranges on inputs: we cannot
distinguish which part of the interval width is due to the input
interval or due to accumulated roundoff errors. Hence, we need
to compute ranges and errors separately.

Rosa implements different range arithmetics with differ-
ent accuracy-efficiency tradeoffs for bounding ranges and
errors. To compute ranges, Rosa offers a choice between
interval arithmetic, affine arithmetic [8] (which tracks linear
correlations between variables) and a combination of interval
arithmetic with a nonlinear arithmetic decision procedure. The
latter procedure first computes the range of an expression
in standard interval arithmetic and then refines, i.e. tightens,
it using calls to the nlsat [9] decision procedure within the
Z3 SMT solver [10]. For tracking errors, Rosa uses affine
arithmetic; since roundoff errors are in general small, tracking
linear correlations is in general sufficient.

Fluctuat [1] is an abstract interpreter which separates er-
rors similarly to Rosa and which uses affine arithmetic for
computing both the ranges of variables and for the error
bounds. In order to reduce the over-approximations introduced
by affine arithmetic for nonlinear operations, Fluctuat uses
interval subdivision. The user can designate up to two variables
in the program whose input ranges will be subdivided into
intervals of equal width. The analysis is performed separately
and the overall error is then the maximum error over all
subintervals. Interval subdivision increases the runtime of the
analysis significantly, especially for multivariate functions, and
the choice of which variables to subdivide and by how much
is usually not straight-forward.

FPTaylor, unlike Daisy and Fluctuat, formulates the round-
off error bounds computation as an optimization problem,
where the absolute error expression from Equation 1 is to
be maximized, subject to interval constraints on its parame-
ters. Due to the discrete nature of floating-point arithmetic,
FPTaylor optimizes the continuous, real-valued abstraction
(Equation 5). However, this expression is still too complex
and features too many variables for optimization procedures
in practice, resulting in bad performance as well as bounds
which are too coarse to be useful (see subsection V-A for our
own experiments). FPTaylor introduces the Symbolic Taylor
approach, where the objective function of Equation 5 is
simplified using a first order Taylor approximation with respect
to e and d:

f̃(x, e, d) = f̃(x, 0, 0) +
k∑

i=1

∂f̃

∂ei
(x, 0, 0)ei +R(x, e, d), (6)

R(x, e, d) =
1

2

2k∑

i,j=1

∂2f̃

∂yi∂yj
(x, p)yiyj +

k∑

i=1

∂f̃

∂di
(x, 0, 0)di

where y1 = e1, . . . , yk = ek, yk+1 = d1, . . . , y2k = dk and
p ∈ R2k such that |pi| ≤ εM for i = 1 . . . k and |pi| ≤ δ for
i = k+1 . . . 2k. The remainder term R bounds all higher order
terms and ensures soundness of the computed error bounds.

The approach is symbolic in the sense that the Taylor
approximation is taken wrt. e and d only and x is a symbolic
argument. Thus, f(x, 0, 0) represents the function point where
all inputs x remain symbolic and no roundoff errors are
present, i.e. e = d = 0 and f(x, 0, 0) = f(x). Choosing
e = d = 0 as the point at which to perform the Taylor
approximation and replacing ei with its upper bound εM
reduces the initial optimization problem to:

errabs ≤ εM max
x∈I

k∑

i=1

∣∣∣∣∣
∂f̃

∂ei
(x, 0, 0)

∣∣∣∣∣+MR (7)

where MR is an upper bound for the error term R(x, e, d)
(more details can be found in [2]). FPTaylor uses interval
arithmetic to estimate the value of MR as the term is second
order and thus small in general.

To solve the optimization problem in Equation 7, FPTaylor
uses rigorous branch-and-bound optimization. Branch-and-
bound is also used to compute the resulting real function f(x)
range, which is needed for instance to compute relative errors.
Real2Float [4], another tool, takes the same optimization-
based approach, but uses semi-definite programming for the
optimization itself.

III. BOUNDING RELATIVE ERRORS

The main goal of this paper is to investigate how to-
day’s sound approaches for computing absolute errors fare
for bounding relative errors and whether it is possible and
advantageous to compute relative errors directly (and not
via absolute errors). In this section, we first concentrate on
obtaining tight bounds in the presence of nonlinear arithmetic,
and postpone a discussion of the orthogonal issue of division
by zero to the next section. Thus, we assume for now that
the range of the function for which we want to bound relative
errors does not include zero, i.e. 0 /∈ f(x) and 0 /∈ f̃(x̃), for
x, x̃ within some given input domain. We furthermore consider
f to be a straight-line arithmetic expression. Conditionals and
loops have been shown to be challenging [11] even for absolute
errors and we thus leave their proper treatment for future work.
We consider function calls to be an orthogonal issue; they can
be handled by inlining, thus reducing to straight-line code, or
require suitable summaries in postconditions, which is also
one of the motivations for this work.

The forward dataflow analysis approach of Rosa and Fluc-
tuat does not easily generalize to relative errors, as it re-
quires intertwining the range and error computation. Instead,
we extend FPTaylor’s approach to computing relative errors
directly (subsection III-A). We furthermore implement interval
subdivision (subsection III-B), which is an orthogonal measure
to reduce over-approximation and experimentally evaluate
different combinations of techniques on a set of standard
benchmarks (subsection V-A).
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A. Bounding Relative Errors Directly

The first strategy we explore is to compute relative errors
directly, without taking the intermediate step through absolute
errors. That is, we extend FPTaylor’s optimization based
approach and maximize the relative error expression using the
floating-point abstraction from Equation 4:

max |g̃(x, e, d)| = max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣∣∣
f(x)− f̃(x, e, d)

f(x)

∣∣∣∣∣ (8)

The hope is to preserve more correlations between variables
in the nominator and denominator and thus obtain tighter and
more informative relative error bounds.

We call the optimization of Equation 8 without simpli-
fications the naive approach. While it has been mentioned
previously that this approach does not scale well [2], we
include it in our experiments (in subsection V-A) nonetheless,
as we are not aware of any concrete results actually being
reported. As expected, the naive approach returns error bounds
which are so large that they are essentially useless.

We thus simplify g̃(x, e, d) by applying the Symbolic Taylor
approach introduced by FPTaylor [2]. As before, we take the
Taylor approximation around the point (x, 0, 0), so that the first
term of the approximation is zero as before: g̃(x, 0, 0) = 0.
We obtain the following optimization problem:

max
x∈I,|ei|≤εM ,|di|≤δ

k∑

i=1

∣∣∣∣
∂g̃

∂ei
(x, 0, 0)ei

∣∣∣∣+MR

where MR is an upper bound for the remainder term
R(x, e, d). Unlike in Equation 7 we do not pull the factor ei
for each term out of the absolute value, as we plan to compute
tight bounds for mixed-precision in the future, where the upper
bounds on all ei are not all the same (this change does not
affect the accuracy for uniform precision computations).

Computing Upper Bounds: The second order remainder R
is still expected to be small, so that we use interval arithmetic
to compute a sound bound on MR (in our experiments R
is indeed small for all benchmarks except ‘doppler’). To
bound the first order terms ∂g̃

∂ei
we need a sound optimization

procedure to maintain overall soundness, which limits the
available choices significantly.

FPTaylor uses the global optimization tool Gelpia [12],
which internally uses a branch-and-bound based algorithm.
Unfortunately, we found it difficult to integrate because of
its custom interface. Furthermore, we observed unpredictable
behavior in our experiments (e.g. nondeterministic crashes and
substantially varying running times for repeated runs on the
same expression).

Instead, we use Rosa’s approach which combines interval
arithmetic with a solver-based refinement. Our approach is
parametric in the solver and we experiment with Z3 [10]
and dReal [13]. Both support the SMT-lib interface, provide
rigorous results, but are based on fundamentally different
techniques. Z3 implements a complete decision procedure
for nonlinear arithmetic [9], whereas dReal implements the
framework of δ-complete decision procedures. Internally, it is

based on a branch-and-bound algorithm and is thus in principle
similar to Gelpia’s optimization-based approach.

Note that the queries we send to both solvers are
(un)satisfiability queries, and not optimization queries. For
the nonlinear decision procedure this is necessary as it is
not suitable for direct optimization, but the branch-and-bound
algorithm in dReal is performing optimization internally. The
reason for our roundabout approach for dReal is that while
the tool has an optimization interface, it uses a custom input
format and is difficult to integrate. We expect this approach to
affect mostly performance, however, and not accuracy.

B. Interval Subdivision

The over-approximation committed by static analysis tech-
niques grows in general with the width of the input intervals,
and thus with the width of all intermediate ranges. Intuitively,
the worst-case error which we consider is usually achieved
only for a small part of the domain, over-approximating
the error for the remaining inputs. Additionally the domain
where worst-case errors are obtained may be different at
each arithmetic operation. Thus, by subdividing the input
domain we can usually obtain tighter error bounds. Note that
interval subdivision can be applied to any error estimation
approach. Fluctuat has applied interval subdivision to absolute
error estimation, but we are not aware of a combination with
the optimization-based approach, nor about a study of its
effectiveness for relative errors.

We apply subdivision to input variables and thus compute:

max
k∈[1...m]

(
max
xj∈Ijk

|g̃(x, e, d)|
)

(9)

where m is an number of subdivisions for each input in-
terval. That is, for multivariate functions, we subdivide the
input interval for each variable and maximize the error over
the Cartesian product. Clearly, the analysis running time is
exponential in the number of variables. While Fluctuat limits
subdivisions to two user-designated variables and a user-
defined number of subdivisions each, we choose to limit the
total number of analysis runs by a user-specified parameter
p. That is, given p, m (the desired number of subdivisions
for each variable), and n (number of input variables), the first
blogm(p−n)c variables’ domains are subdivided m times, with
larger input domains subdivided first. The remaining variable
ranges remain undivided.

C. Implementation

We implement all the described techniques in the tool
Daisy [5]. Daisy, a successor of Rosa [3], is a source-to-source
compiler which generates floating-point implementations from
real-valued specifications given in the following format:

def bspline3(u: Real): Real = {
require(0 <= u && u <= 1)

- u * u * u / 6.0
}

Daisy is parametric in the approach (naive, forward dataflow
analysis or optimization-based), the solver used (Z3 or dReal)
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and the number of subdivisions (including none). Any combi-
nation of these three orthogonal choices can be run by simply
changing Daisy’s input parameters.

Furthermore, Daisy simplifies the derivative expressions in
the optimization-based approach (x+ 0 = x, x× 1 = x, etc.).
Unsimplified expressions may affect the running time of the
solvers (and thus also the accuracy of the error bounds), as
we observed that the solvers do not necessarily perform these
otherwise straight-forward simplifications themselves.

Finally, to maintain soundness, we need to make sure
that we do not introduce internal roundoff errors during the
computation of error bounds. For this purpose we implement
all internal computations in Daisy using infinite-precision
rationals.

IV. HANDLING DIVISION BY ZERO

An important challenge arising while computing relative
errors is how to handle potential divisions by zero. State-
of-the-art tools today simply do not report any error at all
whenever the function range contains zero. Unfortunately, this
is not a rare occurrence; on a standard benchmark set for
floating-point verification, many functions exhibit division by
zero (see Table III for our experiments).

Note that these divisions by zero are inherent to the ex-
pression which we consider and are usually not due to over-
approximations in the analysis. Thus, we can only reduce the
effect of division by zero, but we cannot eliminate it entirely.
Here, we aim to reduce the domain for which we cannot
compute relative errors. Similar to how relative and absolute
errors are combined in the IEEE 754 floating-point model
(Equation 4), we want to identify parts of the input domain on
which relative error computation is not possible due to division
by zero and compute absolute errors. For the remainder of the
input domain, we compute relative errors as before.

We use interval subdivision (subsection III-B), attempting
to compute relative errors (with one of the methods described
before) on every subdomain. Where the computation fails due
to (potential) division by zero, we compute the absolute error
and report both to the user:

relError: 6.6614143807162e-16
On several sub-intervals relative error cannot be computed.
Computing absolute error on these sub-intervals.
For intervals (u -> [0.875,1.0]), absError: 9.66746937132909e-19

While the reported relative error bound is only sound for parts
of the domain, we believe that this information is nonetheless
more informative than either no result at all or only an absolute
error bound, which today’s tools report and which may suffer
from unnecessary over-approximations.

We realize that while this approach provides a practical
solution, it is still preliminary and can be improved in several
ways. First, a smarter subdivision strategy would be beneficial.
Currently, we divide the domain into equal-width intervals, and
vary only their number. The more fine-grained the subdivision,
the bigger part of the domain can be covered by relative
error computations, however the running time increases corre-
spondingly. Ideally, we could exclude from the relative error

computation only a small domain around the zeros of the
function f . While for univariate functions, this approach is
straight-forward (zeros can be, for instance, obtained with a
nonlinear decision procedure), for multivariate functions this
is challenging, as the zeros are not simple points but curves.
Secondly, subdivision could only be used for determining
which sub-domains exhibit potential division by zero. The
actual relative error bound computation can then be performed
on the remainder of the input domain without subdividing it.
This would lead to performance improvements, even though
the ‘guaranteed-no-zero’ domain can still consist of several
disconnected parts. Again, for univariate functions this is
a straight-forward extension, but non-trivial for multivariate
ones. Finally, we could compute maxxj∈Ijk

∣∣∣ f(x)−f̃(x,e,d)f(x)+ε

∣∣∣.
for some small ε, which is a standard approach in scientific
computing. It is not sound, however, so that we do not consider
it here.

V. EXPERIMENTAL EVALUATION

We compare the different strategies for relative error com-
putation on a set of standard benchmarks with FPTaylor
and the forward dataflow analysis approach from Rosa (now
implemented in Daisy) as representatives of state-of-the-art
tools. We do not compare to Fluctuat directly as the underlying
error estimation technique based on forward analysis with
affine arithmetic is very similar to Daisy’s. Indeed experiments
performed previously [2], [11] show only small differences
in computed error bounds. We rather choose to implement
interval subdivision within Daisy.

All experiments are performed in double floating-point
precision (the precision FPTaylor supports), although all tech-
niques in Daisy are parametric in the precision. The ex-
periments were performed on a desktop computer running
Debian GNU/Linux 8 64-bit with a 3.40GHz i5 CPU and
7.8GB RAM. The benchmarks bsplines, doppler, jetEngine,
rigidBody, sine, sqrt and turbine are nonlinear functions
from [3]; invertedPendulum and the traincar benchmarks are
linear embedded examples from [14]; and himmilbeau and
kepler are nonlinear examples from the Real2Float project [4].

A. Comparing Techniques for Relative Error Bounds

To evaluate the accuracy and performance of the different
approaches for the case when no division by zero occurs,
we modify the standard input domains of the benchmarks
whenever necessary such that the function ranges do not
contain zero and all tools can thus compute a non-trivial
relative error bound.

Table I shows the relative error bounds computed with the
different techniques and tools, and Table II the corresponding
analysis times. Bold marks the best result, i.e. tightest com-
puted error bound, for each benchmark. The column ‘Under-
approx’ gives an (unsound) relative error bound obtained with
dynamic evaluation on 100000 inputs; these values provide an
idea of the true relative errors. The ‘Naive approach’ column
confirms that simplifications of the relative error expression are
indeed necessary (note the exponents of the computed bounds).
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TABLE I
RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES

Bench-
mark

Under-
approx Daisy FPTaylor Naive

approach
Daisy

+ subdiv
DaisyOPT

Z3 dReal Z3+subdiv dReal+subdiv

U
ni

va
ri

at
e

bspline0 1.46e-15 4.12e-13 4.26e-13 5.11e+02 7.44e-14 3.00e-15 3.00e-15 3.00e-15 3.00e-15
bspline1 7.91e-16 2.54e-15 3.32e-15 4.16e-01 5.32e-15 3.22e-15 3.22e-15 3.22e-15 3.22e-15
bspline2 2.74e-16 1.11e-15 1.16e-15 5.22e-01 1.61e-15 8.92e-16 9.76e-16 8.92e-16 8.92e-16
bspline3 5.49e-16 2.46e-10 3.07e-10 5.12e+05 5.23e-11 6.66e-16 6.66e-16 6.66e-16 6.66e-16

sine 2.84e-16 8.94e-16 8.27e-16 4.45e-01 1.39e-15 7.66e-16 7.66e-16 7.66e-16 7.66e-16
sineOrder3 3.65e-16 1.04e-15 1.10e-15 1.39e-01 1.99e-15 8.94e-16 8.94e-16 8.94e-16 8.94e-16

sqroot 4.01e-16 1.04e-15 1.21e-15 1.02e+00 2.20e-15 1.02e-15 1.02e-15 1.02e-15 1.02e-15

M
ul

tiv
ar

ia
te

doppler 1.06e-15 2.08e-04 6.13e-07 2.09e+08 2.60e-05 1.93e-13 1.94e-13 1.93e-13 1.94e-13
himmilbeau 8.46e-16 6.55e-13 7.89e-13 6.69e+02 9.81e-15 6.54e-13 1.98e-15 7.05e-15 1.99e-15

invPendulum 3.74e-16 2.09e-11 2.48e-11 1.64e+00 1.22e-11 1.21e-15 1.35e-15 1.21e-15 1.52e-15
jet 1.45e-15 9.26e-15 7.53e-15 3.87e+00 1.40e-13 4.47e-15 5.12e-15 6.03e-15 6.51e-15

kepler0 4.39e-16 1.31e-12 1.64e-12 2.16e+03 3.63e-12 3.97e-12 2.39e-15 1.63e-15 2.64e-15
kepler1 7.22e-16 2.17e-11 2.59e-11 7.93e+04 8.70e-13 3.80e-11 1.29e-15 2.85e-13 1.71e-15
kepler2 5.28e-16 4.01e-10 5.65e-15 4.09e+05 1.35e-11 4.56e-10 2.42e-15 8.58e-12 2.26e-15

rigidBody1 4.49e-16 8.77e-11 1.14e-10 1.55e+00 2.50e-11 9.78e-16 1.27e-15 9.78e-16 1.46e-15
rigidBody2 5.48e-16 3.91e-12 4.73e-12 5.14e+03 1.77e-12 2.21e-15 2.33e-15 2.21e-15 2.96e-15
traincar_state8 2.72e-15 2.16e-13 2.69e-13 2.91e+02 2.16e-13 7.67e-14 2.72e-13 7.67e-14 2.50e-13
traincar_state9 8.11e-16 3.44e-13 4.31e-13 3.47e+02 1.91e-13 3.45e-14 4.15e-13 3.45e-14 2.38e-13

turbine1 5.79e-16 6.47e-13 1.48e-13 4.16e+02 6.81e-13 2.06e-15 3.07e-15 2.06e-15 3.90e-15
turbine2 1.03e-15 5.26e-15 4.25e-15 4.81e+00 1.66e-13 4.12e-15 4.30e-15 4.12e-15 4.33e-15
turbine3 7.41e-16 3.52e-13 7.43e-14 2.13e+02 3.91e-13 1.91e-14 1.92e-14 1.91e-14 1.93e-14

TABLE II
ANALYSIS TIME OF DIFFERENT TECHNIQUES FOR RELATIVE ERRORS ON BENCHMARKS WITHOUT DIVISION BY ZERO

Benchmark Daisy FPTaylor Naive
approach

Daisy
+ subdiv

DaisyOPT
Z3 dReal Z3 + subdiv dReal + subdiv

bsplines 6s 13s 13m 25s 0.34s 20s 25s 27s 30s
sines 5s 8s 13m 45s 0.42s 1m 4s 1m 21s 1m 8s 1m 9s

sqroot 3s 6s 6m 4s 0.15s 14s 12s 14s 14s

doppler 5s 2m 11s 2m 14s 1s 1m 59s 2m 35s 2m 58s 7m 28s
himmilbeau 9s 4s 5m 30s 0.36s 1m 50s 1m 16s 6m 15s 8m 5s

invPendulum 3s 5s 1m 31s 0.15s 7s 37s 25s 3m 54s
jet 20s 17s 19m 35s 7s 30m 40s 32m 24s 45m 31s 2 h 20m 49s

kepler 37s 39s 14m 41s 1s 3m 27s 16m 29s 12m 20s 27m 56s
rigidBody 11s 8s 10m 4s 0.39s 30s 1m 18s 1m 26s 8m 37s

traincar 10s 42s 8m 15s 1s 1m 1s 10m 43s 4m 7s 18m 35s
turbine 11s 28s 17m 25s 2s 5m 29s 11m 28s 12m 30s 42m 36s

total 1m 60s 5m 1s 1h 52m 28s 13s 46m 42s 1h 18m 45s 1h 27m 22s 4h 19m 53s

The last four columns show the error bounds when relative
errors are computed directly using the optimization based
approach (denoted ‘DaisyOPT’) from subsection III-A, with
the two solvers and with and without subdivisions. For subdi-
visions, we use m = 2 for univariate benchmarks, m = 8 for
multivariate and p = 50 for both as in our experiments these
parameters showed a good trade-off between performance and
accuracy. For most of the benchmarks we find that direct eval-
uation of relative errors computes tightest error bounds with
acceptable analysis times. Furthermore, for most benchmarks
Z3, resp. its nonlinear decision procedure, is able to compute
slightly tighter error bounds, but for three of our benchmarks
dReal performs significantly better, while the running times
are comparable.

Somewhat surprisingly, we note that interval subdivision
has limited effect on accuracy when combined with direct

relative error computation, while also increasing the running
time significantly.

Comparing against state-of-the-art techniques (columns
Daisy and FPTaylor), which compute relative errors via ab-
solute errors, we notice that the results are sometimes several
orders of magnitude less accurate than direct relative error
computation (e.g. six orders of magnitude for the bspline3
and doppler benchmarks).

The column ‘Daisy+subdiv’ shows relative errors computed
via absolute errors, using the forward analysis with subdivi-
sion (with the same parameters as above). Here we observe
that unlike for the directly computed relative errors, interval
subdivision is mostly beneficial.

Finally, for the experiments in Table I, we use as large input
domains as possible, without introducing result ranges which
include zero. When comparing relative error bounds computed
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for smaller and larger input domains, where a small input
domain means that the input intervals have smaller width, we
observe that relative errors computed directly usually scale
better than relative errors computed via absolute errors, i.e. the
over-approximation committed is smaller. For example, (for
space reasons only) for the doppler benchmark we obtain the
following relative errors:

Daisy (via absolute) relative err. directly
small input domain 1.48e-11 1.26e-15
large input domain 2.08e-04 1.93e-13

B. Handling Division by Zero

To evaluate whether interval subdivision is helpful when
dealing with the inherent division by zero challenge, we now
consider the standard benchmark set, with standard input
domains. Table III summarizes our results. We first note that
division by zero indeed occurs quite often, as the missing
results in the Daisy and FPtaylor columns show.

The last three columns show our results when using interval
subdivision. Note that to obtain results on as many benchmarks
as possible we had to change the parameters for subdivision
to m = 8 and p = 50 for univariate and m = 4, p = 100 for
multivariate benchmarks. The result consists of three values:
the first value is the maximum relative error computed over the
sub-domains where relative error was possible to compute; in
the brackets we report the maximum absolute error for the sub-
domains where relative error computation is not possible, and
the integer is the amount of these sub-domains where absolute
errors were computed. We only report a result if the number
of sub-domains with division by zero is less than 80% of the
total amount of subdomains, as larger numbers would probably
be impractical to be used within, e.g. modular verification
techniques. Whenever we report ’-’ in the table, this means
that division by zero occurred on too many or all subdomains.

We observe that while interval subdivision does not provide
us with a result for all benchmarks, it nonetheless computes
information for more benchmarks than state-of-the-art tech-
niques.

VI. RELATED WORK

The goal of this work is an automated and sound static
analysis technique for computing tight relative error bounds for
floating-point arithmetic. Most related are current static analy-
sis tools for computing absolute roundoff error bounds [1]–[4].

Another closely related tool is Gappa [15], which computes
both absolute and relative error bounds in Coq. It appears
relative errors can be computed both directly and via abso-
lute errors. The automated error computation in Gappa uses
intervals, thus, a computation via absolute errors will be less
accurate than Daisy performs. The direct computation amounts
to the naive approach, which we have shown to work poorly.

The direct relative error computation was also used in the
context of verifying computations which mix floating-point
arithmetic and bit-level operations [16]. Roundoff errors are
computed using an optimization based approach similar to

FPTaylor’s. Their approach is targeted to specific low-level
operations including only polynomials, and the authors do not
use Taylor’s theorem. However, tight error estimates are not
the focus of the paper, and the authors only report that they
use whichever bound (absolute or relative) is better. we are not
aware of any systematic evaluation of different approaches for
sound relative error bounds.

More broadly related are abstract interpretation-based static
analyses which are sound wrt. floating-point arithmetic [17],
[18], some of which have been formalized in Coq [19] These
domains, however, do not quantify the difference between the
real-valued and the finite-precision semantics and can only
show the absence of runtime errors such division-by-zero or
overflow.

Floating-point arithmetic has also been formalized in an
SMT-lib [20] theory and solvers exist which include floating-
point decision procedures [20], [21]. These are, however, not
suitable for roundoff error quantification, as a combination
with the theory of reals would be at the propositional level
only and thus not lead to useful results.

Floating-point arithmetic has also been formalized in the-
orem provers such as Coq [22] and HOL Light [23], and
some automation support exists in the form of verification
condition generation and reasoning about ranges [24], [25].
Entire numerical programs have been proven correct and
accurate within these [26], [27]. While very tight error bounds
can be proven for specific computations [28], these verification
efforts are to a large part manual and require substantial user
expertise in both floating-point arithmetic as well as theorem
proving. Our work focuses on a different trade-off between
accuracy, automation and generality.

Another common theme is to run a higher-precision pro-
gram alongside the original one to obtain error bounds by
testing [29]–[32]. Testing has also been used as a verification
method for optimizing mixed-precision computations [33],
[34]. These approaches based on testing, however, only con-
sider a limited number of program executions and thus cannot
prove sound error bounds.

VII. CONCLUSION

We have presented the first experimental investigation into
the suitability of different static analysis techniques for sound
accurate relative error estimation. Provided that the function
range does not include zero, computing relative errors directly
usually yields error bounds which are (orders of magnitude)
more accurate than if relative errors are computed via absolute
errors (as is current state-of-the-art). Surprising to us, while
interval subdivision is beneficial for absolute error estimation,
when applied to direct relative error computation it most often
does not have a significant effect on accuracy.

We furthermore note that today’s rigorous optimization tools
could be improved in terms of reliability as well as scalability.
Finally, while interval subdivision can help to alleviate the
effect of the inherent division by zero issue in relative error
computation, it still remains an open challenge.
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TABLE III
RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES ON STANDARD BENCHMARKS (WITH POTENTIAL DIVISION BY ZERO)

Benchmark Daisy FPTaylor Daisy
+ subdiv

DaisyOPT
Z3 + subdiv dReal + subdiv

bspline0 - - 1.58e-01 (1.08e-18, 1) 3.00e-15 (1.08e-18, 1) 3.00e-15 (1.08e-18, 1)
bspline1 - 3.32e-15 2.80e-13 3.22e-15 3.22e-15
bspline2 - 3.50e-15 9.20e-16 8.92e-16 8.92e-16
bspline3 - - 1.31e-14 (9.67e-19, 1) 6.66e-16 (9.67e-19, 1) 6.66e-16 (9.67e-19, 1)

sine - - 1.07e-15 (2.00e-16, 2) 7.02e-16 (2.02e-16, 2) 7.02e-16 (2.02e-16, 2)
sineOrder3 - - 2.29e-15 (3.10e-16, 2) 8.94e-16 (3.17e-16, 2) 8.94e-16 (3.17e-16, 2)

sqroot - - 7.09e-15 (2.83e-14, 3) 1.92e-15 (3.11e-14, 3) 1.92e-15 (3.11e-14, 3)

doppler 1.48e-11 4.99e-12 8.95e-13 1.26e-15 1.35e-15
himmilbeau - - 3.75e-14 (1.00e-12, 12) 2.57e-14 (1.00e-12, 12) 2.84e-15 (1.00e-12, 12)

invPendulum - - 4.94e-15 (2.60e-14, 32) 2.82e-15 (2.60e-14, 32) 3.08e-15 (2.60e-14, 32)
jet - - - - -

kepler0 4.35e-15 4.57e-15 2.38e-13 (8.08e-14, 49) 2.16e-15 (7.92e-14, 49) 3.88e-15 (8.32e-14, 49)
kepler1 1.33e-14 1.17e-14 - - -
kepler2 - 4.21e-14 - - -

rigidBody1 - - 2.29e-14 (2.16e-13, 46) 1.07e-15 (2.16e-13, 46) 1.78e-15 (2.16e-13, 46)
rigidBody2 - - 2.65e-12 (3.51e-11, 50) 1.67e-15 (3.65e-11, 50) 3.80e-15 (3.65e-11, 50)

traincar_state8 - - - - -
traincar_state9 - - - - -

turbine1 6.12e-14 1.18e-14 6.03e-15 1.75e-15 5.21e-15
turbine2 - - 5.64e-14 (3.65e-14, 25) 2.74e-15 (1.20e-13, 25) 6.97e-14 (3.90e-14, 25)
turbine3 1.52e-13 2.21e-14 2.77e-14 6.50e-15 6.71e-15
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Abstract—Verifying arithmetic circuits, and most prominently
multipliers, is an important problem but in practice still requires
substantial manual effort. Recent work tries to solve this issue
using techniques from computer algebra. The most effective
approach uses polynomial reasoning over pseudo boolean poly-
nomials. In this paper we give a rigorous formalization of this
approach and present a new column-wise verification technique
for the correctness of gate-level multipliers which does not require
the reduction of a full word-level specification. We formally
prove soundness and completeness of our technique, making
use of our precise formalization. Our experiments show that
simple multipliers can be verified efficiently by using off-the-
shelf computer algebra tools, while more complex and optimized
multipliers require more sophisticated techniques. Further, our
paper independently confirms the effectiveness of previous related
work. We make all benchmarks and tools publicly available.

I. INTRODUCTION

Formal verification of arithmetic circuits is motivated by
the necessity to avoid issues like the famous Pentium FDIV
bug, which is reported to have cost Intel almost half a billion
dollar. There have been many attempts since then to verify
such circuits, but even today verifying designs with arithmetic
parts is not considered to be fully automated. For instance,
a common approach is to black-box multipliers and then
verify them separately. This might also require insight into
the multiplier design, which has to be communicated to the
verification tool. Commercial tools can not fully automatically
handle full-sized multipliers [24] or huge multipliers occurring
in cryptographic circuits. In this paper we will focus, as a first
step, on the simplest but also most important arithmetic circuit
verification problem of verifying multipliers.

This lack of automation was a common conclusion in three
plenary talks at the joint FMCAD’15 and SAT’15 conferences
in Austin in 2015, by Anna Slobodova on formal verification
of processors, Aaron Tomb on verifying cryptographic circuits,
and, from the academic side, Priyank Kalla on methods for
data path verification. In order to stimulate research into this
direction, particularly the development of fast SAT solving
techniques for arithmetic circuit verification, we collected a
large set of such benchmarks, generated and submitted CNF
encodings of these problems to the SAT 2016 competition
and made them publicly available [4]. The competition results
confirmed that miters of even small multipliers pose a real
challenge to SAT solvers.

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
Y464-N18, SFB F5004.

The weak performance of SAT solvers on these benchmarks
lead to the conjecture that verifying miters of multipliers and
other ring properties after encoding them into CNF needs
exponential sized resolution proofs [5], which would imply
exponential run-time of CDCL SAT solvers. Surprisingly,
however, this conjecture was recently answered negatively [2].
Such ring properties do admit polynomial resolution proofs.
However, proof search is non-deterministic. Thus this theo-
retical result still needs to be transferred into practical SAT
solving. The complexity bounds on proof size given in [2]
involve polynomials of high degree too.

The first technique which was shown to be able to have
prevented the Pentium bug was based on decision diagrams,
precisely on binary moment diagrams (BMDs) [10] and vari-
ants [11]. While common (gate-level) BDDs are exponential
in size for multipliers [6], BMDs remain linear in the number
of the input bits of a multiplier (using edge weights). However,
the BMD approach is not robust, in the sense that it still
requires structural knowledge of the multipliers to determine
the order in which BMDs are built, which has tremendous
influence on performance. Actually only a row-wise back-
ward substitution approach seems to be feasibly [9], which
in addition assumes a simple carry-save-adder (CSA) design.

Recent algebraically inspired techniques [12], [28] based
on so-called function-extraction also fail for even slightly op-
timized multiplier designs. On the positive side, this technique
is able to handle very large clean multipliers.

In even more recent work [24] substantial progress was
made. The authors use a dedicated polynomial reduction
engine and also gave various optimizations (discussed further
down), which made their algebraic technique scale to large
non-trivial multiplier designs of various architectures [16]
(called AOKI benchmarks in the following) even with and
without Booth reencoding. It is still unclear however, whether
their technique is robust under synthesis or technology map-
ping. Their arguments for soundness and completeness are
rather imprecise. Their tool is not available, nor details about
the experiments. Benchmarks have not been published either.

There is a substantial amount of previous work for arith-
metic circuit verification. We focus on comparing our approach
to the currently most successful techniques for verifying
multipliers, which all are using some form of algebraic rea-
soning [28], [24]. For an up-to-date discussion of related work
and a more comprehensive list see the recent article [28].
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II. ALGEBRA

Following [21], [23], [12], [28], we model the behavior
of circuits using multivariate polynomials. There will be a
variable for every input and every output of each gate, and
the specification of each gate is translated into a polynomial
relation among these variables. All these polynomials together
form a description of the circuit, and we will prove the cor-
rectness of a given circuit by showing that the desired relation
between input and output is implied by the polynomials that
describe the circuit on the gate level.

The appropriate formalism for such a reasoning is the theory
of Gröbner bases [8], [13]. Basic facts are:

• Q[X] = Q[x1, . . . , xn] denotes the ring of polynomials
in variables x1, . . . , xn with coefficients in the field Q.

• A term (or power product) is a polynomial of the form
xe11 · · ·xenn for certain e1, . . . , en ∈ N. A monomial is a
constant multiple of a term.

• Fix an order ≤ on the set of terms such that for all terms
τ, σ1, σ2 we have 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2.

• Every polynomial p 6= 0 contains only finitely many
terms, the largest of which (w.r.t. the chosen order ≤)
is called the leading term and denoted by lt(p).

• If p = cτ+· · · and lt(p) = τ , then lc(p) = c is called the
leading coefficient and lm(p) = cτ is called the leading
monomial of p.

• A nonempty subset I ⊆ Q[X] is called an ideal if
∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ Q[X] ∀ q ∈ I : pq ∈ I .

• If I ⊆ Q[X] is an ideal, then a set {p1, . . . , pm} ⊆ Q[X]
is called a basis of I if I = {q1p1 + · · · + qmpm |
q1, . . . , qm ∈ Q[X]}, i.e., if I consists of all the linear
combinations of the pi with polynomial coefficients.

• A basis {g1, . . . , gn} of an ideal I ⊆ Q[X] is called a
Gröbner basis (w.r.t. the fixed order ≤) if the leading
term of every nonzero element of I is a multiple of (at
least) one of the leading terms lt(g1), . . . , lt(gn).

• Every ideal of Q[X] has a Gröbner basis, and there is
an algorithm which, given an arbitrary basis of an ideal,
computes a Gröbner basis of it.

The theory of Gröbner bases offers a decision procedure for
the ideal membership problem: given a polynomial q ∈ Q[X]
and a basis {p1, . . . , pm} ⊆ Q[X], it is a priori not obvious
how to check whether q belongs to the ideal generated by
p1, . . . , pm. However, if {p1, . . . , pm} is a Gröbner basis, then
the question can be answered using a multivariate version of
polynomial division with remainder. It can be shown that when
G is a Gröbner basis, then q belongs to the ideal generated by
G iff the remainder of division of q by G is zero.

Example 1.

1) Consider q = x2 + 4x + 3, p = x + 1 ∈ Q[x]. Since
x2+4x+3 = (x+3)(x+1)+0, it follows that q belongs to the
ideal I generated by x+ 1 in Q[x]. On the other hand, taking
q̃ = x2 + 4x+ 5, division with remainder gives x2 + 4x+ 5 =
(x+ 3)(x+ 1) + 2, and thus q̃ 6∈ I .

g

s

rl u
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wv

a b a b a b c

Fig. 1. AIGs [20] used in Example 1 and Sect. IV.

2) For the AIG [20] on the left of Fig. 1, we have the relation
g = a(1− b) for all a, b, g ∈ {0, 1}. Furthermore, we always
have g(g−1) = a(a−1) = b(b−1) = 0 for all a, b, g ∈ {0, 1}.
To show that we always have gb = 0, it is therefore enough
to check if the polynomial gb ∈ Q[g, a, b] belongs to the ideal
I ⊆ Q[g, a, b] generated by

{−g + a(1− b), g(g − 1), a(a− 1), b(b− 1)}.
Multivariate polynomial division yields

gb = (−b) (−g + a(1− b)) + (−a) b(b− 1) +

remainder
↓
0,

therefore gb ∈ I and thus gb = 0 in the left AIG of Fig. 1.

As illustrated in the second example, we can view an
ideal I ⊆ Q[X] as an equational theory, with a basis
{p1, . . . , pm} as its set of axioms. Indeed, the ideal I generated
by p1, . . . , pm contains exactly those polynomials q for which
the equation “q = 0” can be deduced from the assumptions
“p1 = · · · = pm = 0” through repeated application of the
rules u = 0 ∧ v = 0 ⇒ u + v = 0 and u = 0 ⇒ uw = 0
(compare the two defining properties for ideals quoted above).

We will need a few more facts about Gröbner bases and
multivariate polynomial division.

Lemma 1.

1) Let q ∈ Q[X] and P = {p1, . . . , pm} ⊆ Q[X]. The
remainder r of the division of q by P is a polynomial such
that q − r is in the ideal generated by P and r is reduced
w.r.t. P , which means it does not contain any term that is a
multiple of one of the leading terms lt(p1), . . . , lt(pm).

2) Let G ⊆ Q[X] \ {0}, and define

spol(p, q) := lcm(lt(p), lt(q))

(
p

lm(p)
− q

lm(q)

)

for all p, q ∈ Q[X]\{0}, with lcm the least common multiple.
Then G is a Gröbner basis if and only if the remainder of the
division of spol(p, q) by G is zero for all pairs (p, q) ∈ G×G.

3) If p, q ∈ Q[X] \ {0} are such that their leading terms
lt(p), lt(q) have no variables in common, then the division
of spol(p, q) with {p, q} has remainder zero.

Proof. 1) is Prop. 1 in Chap. 2 §6 of [13]; 2) is Thm. 6 in
Chap. 2 §6 of [13]; 3) is Prop. 1 in Chap. 2 §10 of [13]. �
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III. IDEALS ASSOCIATED TO CIRCUITS

We consider circuits with 2n inputs a0, . . . , an−1 and
b0, . . . , bn−1, 2n outputs s0, . . . , s2n−1, and a number of logi-
cal gates. The output of some gate may be input to some other
gate, but cycles are not allowed. In addition to the variables
for input and output, we also associate one variable to each
internal edge of the circuit, say g1, . . . , gk. By R we denote the
ring Q[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1].

The semantics of the circuit gates imply polynomial rela-
tions among these variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(1)

We also have the relations u(u− 1) = 0 for each variable u,
because the circuit operates with boolean values.

Since logical gates are functional, the values of all the
variables g1, . . . , gk, s0, . . . , s2n−1 in a circuit are uniquely
determined as soon as a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are
fixed. This motivates the following definition.

Definition 1. Let C be a circuit.

1) A polynomial p ∈ R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and resulting values g1, . . . , gk, s0, . . . , s2n−1 implied by the
gates of C the substitution of these values into p gives zero.

2) The set of all PCCs for C is denoted by I(C).

It is easy to see that I(C) is in fact an ideal of R. By
definition, this ideal contains all the relations that hold among
the values at the different points in the circuit. In particular,
it “knows” everything about how input and output are related.
Therefore, the circuit fulfills a certain specification if and only
if the polynomial relation corresponding to the specification is
contained in I(C). This motivates the next definition.

Definition 2. A circuit C is called a multiplier if
2n−1∑

i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑

i=0

2ibi

)
∈ I(C).

Checking whether a given circuit C is a multiplier thus
reduces to an ideal membership test. Definition 1 does not
provide us with a basis of I(C), so Gröbner basis technology
is not directly applicable. However, we can deduce at least
some elements of I(C) from the semantics of circuit gates.

Definition 3. Let C be a circuit. Let G ⊆ R be the set which
contains for each gate of C the corresponding polynomial
of (1) (with u, v, w replaced by the variables of the edges
attached to the gate), as well as the polynomials ai(ai − 1)
and bi(bi − 1) for 0 ≤ i < n, called input field polynomials.
Then the ideal generated by G in R is denoted by J(C).

As a basis of J(C) is explicitly known, we can decide
membership using Gröbner bases. Consider a verifier for
circuits which checks for a given C and a given specifica-
tion polynomial p whether p belongs to J(C). Because of
J(C) ⊆ I(C), such a verifier is certainly sound. In order to
prove that it is also complete, we need to show J(C) ⊇ I(C).
For doing so, we recall a crucial observation which for instance
already appears in [26], [21].

Theorem 1. Let C be a circuit, and let G be as in Def. 3. Let
≤ be a lexicographic term order for a variable order such that
the variable attached to the output edge of a gate is always
greater than the variables attached to the input edges of that
gate. Then G is a Gröbner basis with respect to ≤.

Proof. By the constraint on the term order and the form of
the equations (1), the leading term of each gate polynomial is
simply the output variable of the corresponding gate. Further,
the leading terms of the polynomials ai(ai−1) and bi(bi−1)
are a2i and b2i . Therefore, by part 3 of Lemma 1, division of
spol(p, q) by {p, q} gives the remainder zero for any choice
p, q ∈ G. Then, since {p, q} ⊆ G for all p, q ∈ G, also division
of spol(p, q) by G gives the remainder zero for all p, q ∈ G,
and then, by part 2 of Lemma 1, the claim follows. �

Theorem 2. For all acyclic circuits C, we have J(C) = I(C).

Proof. “⊆” (soundness) Clear by definition of J(C).
“⊇” (completeness) Let p ∈ I(C). We have to show that

p ∈ J(C). Since C is acyclic, there is a way to order the
variables such as to meet the requirement of Thm. 1. Let r
be the remainder of the division of p by G, where G is the
Gröbner basis of Thm. 1. Then p − r ∈ J(C) by part 1 of
Lemma 1, so r ∈ J(C) ⇐⇒ p ∈ J(C). Furthermore,
p ∈ I(C) and p − r ∈ J(C) ⊆ I(C) implies r ∈ I(C). It is
therefore sufficient to show that r ∈ J(C).

By the choice of the term order and the observations made
in the previous proof about the leading terms in G, part 1 of
Lemma 1 also implies that r only contains input variables
a0, . . . , an−1, b0, . . . , bn−1, and none of them appears with
degree greater than one. At the same time, since r ∈ I(C), all
the evaluations of r for all choices ai, bj ∈ {0, 1} are zero.

We show that r = 0, and thus r ∈ J(C). Suppose r 6= 0.
Let m be a monomial of r with a minimal number of variables,
which includes the case where m is constant. Since exponents
are at most one, the set of variables of monomials in r differ
by at least one variable. Now choose ai (bj) to evaluate to
1 iff ai ∈ m (bj ∈ m). By this choice all monomials of r
except m vanish (evaluate to zero). Thus r evaluates to the
(non-zero) coefficient of m, in contradiction to r ∈ I(C). �

Let us conclude the theoretical part of this paper with the
following simple but important observations.

First, I(C) is by definition a so-called vanishing ideal.
Therefore, the theorem implies that J(C) is a radical ideal.
This explains why ideal membership is sufficient for our
purpose, and there is no need to use the stronger radical
membership test (cf. Chap. 4 §2 of [13]).
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Second, note that I(C) = J(C) contains the set F of all
field polynomials x(x − 1) for all variables x, not only for
inputs, thus we may add them to G.

Third, in the standard Gröbner basis for gate-level circuits
defined above in Def. 3 using Eqn. (1) all polynomials have
a leading coefficient of ±1 and thus during reduction never
introduce any coefficient outside of Z (with non-trivial de-
nominator). So all coefficient computations actually remain in
Z. This formally proves that dedicated implementations, e.g.,
those from [28], [24], used for determining ideal membership
to verify properties of gate-level circuits, can rely on compu-
tation in Z only without loosing soundness nor completeness
(assuming the same term order as in Thm. 1 is used).

Fourth, from a technical point of view, we do not need to use
Z as coefficient ring if we employ computer algebra systems,
but can simply use any field containing Z, e.g., Q. This
actually speeds up the computation, since computer algebra
systems are optimized for this case. In our experiments, using
rational coefficients made a huge difference for Singular [14]
(but did not have any effect in Mathematica [27]).

Fifth, given circuit C, checking that there exists an assign-
ment to the inputs which yields a certain value, at an output
is of course the same as (circuit) SAT, and thus NP complete:

Corollary 1. Checking ideal membership over Q[X] even in
terms of a given Gröbner basis is co-NP-hard.

Similar results but for Z2 and Z instead of Q and without
assuming a Gröbner basis can be found in [1], [18].

Finally, the last part in the proof of Thm. 2 allows us to
determine a concrete input evaluation in case a polynomial
g fails the membership test, e.g., an evaluation for which g
does not vanish. In our application of multiplier verification
these evaluations provide counter-examples, in case a circuit
is determined not to be a multiplier (Alg. 1 returns false).

We claim that this section is a first simple and precise
mathematical characterization of recent successful algebraic
approaches [24], [28] to the verification of gate-level integer
multipliers (without overflow), where we formally prove not
only soundness but also completeness. Soundness corresponds
to I ⊆ J and completeness to I ⊇ J in Thm. 2.

In previous work soundness and completeness was formally
proven too but only for other polynomial rings, i.e., over F2q

to model circuits implementing Galois-field multipliers [21],
[23], or for polynomial rings over Z2q to model arithmetic
circuit verification with overflow semantics [26].

In [28] soundness and completeness is discussed too, but
instead of giving proofs only refers to [21], [23] which
as discussed above uses coefficients in F2q and not Z, the
coefficient ring the approach [28] is actually working with.

IV. OPTIMIZATIONS

Following the argument of Cor. 1 in the previous section,
simply reducing the specification in the constructed Gröbner
basis may lead and in general has to lead (unless P = NP) to
an exponential number of monomials in intermediate results.

Thus in practice to use polynomial reduction to verify specific
circuits tailored heuristics become very important.

To reduce the number of monomials in [24] a logic
reduction rewriting scheme consisting of XOR-Rewriting
and Common-Rewriting is proposed. It is further combined
with eliminating monomials which fulfill certain Vanishing-
Constraints. In the following we show how these techniques
can be applied to computer algebra systems.

The technique of XOR-Rewriting [24] ensures that in the
Gröbner basis all variables which do not correspond to an
output nor input of an XOR-gate, nor primary input, nor output
of the circuit, are eliminated from the Gröbner basis up-front.

We adopt this rewriting for AIGs by matching XOR patterns
in the AIG which represents an XOR or XNOR, e.g., we find
nodes of the form s = (a ∧ b) ∧ (ā ∧ b̄). We then define
the polynomial of the parent in terms of the grandchildren
instead of the immediate children. For instance, in order to
apply XOR-Rewriting in the middle AIG in Fig. 1 we only
use the polynomial −s + a + b − 2ab as definition for the
XOR output instead of all the polynomials −l + ab, as well
as −r+ (1−a)(1− b), and −s+ (1− l)(1− r). This removes
defining polynomials for all children of XOR gates.

The technique of Common-Rewriting [24] eliminates all
nodes which have exactly one parent. In the right AIG of
Fig. 1 Common-Rewriting eliminates gates t, u, v, and w,
assuming r occurs twice, but t, u, v and w only once. Thus
r is directly expressed in terms of a, b, c. This technique is
actually similar to what bounded variable elimination in SAT
would do [15] after encoding a circuit to CNF by say Tseitin
encoding. It would also eliminate all variables in the CNF
representing gates in the circuit with only one parent [17].

In [24] an important optimization was a specific “vanishing
rule”, called XOR-AND Vanishing Rule. This rule can be
derived from the middle AIG in Fig. 1, a half adder, where l
represents the carry (AND) and s represents the sum (XOR) of
the two inputs. In a half adder both the carry bit l and the sum
bit s can never be 1 at the same time. Thus sl = 0, and [24]
suggests to remove monomials containing s and l immediately.
We simulate the effect of this rule by searching for (negated)
children or grand-children of certain AND-gates and adding
appropriate polynomial constraints to our reduction basis.

V. ORDER

According to Thm. 1 the choice of the reverse topological
term order does not influence the correctness of the procedure.
However in [28] it is shown empirically that the number of
monomials during the reduction process varies substantially
for different reverse topological orders.

Given the planar two dimensional “shape” of multipliers,
two approaches of ordering are quite natural, namely a row-
wise approach and a column-wise approach. Basically the idea
is to partition the gates into slices, which are totally ordered,
i.e., row-wise or column-wise, and then order the gates within
a slice (row or column) topologically. The combined total
order has to be topological, which then gives a valid term
order and thus a Gröbner basis according to Thm. 1.
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Fig. 2. Classical row-wise slicing (left) versus our column-wise slicing approach (right) for clean 3-bit input (6-bit output) CSA multiplier.

The idea of the row-wise approach is to order the gates
according to their backward level. The intuition of row-wise
slicing is outlined in the left side of Fig. 2. It shows how
full adders are partitioned in a “clean” (CSA) multiplier.
Informally, we call a multiplier without gate synthesis, nor
mapping and where the XOR-gates and the half/full adders
can easily be identified, as clean. If a multiplier is not clean,
it is called dirty. Thus the AOKI benchmarks [16], [24] already
discussed in the introduction are considered to be dirty.

Previous papers [28], [10] use a row-wise approach. In [28]
gates are ordered by the logic level seen from the circuit inputs.
In [10] the order is only given for clean CSA multipliers,
such that a word-level spec for a CSA step can be given. It is
unclear how to apply this order to dirty multipliers, like the
AOKI benchmarks. Unfortunately, the description of the order
in [24] stays on a very high level. The tool is not available.

In the column-wise approach, cf. right side of Fig. 2, the
multiplier is partitioned vertically, where each slice contains
exactly one output bit. Our proposal is to use a column-wise
order which gives a more robust incremental checking method.

VI. COLUMN-WISE CHECKING

The goal of using a column-wise term order is to divide the
problem into smaller more manageable sub-problems, which
can be verified incrementally.

Definition 4. Let C be a circuit (as in Sect. III).

1) A sequence of 2n + 1 polynomials C0, . . . , C2n over the
variables of C is called a carry sequence of carry polynomials.

2) For column i with 0 ≤ i < 2n let Pi =
∑
k+l=i akbl be

the partial product sum (of column i).

3) For 0 ≤ i < 2n, carry polynomial Ci and output si let

−Ci + 2Ci+1 + si − Pi
denote the carry recurrence relation Ri for column i.

4) Then Ri holds on C if it vanishes in I(C), i.e., Ri ∈ I(C).

With these definitions we obtain an abstract theorem which
can be used to verify multipliers independent how the carry
sequence is actually constructed.

Theorem 3. Let C be a circuit where all carry recurrence
relations hold as defined in Def. 4. Then C is a multiplier in
the sense of Def. 2, if and only if C0 − 22nC2n ∈ I(C).

Proof. By the condition of Def. 4, we have (modulo I(C))
2n−1∑

i=0

2isi =

2n−1∑

i=0

2i(Pi + Ci − 2Ci+1)

=
2n−1∑

i=0

2iPi +
2n−1∑

i=0

(2iCi − 2i+1Ci+1)

︸ ︷︷ ︸
C0 − 22nC2n

.

It remains to show
∑2n−1
i=0 2iPi = (

∑n−1
i=0 2iai)(

∑n−1
i=0 2ibi),

which is a rather straight forward calculation. �
To obtain our column-wise checking algorithm we define

slices incrementally. For each output bit si we determine its
input cone, namely the gates which si depends on (cf. Fig. 3):

Ii := {gate g | g is in input cone of output si}
We define slices Si as the difference of consecutive cones Ii:

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0

Sj

Definition 5 (Sliced Gröbner Bases). Let Gi be the set of
polynomial representations of the gates in slice Si, cf. Eqn. 1.

Algorithm 1: Multiplier Checking Algorithm
Input : Circuit C with sliced Gröbner bases Gi
Output: Determine whether C is a multiplier

1 C2n ← 0;
2 for i← 2n− 1 to 0 do
3 Ci ← Remainder (2Ci+1 + si − Pi, Gi ∪ F )
4 end
5 return C0 = 0

In Alg. 1 we start at the last output bit si with i = 2n− 1.
Then Ci is computed recursively by taking the remainder of
2Ci+1 + si − Pi modulo the sliced Gröbner basis Gi and
(all) field polynomials F in order to make sure that the carry
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Fig. 3. Input cones of outputs to determine column slices.

recurrence relation Ri holds. Thus Ci is uniquely defined given
the sum of the partial products Pi of column i, the output bit si
and the previous carry polynomial Ci+1. It remains to fix the
boundary carry polynomial C2n. In our algorithm we actually
always simply use C2n = 0.

Theorem 4. Algorithm 1 returns true iff C is a multiplier.

Proof. By definition Ri := −Ci + 2Ci+1 + si − Pi vanishes
on the ideal generated by Gi∪F which is a subset of the ideal
generated by G∪F since Gi ⊆ G. Thus Ri ∈ J(C) = I(C).

We can show inductively that Ci is reduced w.r.t. Hi with
Hi :=

⋃
j≥i(Gj∪F ). This induction requires that si and Pi are

reduced w.r.t. to Hi+1 which holds due to the construction of
the sliced Gröbner bases. With H0 = G∪F we then get C0 is
reduced w.r.t. G∪F thus C0 = C0−22nC2n ∈ I(C) = J(C)
iff C0 = 0, which concludes the proof using Thm. 3. �

For incorrect multipliers Alg. 1 returns false , i.e., C0 6= 0.
As described after Cor. 1 this easily yields a concrete counter-
example. In this case it might further be possible to abort
the algorithm earlier if partial products akbl of higher slices
k + l > i not occurring in Sj with i < j remain in Ci.

VII. ENGINEERING

Our tool AIGMULTOPOLY takes an AIG describing a
circuit as input and produces output which can be passed to the
computer algebra systems Mathematica [27] and Singular [14].

Algorithm 2: Outline of AIGMULTOPOLY

Input : Circuit in AIG format
Output: File f for computer algebra system

1 for i← 0 to 2n− 1 do
2 Define-Cones-of-Influence ();
3 Merge (Si);
4 Promote (Si);
5 Levelize (Si);
6 Search-for-Common-Rewriting (Si);
7 Identify-Vanishing-Constraints (Si);
8 end
9 f ← Print to file;

For dirty multipliers slicing based on input cones, (Sect. VI),
is not precise enough. It regularly happens, that gates are
allocated to later slices, if they are not used to compute the
output value of the slice. This frequently happens for carry
outputs of full/half-adders (or combined carry outputs) and
results in larger carry polynomials Ci than necessary.

To avoid this performance issue we eagerly move gates
between slices, in a kind of peephole optimization, which
makes sure that the overall number of carries decreases:

Definition 6. We define those gates in Sj used as children of
gates in slice Si with i > j as carries of Sj .

The following technique reduces the support of carry poly-
nomials increasing the chances for cancellation of monomials.

Merge: Whenever we find an AND-gate g (not matched to
be an XOR- gate) in slice Si with children l, r in smaller
slices Sj and Sk, we move g back to Sl with l = max(j, k).
The procedure is depicted on the left side of Fig. 4. Thus after
merging g, the gates l, r are less likely to be carry variables
any more. We apply merging repeatedly until completion and
Sl and Si are updated after each application.

In some multipliers it happens that a gate g in the carry
depends on two other gates in the carry. We decrease the
number of carries by promoting g to the next bigger slice:

Promote: We search for gates g in slice Si−1 with again
exactly one parent, which in addition is required to be part of
some larger slice Sj where j ≥ i. Furthermore the children of
g also have to be in slice Si−1 and have at least one parent
in some later slice Sj with j ≥ i. We decrease the number of
carries by promoting g to slice Si, cf. right side of Fig. 4.

A gate g which is merged can not be promoted back to
its original slice, because the requirements for the children of
g differ. This prevents cyclic rule applications. After merging
and promoting, the association of gates to slices is fixed. We
order the gates in a slice by levelization from inputs.

In order to simulate Common-Rewriting, we factor out from
Si the set Ui of “unique gates”, i.e., all gates g of Si not
used in another slice with exactly one parent in slice Si.
Polynomials of gates which remain in Si and depend on gates
in Ui are reduced first by polynomials of gates in Ui and field
polynomials F before computing the remainder in Alg. 1.

As last step we search for Vanishing Constraints in Si,
namely gate products which always evaluate to zero, e.g.,
Example 1. We store such constraints in a corresponding set
Vi and during remainder computation reduce against elements
of Vi too. Because of Thm. 2, we can add these polynomials
to the ideal without violating the Gröbner basis property.

Finally, in AIGMULTOPOLY the optimization of “XOR-
Rewriting” is handled implicitly during printing by producing
polynomials for XOR-gates instead of AND-gates.

All optimizations either maintain the crictical criteria of
keeping the reduction order topologically sorted, add vanishing
constraints of the circuit ideal, or are standard techniques used
in computer algebra, e.g., autoreduction, and thus do not affect
correctness of our claims.
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VIII. EXPERIMENTS

As in previous work we focus on (integer) multipliers with
two n-bit vectors as inputs and 2n output bits. In [28], [12]
the authors used clean CSA multipliers, handcrafted from [19],
for verifying their results. In [24] several architectures from
the AOKI benchmarks are used in their experiments. In our
experiments we use the multiplier types “btor”, “sp-ar-rc” and
“abc”. The “btor” benchmarks are generated from Boolec-
tor [22] and can be considered as clean multipliers. The “sp-ar-
rc” multipliers are part of the AOKI benchmarks [16] and can
be considered as dirty multipliers. The “abc” benchmarks are
generated with ABC [3]. The different versions of synthesis
and technology mapping should be the same as in [28], [12].

We used a standard Ubuntu 16.04 Desktop machine with
Intel i7-2600 3.40GHz CPU and 16 GB of main memory.
The (wall-clock) time limit was set to 1200 seconds and
main memory was limited to 14GB. An extended set of
experimental data, as well as source code, benchmarks, and
scripts are available at http://fmv.jku.at/cwmulverca. Beside
those benchmarks used in our experiments we also include the
AIGs we derived for other multipliers used in [28], [24]. More
information on the structure of the multipliers used in our
experiments can be found in [16], [28], [12] and the README
files which come with the experimental data.

In all our experiments the times are listed in seconds (wall-
clock time). We measure the time from starting our tool until
Mathematica resp. Singular are finished or we reach the time
limit (TO), the memory limit (MO), or reach an error state
(EE). An error state occurrs in Singular when more than 32767
ring variables are allocated. Our results include the time which
our tool AIGMULTOPOLY needs to generate the files for the
computer algebra system. This time is in the worst case around
3 seconds for 128 bit multipliers. The results also include the
time to launch Mathematica resp. Singular.

In Table I we compare our incremental column-wise reduc-
tion, outlined in Alg. 1 against the non-incremental approach,
where the word-level specification of Def. 2 is reduced against
the whole circuit. We apply the non-incremental reduction
for column-wise and row-wise ordering. All optimizations
(XOR-Rewriting, Common-Rewriting, Vanishing Constraints,
Merge, Promote) are enabled. The results in Table I show
that in Mathematica and Singular our approach is faster and
needs less memory than any non-incremental approach. In
the non-incremental experiments, the results between column-
wise and row-wise do not really differ. Generally Singular is

TABLE I
INCREMENTAL (+INC) VS. COLUMN- AND ROW-WISE NON-INCR. (-INC).

mult n
Mathematica Singular

+inc -inc +inc -inc
col row col row

btor 16 4 12 12 1 2 2
btor 32 35 531 491 16 53 58
btor 64 409 MO MO MO MO MO
btor 128 TO TO TO EE EE EE

sp-ar-rc 16 7 TO TO 1 TO TO
sp-ar-rc 32 67 TO TO 39 TO TO
sp-ar-rc 64 841 MO MO MO MO MO

TABLE II
EFFECT OF TURNING OFF OPTIMIZATIONS.

mult n
Mathematica Singular

+inc -xor -com -cs +inc -xor -com -cs
btor 16 4 TO 1 TO 1 2 1 1
btor 32 35 TO 7 TO 16 64 6 19
btor 64 409 TO 65 TO MO MO MO MO
btor 128 TO TO 823 TO EE EE EE EE

sp-ar-rc 16 7 30 TO 7 1 7 TO 2
sp-ar-rc 32 67 373 TO 64 39 266 TO 34
sp-ar-rc 64 841 TO TO 805 MO EE MO MO

faster than Mathematica, but it also needs more memory than
Mathematica. For multiplier “btor-128” we get an error state.

In the experiments shown in Table II we investigate the ef-
fects of turning off optimizations in our column-wise approach
and compare these variants to the “+inc” columns of Table I.
The results differ for clean and dirty multipliers. For the clean
“btor” multipliers turning off Common-Rewriting surprisingly
improves the reduction. In this case there are only few gates
outside of XORs with only one parent, and splitting remainder
computation just increases run-time and space usage. In dirty
multipliers, structures like carry trees containing gates with
only one parent occur much more frequently. If we turn off
Common-Rewriting remainder computation slows down a lot
in this case. Turning off XOR-Rewriting influences both clean
and dirty multipliers and slows down the reduction (especially
in Mathematica), whereas turning off Vanishing Constraints
has only a bad effect for clean multipliers in Mathematica,
in Singular the results are nearly the same. In summary, the
optimizations described in [24] have both positive and negative
effects in our experiments, depending on the type of multiplier
considered and the computer algebra system used.
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TABLE III
DIFFERENCE OF TURNING OFF MERGE AND PROMOTE

mult n
Mathematica Singular

+inc -merge -prom +inc -merge -prom
sp-ar-rc 16 7 8 TO 1 1 TO
sp-ar-rc 32 67 72 TO 39 42 MO
sp-ar-rc 64 841 912 TO MO MO MO

TABLE IV
DIRTY SYNTHESIZED AND MAPPED MULTIPLIERS

mult n Mathematica Singular
abc 8 2 1
abc 16 4 1

abc-resyn3-no-comp 8 351 3
abc-resyn3-no-comp 16 TO TO

abc-resyn3-comp 8 TO TO

The experiments shown in Table III compare the effects
of turning off our Merge and Promote optimizations on dirty
multipliers. In clean multipliers (such as “btor”) no gates are
merged nor promoted. The running times of Merge enabled or
disabled can be considered to be the same. The difference is
the size of the carry polynomials, e.g., in sp-ar-rc-8 the carry
polynomials have up to 38 monomials with Merge disabled.
In our default setting with Merge enabled the biggest carry
polynomial contains only 8 monomials and is linear.

In Table IV we also consider synthesized and mapped
versions of multipliers. Synthesizing a circuit makes it very
hard to verify. When complex mapping is applied it gets even
harder and the 8-bit version cannot be verified any more,
neither in Mathematica nor Singular confirming [12], [28].

IX. CONCLUSION

We give a simple and precise mathematical formalization
of recent successful algebraic approaches to the verification of
multiplier circuits, including rigorous proofs of soundness and
completeness. We further show how to effectively make use
of computer algebra systems. Our main technical contribution
is a new incremental column-based verification approach to
multipliers, which is an order of magnitude faster than previ-
ous row-based approaches relying on reducing a global spec.
We further confirm the effectiveness of the algebraic approach
and make all data, benchmarks and tools publicly available.

As future work, we want to analyze complexity of previous
and our new column-wise approach similar to [7] and [2] and
extend our methods to floating-points (following [25]) and
other word-level operators. We also want to consider overflow-
semantics and negative numbers. An experimental comparison
with BMD based techniques should also be performed.

We would like to thank Paul Beame for sharing drafts of [2],
Mathias Soeken helping to synthesize AOKI multipliers [16]
used in their DATE’16 paper [24], Naofumi Homma send-
ing 128-bit versions of these benchmarks, Maciej Ciesielski
explaining the experimental set-up in [12], [28], and finally
Deepak Kapur for pointing us to related work [1], [18].
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Abstract—Symbolic model checkers can construct proofs of
safety properties over complex models, but when a proof suc-
ceeds, the results do not generally provide much insight to
the user. Recently, proof cores (alternately, for inductive model
checkers, Inductive Validity Cores (IVCs)) were introduced to
trace a property to a minimal set of model elements necessary
for proof. Minimal IVCs facilitate several engineering tasks,
including performing traceability and analyzing requirements
completeness, that usually rely on the minimality of IVCs.
However, existing algorithms for generating an IVC are either
expensive or only able to find an approximately minimal IVC.

Besides minimality, computing all minimal IVCs of a given
property is an interesting problem that provides several useful
analyses, including regression analysis for testing/proof, determi-
nation of the minimum (as opposed to minimal) number of model
elements necessary for proof, the diversity examination of model
elements leading to proof, and analyzing fault tolerance.

This paper proposes an efficient method for finding all
minimal IVCs of a given property proving its correctness and
completeness. We benchmark our algorithm against existing IVC-
generating algorithms and show, in many cases, the cost of finding
all minimal IVCs by our technique is similar to finding a single
minimal IVC using existing algorithms.

Keywords-Inductive Validity Cores; UNSAT-core generation;
SMT-based model checking; Inductive proofs;

I. INTRODUCTION

Most modern sequential model checking techniques for
safety properties, including IC3/PDR [1] and k-induction [2],
use a form of induction to establish proof. These techniques
are very powerful, and can often reason successfully over very
large or even infinite state spaces. The proofs provided by
these tools can provide rigorous evidence that a software or
hardware system works as intended.

On the other hand, there are many situations in which
properties can be proved, but systems still will not perform
as intended. Issues such as vacuity [3], incorrect environ-
mental assumptions [4], and errors either in English language
requirements or formalization [5] can all lead to failures of
“proved” systems. Thus, even if proofs are established, one
must approach verification with skepticism.

Recently, proof cores [6] have been proposed as a mecha-
nism to determine which elements of a model are used when
constructing a proof. This idea is formalized by Ghassabani et
al. for inductive model checkers in [7] as Inductive Validity

Cores (IVCs). IVCs offer proof explanation as to why a
property is satisfied by a model in a formal and human-
understandable way. The idea lifts UNSAT cores [8] to the
level of sequential model checking algorithms using induc-
tion. Informally, if a model is viewed as a conjunction of
constraints, a minimal IVC (MIVC) is a set of constraints
that is sufficient to construct a proof such that if any con-
straint is removed, the property is no longer valid. IVCs and
MIVCs can be used for several purposes, including performing
traceability between specification and design elements [9],
assessing model coverage [10], and explaining unsatisfiable
test obligations when using model checkers for test case
generation. Ghassabani et al. [7] presented two algorithms: one
that computes an approximately minimal IVC using UNSAT
cores (IVC_UC) that is computationally inexpensive, and a
more accurate algorithm that usually produces a minimal IVC
using a brute-force post-processing step (IVC_UCBF) that is
considerably more expensive to compute.1

The IVC and proof core ideas share many similarities
with approaches for computing minimal invariant sets for
inductive proofs (such as is performed for inductive proof
certificates [11], [12]), and in fact the IVC_UC algorithm
performs a minimal lemma set computation. However, there is
a substantive difference: to find a minimal set of constraints, it
is usually necessary to find new proofs involving new lemmas
not used in the original proof, which accounts for the expense
of the IVC_UCBF algorithm.

It is often the case that there are multiple MIVCs for a
given property. In this case, computing a single IVC provides,
at best, an incomplete picture of the traceability information
associated with the proof. Depending on the model and prop-
erty to be analyzed, there is often substantial diversity between
the IVCs used for proof, and there can also be a substantive
difference in the size of a minimal IVC and a minimum IVC,
which is the (not necessarily unique) smallest MIVC. If all
MIVCs can be found, then several additional analyses can be
performed:
• Coverage Analysis: MIVCs can be used to define cov-

1In [7] it is shown that minimization is as hard as model checking, so
for model checking problems that generally undecidable, the minimization
process is also generally undecidable, so the IVC_UCBF algorithm may
time out and return an approximate result.
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erage metrics by examining the percentage of model
elements required for a proof. However, since MIVCs are
not unique, there are multiple, equally legitimate coverage
scores possible. Having all MIVCs allows one to define
additional metrics: coverage of MAY elements, coverage
of MUST elements, as well as policies for the existing
MIVC metric: e.g., choose the smallest MIVC [10].

• Optimizing Logic Synthesis: synthesis tools can benefit
from MIVCs in the process of transforming an abstract
behavior into a design implementation. A practical way
of calculating all MIVCs allows to find a minimum
set of design elements (optimal implementation) for a
certain behavior. Such optimizations can be performed at
different levels of synthesis.

• Impact Analysis: Given all MIVCs, it is possible to de-
termine which requirements may be falsified by changes
to the model. This analysis allows for selective regression
verification of tests and proofs: if there are alternate proof
paths that do not require the modified portions of the
model, then the requirement does not need to be re-
verified [9].

• Robustness Analysis: It is possible to partition the model
elements into MUST and MAY sets based on whether
they are in every MIVC or only some MIVCs, respec-
tively. This may allow insight into the relative importance
of different model elements for the property. For example,
if the MUST set is empty, then the requirement has been
implemented in multiple ways, such as would be expected
in a fault-tolerant system [9].

In addition, the Requirements Engineering community is
keenly interested in approaches to manage requirements trace-
ability. In most cases, it is assumed that there is a single
“golden” set of trace links that describes how requirements
are implemented in software [13]–[15]. However, if there are
multiple MIVCs, then it is possible that there are several
equally valid sets of trace links. Examining the diversity of all
MIVCs could lead to changes in how traceability is performed
for critical systems.

In this paper, we propose a new method for computing all
IVCs that is always minimal for decidable model checking
problems and usually (and detectably) minimal for model-
checking problems that are generally undecidable. In recent
years, a number of efficient algorithms for extracting minimal
UNSAT subformulae (MUSes) have been proposed [16], most
of which are focused on computing a single MUS [17]–[21].
In this paper, we adapt the recent work by Liffiton et al.
[22] from the generation of MUSes from UNSAT-cores to all
IVCs for inductive model checking. This requires changing the
underlying mechanisms that are used to construct candidate
solutions and also changing the structure of the proof of
correctness. In addition, we demonstrate that the approach can
terminate with all minimal IVCs even if the witness generator
only generates approximately minimal IVCs (utilizing the
“fast” IVC_UC algorithm from [7]). In our empirical results,
this allows our algorithm to be quite efficient to the extent

Fig. 1. Altitude Switch Model

that in many cases, the cost of extracting all minimal IVCs is
similar to the cost of finding a single guaranteed-minimal IVC,
and on average is approximately 1.6x the cost of determining
a single minimal IVC. The contributions of the work are
therefore as follows:
• An algorithm for computing all minimal IVCs.
• A proof of correctness and completeness of the algorithm.
• An evaluation of the algorithm for performance and

diversity of result sets against a benchmark suite.
Several commercial tools produce proof-cores [6], [23],

which we believe to be similar to IVCs/MIVCs, but are
not presented at a level of formality to perform a precise
comparison. However, to the best of our knowledge, none of
these tools offer to calculate all proof-cores. Our work can
also be useful towards the support of this capability in future
editions of these tools.

The rest of the paper is organized as follows. Section
II introduces a running example used to illustrate concepts
and our method. Section III covers the formal preliminaries
for the approach. In Section IV, we present our method for
enumerating all minimal IVCs, which is illustrated in Section
V. In Sections VI and VII we talk about implementation
and evaluation of our method. Finally, Section VIII mentions
conclusions and future work.

II. RUNNING EXAMPLE

We will use a very simple system from the avionics domain
to illustrate our approach. An Altitude Switch (ASW) is a
hypothetical device that turns power on to another subsystem,
the Device of Interest (DOI), when the aircraft descends below
a threshold altitude, and turns the power off again after the
aircraft ascends over the threshold plus some hysteresis factor.
An implementation of an ASW containing two altimeters writ-
ten in the Lustre language (simplified and adapted from [24])
is shown in Fig. 1. If either altimeter is below the constant
THRESHOLD, then it turns on the DOI; else, if the system is
inhibited or both altimeters are above the threshold plus the
hysteresis factor T_HYST, then the DOI is turned off, and if
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neither condition holds, then in the initial computation it is
false and thereafter retains its previous value. The notation
(false -> pre(doi_on)) in equation (7) describes an ini-
tialized register in Lustre: in the first step, the expression is
false, and thereafter it is the previous value of doi_on. A
simple property on_p states that if both altimeters are under
the threshold, then the DOI is turned on. This property can
easily be proved over the model using a k-induction based
verifier such as JKind [25].

III. PRELIMINARIES

Given a state space U , a transition system (I, T ) consists
of an initial state predicate I : U → bool and a transition
step predicate T : U × U → bool . We define the notion of
reachability for (I, T ) as the smallest predicate R : U → bool
which satisfies the following formulas:

∀u. I(u)⇒ R(u)

∀u, u′. R(u) ∧ T (u, u′)⇒ R(u′)

A safety property P : U → bool is a state predicate. A safety
property P holds on a transition system (I, T ) if it holds on all
reachable states, i.e., ∀u. R(u)⇒ P (u), written as R ⇒ P for
short. When this is the case, we write (I, T ) ` P . We assume
the transition relation has the structure of a top-level conjunc-
tion. Given T (u, u′) = T1(u, u

′)∧· · ·∧Tn(u, u′) we will write
T =

∧
i=1..n Ti for short. By further abuse of notation, T is

identified with the set of its top-level conjuncts. Thus, Ti ∈ T
means that Ti is a top-level conjunct of T , and S ⊆ T means
all top-level conjuncts of S are top-level conjuncts of T . When
a top-level conjunct Ti is removed from T , we write T \{Ti}.
Such a transition system can easily encode our example
model in Section II, where each equation defines a conjunct
within T that we will denote by the variable assigned; so,
T = { a1_below, a2_below, a1_above, a2_above,

one_below, both_above, doi_on, on_p }.
The idea behind finding an IVC for a given property

P [7] is based on inductive proof methods used in SMT-
based model checking, such as K-induction and IC3/PDR
[1], [26], [27]. Generally, an IVC computation technique aims
to determine, for any subset S ⊆ T , whether P is provable
by S. Then, a minimal subset that satisfies P is seen as a
minimal proof explanation called a minimal Inductive Validity
Core. Theorem 1 demonstrates that the minimization process
is as hard as model checking, so finding a minimal inductive
validity core may not be possible for some model checking
problems.

Definition 1. Inductive Validity Core (IVC) [7]: S ⊆ T
for (I, T ) ` P is an Inductive Validity Core, denoted by
IVC(P, S), iff (I, S) ` P .

Definition 2. Minimal Inductive Validity Core (MIVC) [7]:
S ⊆ T is a minimal Inductive Validity Core, denoted by
MIVC(P, S), iff IVC(P, S) ∧ ∀Ti ∈ S. (I, S \ {Ti}) 0 P .

Theorem 1. Determining if an IVC is minimal is as hard as
model checking.
Proof: see [7].

Fig. 2. Graphical representation of MIVCs for the model in Fig. 1 with
P = (on_p)

Note that, given (I, T ) ` P , P always has at least one
MIVC, and it may also have many distinct MIVCs correspond-
ing to different proof paths. To capture the latter, the all MIVCs
(AIV C) relation has been introduced in [9].

Definition 3. All MIVCs (AIV C): Given (I, T ) ` P ,
AIV C(P ) is an association to all MIVCs for P :

AIV C(P ) ≡ { S | S ⊆ T ∧MIV C(P, S)}

Fig. 2 illustrates these notions by a graphical representation
of IVCs for property P = (on_p) in the example presented
in Section II. As shown in the picture, this property has
two distinct MIVCs, which means the model satisfies P
in two different ways: {{a1_below, one_below, doi_on,

on_p}, {a2_below, one_below, doi_on, on_p}}, This
is because in the implementation, the DOI is turned
on when either of the altimeters is below the thresh-
old, while our property states that they both must be
below. Note that there is a subset of model elements,
{a1_above, a2_above, both_above}, that does not show
up in AIV C(P ). Elements in such a subset do not affect the
satisfaction of P . In the complete ASW model in [24] there
are additional properties that use these elements, but they are
not necessary for the discussion in this paper.

IV. METHOD

Considering the definition of a MIVC, a brute-force tech-
nique for enumerating all MIVCs would be the same as
exploring the power set of T (denoted by P(T )). Basically,
the algorithm needs to explore the provability of a given
property by any subset of T , which would be computationally
expensive. Our approach is an adaptation of the the work
of MARCO for generating all minimal unsatisfiable subsets
(MUSes) in [22], and only needs to explore a (small) portion
of P(T ) in order to compute AIV C. In fact, it can be viewed
as an instantiation of the MARCO proof schema for the richer
theory of sequential model checking. We begin by introducing
several additional notions and definitions, most of which are
analogous or equivalent to those in [22].

Definition 4. Maximal Inadequate Set (MIS): S ⊂ T for
(I, T ) ` P is a Maximal Inadequate Set (MIS) iff (I, S) 0 P
and ∀Ti ∈ T \ S. (I, S ∪ {Ti}) ` P .

33

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



Given (I, T ) ` P , for every S ∈ P(T ), we have either
(I, S) ` P or (I, S) 0 P . In the former case, we say S is
adequate for P ; in the latter, we say that S is inadequate for
the proof of P . Note that every IVC is an adequate set for P ,
and every MIS is an inadequate set.

Lemma 1. For (I, T ) ` P , if S ⊆ T is adequate for property
P , then all of its supersets are adequate for P as well:

∀S1 ⊆ S2 ⊆ T. (I, S1) ` P ⇒ (I, S2) ` P

Proof: From S1 ⊆ S2 we have S2 ⇒ S1. Thus the
reachable states of (I, S2) are a subset of the reachable states
of (I, S1).

Corollary 1. For (I, T ) ` P , if a given subset S is inadequate,
then all of its subsets are inadequate as well:

∀S1 ⊆ S2 ⊆ T. (I, S2) 0 P ⇒ (I, S1) 0 P

Proof: Immediate from Lemma 1.
The basic idea behind an algorithm for computing

AIV C(P ) is the same as exploration of P(T ), with two major
performance improvements. First, Lemma 1 and Corollary 1
are used to block large portions of P(T ) from consideration.
For example, if a set S ∈ P(T ) is found to be inadequate,
then all subsets of S are also inadequate and do not need to
be explicitly considered. Second, if a set S ∈ P(T ) is found
to be adequate, then a fast algorithm (such as IVC_UC from
[7]) is used to find a smaller S′ ⊆ S which is still adequate.
This feeds into the first optimization since now all supersets
of S′ rather than S are blocked from future consideration.

To guide our algorithm, we now introduce a way of ex-
ploring P(T ) which allows us to eliminate all subsets or
supersets of any given set. We use a Boolean expression called
map, which is in conjunctive normal form (CNF) and built
gradually as the algorithm proceeds. Satisfying assignments
for map correspond to elements of P(T ). For each S ∈ P(T )
that the algorithm determines to be adequate or inadequate, a
corresponding clause is added to map which blocks S and all
supersets or subsets, respectively, from consideration. When
a clause is added to map, the corresponding S ∈ P(T )
is called explored. The supersets or subsets of S which are
blocked from consideration are called excluded. The remaining
elements of P(T ) are unexplored.

More precisely, given T with n top-level conjuncts, we
define an ordered set of activation literals A = {a1, . . . , an},
where each ai has type Boolean. We assume the function
ACTLIT : T → A is a bijection assigning every Ti ∈ T
to an ai ∈ A and vice versa. Then, a map for AIV C(P ) is
a CNF formula built over the elements of A such that:
• Initially map is > since all of P(T ) is unexplored.
• When map is satisfiable, a model of it is a set M ∈ P(A)

consisting of those a ∈ A which are assigned true.
• Every model M of map corresponds to a set S ∈
P(T ) such that S =

⋃
ai∈M ACTLIT−1(ai) and M =⋃

Ti∈S ACTLIT(Ti).

• For every explored set S ∈ P(T ):

– if S is adequate for P , then map contains a clause∨
Ti∈S ¬ACTLIT(Ti). This clause blocks all super-

sets of S from future consideration which is consis-
tent with Lemma 1.

– if S is inadequate for P , then map contains a
clause

∨
Ti∈(T\S) ACTLIT(Ti). This clause blocks

all subsets of S from future consideration which is
consistent with Corollary 1.

Lemma 2. When map is satisfiable with model M , set
S =

⋃
ai∈M ACTLIT−1(ai) is not equal to any adequate

or inadequate explored set, nor a subset (superset) of any
inadequate (adequate) explored set in P(T ).

Proof: Proof by contradiction. Case 1: Suppose there is
an adequate set Ex ⊆ S that has been already explored.
Therefore, according to the definition, map contains a clause
C =

∨
Ti∈Ex ¬ACTLIT(Ti), and since Ex ⊆ S, it is

impossible for the model M =
⋃
Ti∈Ex ACTLIT(Ti) to satisfy

C; hence, the assumption is false.
Case 2: Suppose there is an inadequate set Ex such that

S ⊆ Ex and Ex has been already explored. Therefore,
according to the definition, map contains a clause C =∨
Ti∈(T\S) ACTLIT(Ti), and since S ⊆ Ex, it is impossible

for the model M =
⋃
Ti∈S ACTLIT(Ti) to satisfy C; so, the

assumption is false.
From Case 1 and Case 2, there is no model of map whose

corresponding set in P(T ) is a non-strict subset (superset) of
any inadequate (adequate) explored set.

Lemma 3. For (I, T ) ` P , map is satisfiable iff at least one
S ∈ AIV C(P ) or one MIS of T is unexplored.

Proof: Let map is satisfiable with a model M , and let
S =

⋃
ai∈M ACTLIT−1(ai) be the corresponding set of P(T ).

If S is adequate, then it contains a MIVC. That MIVC must
not be explored since otherwise S would have been blocked
from consideration. The MIVC must not be excluded since it
is not a strict superset of any adequate set (by minimality)
nor a subset of any inadequate set (by Corollary 1). Thus the
MIVC must be unexplored. The case where S is inadequate is
symmetric.

In the other direction, let S ⊆ T be an unexplored MIVC.
Then consider the model M =

⋃
Ti∈S ACTLIT(Ti). We will

show that each clause of map is satisfied by M . There are two
types of clauses to consider. A clause

∨
Ti∈S′ ¬ACTLIT(Ti) is

in map only if S′ is adequate. M would falsify this clause only
if S′ ⊆ S which is impossible by minimality of S. A clause∨
Ti∈(T\S′) ACTLIT(Ti) is in map only if S′ is inadequate. M

would falsify this clause only if S ⊆ S′ which is imposssible
by Corollary 1. Thus M is a model for map. The case for an
unexplored MIS is symmetric.

Corollary 2. For (I, T ) ` P , map is unsatisfiable iff every
S ∈ P(T ) has been explored or excluded.

Proof: Immediate from the definition of map and Lemma
3.

Algorithm 1 shows the process of capturing all MIVCs,
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which are kept in set A, along with a warning flag, explained
below. In line 2, we create the set of activation literals used
by function ACTLIT. Line 3 initializes map with > over the
set of literals we have. The main loop of state exploration
starts at line 4 and continues until map becomes UNSAT
which means all the MIVCs have been found. We assume we
have a function CHECKSAT that determines if an existentially
quantified formula is satisfiable or not.2 As long as map is
satisfiable, the algorithm computes a maximal SAT model for
it (line 5). In this context, a maximal SAT model is a model
with as many true assignment as possible without violating
a clause; this problem, is equivalent to the MaxSAT problem,
which has been well studied in the literature [29], [30].3 So,
we assume there is a method by which we are able to have
a maximal model of map. Line 6 extracts a set M ∈ P(A)
of literals assigned to true in the model. Then, we need to
obtain the corresponding set of S in P(T ), which is done with
function ACTLIT−1 in line 7.

We also assume there is a function CHECKADQ that checks
whether or not P is provable by a given subset of T . Note
that from Theorem 1, finding a minimal is undecidable if the
original checking problem is undecidable. Thus, for undecid-
able model checking problems, CHECKADQ can return UN-
KNOWN (after a user-defined timeout) as well as ADEQUATE
or INADEQUATE. For a given set S, if our implementation is
unable to prove the property, we conservatively assume that
the property is falsifiable and set a warning flag w to the
user that the results may be approximate. if S is adequate,
a MIVC is computed by GETIVC and added to set A (lines
10-11).4 In this case map is constrained by a new clause in a
way described before and shown in line 12. However, in the
case that S is inadequate or unknown, map is constrained by
the corresponding literals from T \ S in line 14. Finally, if S
is unknown, the warning flag w is set to true, as the results
may be approximate (lines 15-16).

Theorem 2. Algorithm 1 will terminate.

Proof: We assume that CHECKADQ has a finite timeout,
so all operations within the loop require finite time. Each
iteration of the while loop in Algorithm 1 blocks at least one
element of P(T ) which was not previously blocked. Since
P(T ) is finite, the algorithm terminates.

Theorem 3. If no approximation warning is returned (w is
FALSE), Algorithm 1 enumerates all MISes and MIVCs.

2We assume readers are familiar with the Boolean satisfiability problem,
which is the problem of determining whether there exists an assignment that
satisfies a given propositional formula. For more information, refer to [28].

3MaxSAT is defined as the problem of satisfying as many (weighted)
clauses as possible in a SAT instance. For N variables, similar to the MaxSAT
problem, each clauses is weighted at N +1 and extra unit-weight clauses are
added forcing each variable to 1.

4Note that CHECKADQ can be any method that verifies a safety property,
such as K-induction, and the GETIVC function can be any function that re-
turns an (approximately) minimal IVC, such as the IVC_UC or IVC_UCBF
algorithms from [7]. The only requirement is that it follows the definition of
an inductive validity core, that is: S′ ← GETIVC(P, S) implies that S′ ⊆ S
and (I, S′) ` P .

Algorithm 1: Algorithm All_IVCs for computing AIV C
input : (I, T ) ` P
output: AIV C(P ), Approximation warning flag w

1 A← ∅; w ← FALSE
2 Create activation literals {a1, . . . , an}
3 map← >
4 while CHECKSAT(map) do
5 model← build a maximal model of map
6 M ← extract the set of variables assigned true in

model
7 S ← ⋃

ai∈M ACTLIT−1(ai)
8 res← CHECKADQ(P, S)
9 if res = ADEQUATE then

10 S′ ← GETIVC(P, S)
11 A← A ∪ {S′}
12 map← map ∧ (

∨
Ti∈S′ ¬ACTLIT(Ti))

13 else
14 map← map ∧ (

∨
Ti∈(T\S) ACTLIT(Ti))

15 if res = UNKNOWN then
16 w ← TRUE

17 return A,w

Proof: By Theorem 2 the algorithm terminates. This
means map is eventually unsatisfiable. If w = FALSE then
all model checking problems are solved definitively (no UN-
KNOWN results), so by Lemma 3, all MISes and MIVCs are
either explored or excluded. However, by maximality and
Lemma 1, an MIS can never be excluded. Similarily, by
minimality and Corollary 1, a MIVC can never be excluded.
Thus all MISes and MIVCs are explored and are elements of
A by the end of the algorithm.

Note that none of the proofs above require that GETIVC
returns a minimal IVC. From [7], it is computationally cheap
to find an approximately minimal IVC using the algorithm
IVC_UC; however, using the better, usually minimal IVC using
the IVC_UCBF algorithm is computationally expensive. For
efficiency reasons, it is much better to use the approximate
IVC_UC algorithm to compute the set of all MIVCs. The
IVC_UCBF algorithm attempts to repeatedly prove the property
by brute-force removing elements (BF = “brute force”), so
does much of the work of Algorithm 1 in a way that is not
effective towards finding other IVCs. The overhead of the
IVC_UC algorithm is on average 10% over the baseline proof,
as opposed to 882% for the IVC_UCBF algorithm. In addition,
the average increase in size of IVCs returned by IVC_UC is
approximately 10% of the IVC_UCBF algorithm.

On the other hand, if GETIVC does not return minimal
adequate sets, at the end of the process, set A may contain
both MIVCs and some supersets of MIVCs. To make sure that
the algorithm only returns the minimal adequate sets (MIVCs),
all we need is to remove any supersets of other sets in A. We
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can do this “on the fly” by changing line 11 to the following:
A← A∪{S′} \ {S | S ∈ A∧S′ ⊂ S}. Obviously, the closer
to minimal the results of GETIVC are, the fewer iterations
are required for Algorithm 1 to terminate. Each non-minimal
adequate set returned by GETIVC will induce an additional
iteration for Algorithm 1.

V. ILLUSTRATION

To illustrate the All_IVCs algorithm we use the example
presented in Section II with P = (on_p) . For better descrip-
tion, we view T as an ordered set of its top-level conjuncts; i.e.
T = { a1_below, a2_below, a1_above, a2_above,

one_below, both_above, doi_on, on_p }. The algo-
rithm starts with creating activation literals for each Ti ∈
T . Let the ordered set of Boolean variables {a1, . . . , a8}
be the corresponding literals to the elements of T (e.g.
ACTLIT(a1_below) = a1 and ACTLIT(on_p) = a8). Then,
line 3 initializes map with >.

In the first iteration of the while loop, since map is empty,
it is satisfiable, and a model for it can be any subset of literals.
So obviously, the first maximal model of map contains all the
literals, which means, in line 6, M = {a1, . . . , a8}, and in
line 7, S = T . Since S is adequate for P , the GETIVC module
is called in line 10. Suppose the returned MIVC by this
function is S′ = {a1_below, one_below, doi_on, on_p};
this set is added to A in line 11, and thus it comes to
adding a new clause to map (line 12), which makes map =
(¬a1 ∨¬a5 ∨¬a7 ∨¬a8). As discussed, this constraint marks
all the supersets of S′ as blocked and prunes them off the
search space.

For the second iteration, map is still satisfiable, so the
algorithm gets to find a maximal model of it in line 5. Suppose
this time, the maximal model makes M = {a1, . . . , a7},
which leads to S = T \ {on_p} in line 7. Since S is
inadequate for P , the algorithm jumps to line 12 updating
map as map ← map ∧ a8. Adding this new clause removes
all the subsets of T \{on_p} from the search space. Similarly,
in the third iteration, if the maximal model of map yields
M = {a1, . . . , a4, a6, . . . , a8}, then S = T \ {one_below}
will be another inadequate set that makes map become
map← map ∧ a5 in line 14.

Suppose, in the fourth iteration, the maximal model leads
to M = {a2, . . . , a8} and S = T \ {a1_below} in lines 6
and 7. Since this S is adequate for P , GETIVC computes
a new MIVC in line 10. Let the new MIVC be S′ =
{a2_below, one_below, doi_on, on_p}; after adding this
set to A, it is time to constrain map by a new clause in line 11,
which results in map← map ∧ (¬a2 ∨ ¬a5 ∨ ¬a7 ∨ ¬a8).

After these iterations, map is still satisfiable, and the
maximal model is S = T \ {a1_below, a2_below} in
line 7. In this case, S is inadequate, so we update map as
map ← map ∧ (a1 ∨ a2) (line 14). After adding this new
clause to map, all the subsets of T \ {a1_below, a2_below}
will be blocked. The algorithm continues similar to the forth
iteration leading to S (in line 7) and map (in line 14) to be
as S = T \ {doi_on} and map← map ∧ a7.

Finally, after the sixth iteration, map becomes UNSAT and
the algorithm terminates. Note that MISes and IV Cs may
be discovered in different orders from what explained here.
The order by which sets are explored is quite dependent on
the maximal model returned in line 5 as well as the MIVCs
returned in line 10 because there could be several distinct
maximal models (MISes) and MIVCs. For this example with
a |T | = 8 and |P(T )| = 28, a brute force approach of power
set exploration needs to look into 256 cases. However, the
All_IVCs algorithm only explored 6 cases to cover the entire
power set.

VI. IMPLEMENTATION

We have implemented the All_IVCs algorithm in an indus-
trial model checker called JKind [25], which verifies safety
properties of infinite-state synchronous systems. It accepts
Lustre programs [31] as input. The translation of Lustre into a
symbolic transition system in JKind is straightforward and is
similar to what is described in [32]. Verification is supported
by multiple “proof engines” that execute in parallel, including
K-induction, property directed reachability (PDR), and lemma
generation engines that attempt to prove multiple properties in
parallel. To implement the engines, JKind emits SMT prob-
lems using the theories of linear integer and real arithmetic.
JKind supports the Z3, Yices, MathSAT, SMTInterpol,
and CVC4 SMT solvers as back-ends. When a property is
proved and IVC generation is enabled, an additional parallel
engine executes the IVC_UC algorithm [7] to generate an
(approximately) minimal IVC. To implement our method, we
have extended JKind with a new engine that implements
Algorithm 1 on top of Z3. We use the JKind IVC generation
engine to implement the GETIVC procedure in Algorithm 1.

As mentioned in Section IV the CHECKADQ procedure may
not terminate. In our implementation, we measure the time
required to prove the property and the initial given the full
model (proof-time), and the time required to calculate the first
(approximate) IVC using IVC_UC (IVC_UC-time). We then set
a timeout for each iteration of the All_IVCs algorithm to (30
sec + 5 × (proof-time + IVC_UC-time)). In almost all cases
in our experiment and our use of the tools, this timeout is
sufficient to ensure exact results. In the experiment, only 15
of 475 models (3%) had potentially approximate results. It is
important to note that by increasing the timeout, it is possible
that in some cases smaller IVCs can be generated, but the
general problem will remain due to the undecidability of the
model checking problem.

VII. EXPERIMENT

We are interested in examining the efficacy and efficiency of
generating all minimal IVCs, as compared to algorithms for
computing a single approximately minimal IVC, and a minimal
IVC as implemented in [7] using the IVC_UC and IVC_UCBF

algorithms, respectively. We would also like to know how
performance is affected by the size of models and number of
minimal IVCs. Finally, we are also interested in determining
whether the All_IVCs algorithm generates smaller cores than
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Fig. 3. Runtime of All_IVCs, IVC_UCBF, and IVC_UC algorithms

are generated by the IVC_UCBF algorithm that generates a
single MIVC. Therefore, we investigate the following research
questions:
• RQ1: How expensive is it to compute the All_IVCs al-

gorithm for determining all minimal IVCs when com-
pared to the IVC_UC and IVC_UCBF algorithms, which
find a single approximately minimal and guaranteed min-
imal IVC?

• RQ2: How is the verification time of the All_IVCs algo-
rithm affected by the baseline proof time and the number
of IVCs that can be found for a property?

• RQ3: How large are the IVCs produced by the All_IVCs
algorithm compared to those of IVC_UC and IVC_UCBF?

A. Experimental Setup

The benchmark contains 475 Lustre models, 395 from [32]
and 80 industrial models derived from [33] and other sources.
Most of the benchmark models from [32] are small (10kB
or less, with 6-40 equations) and include a range of hardware
benchmarks and software problems involving counters that are
difficult to solve inductively. The 80 industrial models each
contain over 600 equations and are each ≥80kB in size.

We selected only benchmark problems consisting of a
Lustre model with properties that JKind could prove with an
hour timeout. For each test model, we computed All_IVCs,
IVC_UC, and IVC_UCBF algorithms in a configuration with the
Z3 solver and the “fastest” mode of JKind (which involves
running the k-induction and PDR engines in parallel and
terminating when a solution is found). The experiments were
run on an Intel(R) i5-4690, 3.50GHz, 16 GB memory machine
running Linux, and are available at [34].

B. Experimental Results

In this section, we examine our experimental results to
address the research questions defined in the experiment.

1) RQ1: To address RQ1, we measured the performance
overhead of the various IVC algorithms against the base-
line time necessary to find a proof using inductive model
checking. Fig. 3 provides an overview of the overhead of
the All_IVCs algorithm in comparison with the IVC_UC and

TABLE I
RUNTIME AND OVERHEAD OF DIFFERENT COMPUTATIONS

runtime (sec) min max mean stdev

proof-time 0.016 25.489 1.250 2.381
All_IVCs 0.009 792.01 16.457 64.491
IVC_UCBF 0.163 996.734 11.987 68.525
IVC_UC 0.003 1.126 0.078 0.158

IVC_UCBF algorithms. In the figure, each curve is ranked along
the x-axis according to the time required for the algorithm
to terminate for each analysis problem. Table I provides a
summary of the computation time and the overhead of different
algorithms. The IVC_UC algorithm imposes a 1.25x overhead
to the baseline proof time, whereas both the IVC_UCBF

and All_IVCs algorithms add a substantial time penalty:
IVC_UCBF and All_IVCs add a (mean) 18.8x and 31.3x
overhead, respectively, to the proof time. For small models,
much of this penalty is due to starting many instances of
the SMT solver; if we examine models that require ≥ 1s
of analysis time, the mean overhead of All_IVCs over the
baseline analysis drops from 31.3x to 9.7x.

2) RQ2: For this question, we examine how the proof time
of the original model and the number of MIVCs associated
with the property affects the analysis time of the All_IVCs

algorithm. Fig. 4 provides an overview of this data. The data
in Fig. 4 is sorted twice along the x-axis: the major axis is the
number of MIVCs that exist for the model, and the minor axis
is the analysis time of the baseline model. In this graph, the
graph shows how both factors effect the performance of the
All_IVCs algorithm. Note that there are two scales for the y-
axis: the scale on the left is a logarithmic scale of performance
in terms of the run time; the scale on the right is a linear scale
based on the number of minimal IVCs discovered.

Fig. 4 shows two distinct trends. First, for models whose
baseline proofs are inexpensive and that only have a single
MIVC, the All_IVCs is roughly equivalent in performance
to the IVC_UCBF. However, as proofs become more expensive
for a single MIVC, the All_IVCs begins to underperform the
IVC_UCBF, this is the case for the properties with one MIVC.
In the cases where several MIVCs are found, the performance
of the All_IVCs is driven to a large degree by the number
of MIVCs that exist: the more MIVCs associated with a
property, the higher the expense of All_IVCs as compared
to the IVC_UCBF algorithm.

3) RQ3: For this research question, we analyzed the min-
imality of the discovered IVC by each algorithm (Figure 5).
Since 394 of the models had only one MIVC, for these models,
the size of the minimum model produced by the All_IVCs

algorithm should be the same as the IVC_UCBF algorithm. For
the remainder, even when multiple MIVCs were produced, in
only 12 cases did the All_IVCs produce smaller minimal
IVCs. For these 12 models, the smallest MIVC was 16% the
size of the MIVC produced by IVC_UCBF, and in the most
dramatic case, the number of elements shrank from 30 to 5.
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Fig. 4. Runtime of different computations along with the number of MIVCs

Fig. 5. Size of the IVC sets produced by different algorithms

VIII. CONCLUSIONS & FUTURE WORK

The idea of extracting a minimal IVC for a given property
and its applications was recently introduced in [7]. However,
a single IVC often does not provide a complete picture of the
traceability from a property to a model. In this paper, we have
addressed the problem of extracting all minimal IVCs. We
have shown the correctness and completeness of our method
and algorithm. In addition, we have a substantial evaluation
that shows that the practicality and efficiency of our technique.

Our method is inspired by a recent work in the domain of
satisfiability analysis [22]. One interesting future direction is to
devise similar MIVC enumeration algorithms based on other
studies on MUSes extraction such as [21]. We are also looking
into improving our implementation by using more efficient
methods for the CHECKADQ and GETIVC modules used by
our algorithm. Another interesting direction is to parallelize
the enumeration process: it is certainly possible to ask for
multiple distinct maximal models to be solved in parallel.

We also plan to investigate additional applications of the
idea. When performing compositional verification, the All-
IVCs technique may be able to determine minimal component
sets within an architecture that can satisfy a given set of
requirements, which may be helpful for design-space explo-
ration and synthesis. Finally, we are interested in adapting
the notion of (all) validity cores for bounded model checking
for quantifying how much of models have been explored by
bounded analysis.
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Abstract—Interpolating, i.e., computing safe over-
approximations for a system represented by a logical formula,
is at the core of symbolic model-checking. One of the central
tools in modeling programs is the use of the equality logic
and uninterpreted functions (EUF), but certain aspects of
its interpolation, such as size and the logical strength, are
still relatively little studied. In this paper we present a
solid framework for building compact, strength-controlled
interpolants, prove its strength and size properties on EUF,
implement and combine it with a propositional interpolation
system and integrate the implementation into a model checker.
We report encouraging results on using the interpolants both
in a controlled setting and in the model checker. Based on
the experimentation the presented techniques have potentially
a big impact on the final interpolant size and the number of
counter-example-guided refinements.

I. INTRODUCTION

An important skill in constructing mathematical proofs is
to identify the aspects of the problem that are relevant. When
applied to formal reasoning about the correctness of software
this means ignoring the parts of the system that play no
role in its correctness. One such approach that works well in
automated software verification based on satisfiability modulo
theories (SMT) engines (see, e.g, [1]) is to employ the Equality
Logic and Uninterpreted Functions (EUF) when applicable: in
some cases it suffices to assume that a given function returns
the same value when invoked with the same arguments. This
technique is particularly useful, for example, when modeling
memory or arrays [2], proving program equivalence [3], or
as a technique for avoiding flattening in solving bit-vector
problems [4], [5].

Generalizing a formula over the states reachable by a
program is a natural subtask when summarizing the behavior
of a procedure [6], or computing a fixed-point of a tran-
sition function [7], [8]. These techniques are now popular
in software model-checking [9], [10], and together with the
theory-based abstraction result in a growing interest in an over-
approximation technique known as interpolation.

In this paper we present the EUF-interpolation system
which aims at specializing and tailoring interpolants for
the needs of interpolation-based model-checking. The paper
contributes to the state-of-the-art by (i) providing the first
approach for controlling the strengths of EUF interpolants;
(ii) identifying a strength lattice of interpolation algorithms;
and (iii) proving under certain assumptions the size order for
the interpolants produced by the system. In addition we (iv)

provide an implementation of the system; (v) integrate and
experiment with the system on a model checker; and (vi) study
the combination of labeled interpolation systems for EUF and
propositional logic. The EUF-interpolation operates on the
proof of unsatisfiability in EUF based on a recursive algorithm
for building a final interpolant from partial interpolants and
uses duality of interpolants, a logical relation between an
interpolant and its negation discussed below, to control the
strength of the constructed partial and final interpolants.

The system is implemented in the SMT solver
OpenSMT2 [11], and used in a model-checking algorithm
based on the interpolating incremental C verifier HiFrog [6].
This gives us the advantage of making a direct connection
between the theoretical contributions and practice. We
evaluate the efficiency of the EUF-interpolation system with
two major experiments. In the first experiment we verify a set
of C software verification problems produced by HiFrog, and
in the second experiment we study different combinations of
propositional and EUF interpolation algorithms on a set of
instances from the SMT-LIB benchmark collection. Based
on the results the system has a big impact on the generated
interpolants, and the interpolants seem to be very useful
in our application to model-checking. To the best of our
knowledge our work is the first to consider the duality of
interpolants in constructing EUF interpolants recursively, and
to report experiments with EUF interpolation together with
incremental verification.

a) Related work : Recent work on labeled interpola-
tion systems (LIS) addresses interpolation in propositional
logic [12], [13], [14], [15] by providing control over fitting
the interpolant strength and size to particular model-checking
applications. Our approach extends the work on propositional
interpolation to SMT theories and in particular to EUF. In-
terpolation procedures for EUF have been introduced in [16],
[17]. The interpolation procedure given in [16] provides a way
of computing a single interpolant from a given proof. The
technique is extended in [17] to allow construction of several
interpolants through the coloring of congruence graphs edges.
Our work differs fundamentally from both these approaches by
using duality for controlling the interpolant strength, a feature
not available in earlier formalizations.

The parametric interpolation frameworks presented in [18]
and [19] generalize first-order interpolation procedures. The
former provides labeled interpolation systems for hyper-
resolution proofs which are then extended to first order in-
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terpolation systems for local proofs; the latter generalizes the
former further to non-local proofs. Both of these techniques
provide control on the propositional level. Unlike ours, they
are not specialized and optimized for EUF and, to the best of
our knowledge, have not been implemented.

Other orthogonal procedures exist for the quantifier-free
fragments of the theories of linear integer arithmetics [20],
[21], linear real arithmetics [16], [22], [23], and Arrays [24],
while [25] provides a labeled interpolation system for Non-
linear Real Arithmetics. On a high level, we believe that the
duality-based approach followed in this work can be applied
also in these fields.

This paper is organized as follows: Sec. II presents a general
algorithmic framework for interpolation as a preliminary for
the EUF-interpolation system. The main result on the EUF-
interpolation system is presented in Sec. III The experiments
are reported in Sec. IV, and the paper concludes in Sec. V. For
lack of space the proofs are available in the extended version
of the paper, available with the implementation and more
experimental results at http://verify.inf.usi.ch/euf-interpolation.

II. PRELIMINARIES

This paper considers the extension of propositional logic
to Boolean variables that are interpreted as equalities over
uninterpreted functions. Following [26], we call this extension
the theory of equality logic and uninterpreted functions (EUF).
For example ¬(a = b) ∨ f(a) = f(b) is an EUF formula
containing the uninterpreted functions a, b, and f , embedded
in a Boolean structure. Given an EUF formula F , we call the
equality (=), and the Boolean connectives (e.g. ¬,∧,∨) the
logical symbols, while the Boolean variables and uninterpreted
functions are its non-logical symbols, denoted by Vars(F ).

Given an unsatisfiable conjunction A∧B of EUF formulas
A and B, an interpolation instance is a pair (A,B), and
an interpolant for (A,B) is a formula I(A,B) such that (i)
A → I(A,B), (ii) I(A,B) ∧ B is unsatisfiable, and (iii)
Vars(I(A,B)) ⊆ Vars(A) ∩ Vars(B). When B is clear
from context, we refer to I(A,B) as an interpolant for A. In
general several interpolants can be computed for an instance
(A,B). We denote an algorithm computing an interpolant
I(A,B) by Itp(A,B), and, with a slight abuse of the no-
tation, use Itp(A,B) to denote the interpolant I(A,B) when
the interpolation algorithm needs to be specified. A central
concept to this paper is the duality between interpolation
algorithms: Given an interpolation algorithm Itp(A,B), also
the algorithm Itp−(A,B) returning ¬Itp(B,A) computes an
interpolant for (A,B), as can be seen from the following rea-
soning: By definition, Itp−(A,B) = ¬Itp(B,A). Itp(B,A)
satisfies (i) B → Itp(B,A); (ii) Itp(B,A) → ¬A; and
(iii) Vars(Itp(B,A)) ⊆ Vars(A) ∩ Vars(B). By rewriting,
from (ii) follows that (iv) A → ¬Itp(B,A), and from (i)
that (v) ¬Itp(B,A) → ¬B. From (iii), commutativity of
intersection, and definition of non-logical symbols, follows (vi)
Vars(¬Itp(B,A)) ⊆ Vars(B) ∩Vars(A).

In this work we consider algorithms that build interpolants
based on the unsatisfiability proof of A ∧ B. We make this

Algorithm 1 Congruence closure
1: procedure CONGRUENCECLOSURE(T,Eq)
2: Initialize E ← ∅ and G← (T,E)
3: repeat pick x, y ∈ T such that (x 6∼ y)
4: if (a) (x = y) ∈ Eq or
5: (b) x is f(x1, . . . , xk), y is f(y1, . . . , yk), and
6: (x1 ∼ y1), . . . , (xk ∼ yk) then
7: E ← E ∪ {(x, y)}
8: until no such x, y can be chosen so that E would grow
9: return G

explicit by denoting the interpolation algorithm (and the re-
sulting interpolant) by Itp(A,B,R), where R is the refutation
representing the proof of unsatisfiability. In this work we
are particularly interested in ordering interpolation algorithms
with respect to the strength of the interpolants they compute.
An interpolant I is stronger than an interpolant I ′ if I → I ′.
We extend the strength relation to interpolation algorithms: if
Itps(A,B,R)→ Itpw(A,B,R) for algorithms Itps and Itpw

for all interpolation instances (A,B), then Itps is stronger
than Itpw. If the strength relation can be established between
the algorithms Itp and Itp−, we call the algorithm computing
the stronger interpolant the base and the weaker the dual
interpolation algorithm and denote them by Itp and Itp′,
respectively.

A. EUF Preliminaries

This section describes our interpolation system for EUF. The
presentation is based on [17] and uses the congruence graph
as the refutation.

Many EUF solvers rely on the congruence closure algo-
rithm [27] to decide the satisfiability of a set of equalities
and disequalities. The algorithm, described in Alg. 1, takes as
input a finite set Eq of equalities, and the subterm-closed set T
over which Eq is defined. During the execution the algorithm
builds an undirected congruence graph G using the set T as
nodes. We write (x ∼ y) if there is a path in G connecting x
and y and denote this path by xy.

Theorem 1 (c.f. [27]): Let S be a set of EUF disequal-
ities x 6= y over the terms T . The set S ∪ Eq is satisfi-
able if and only if the congruence graph G constructed by
CONGRUENCECLOSURE(T,Eq) has no path (x ∼ y) such
that (x 6= y) ∈ S.

During the creation of G, an edge (x, y) is added only
if (x ∼ y) does not hold, which ensures that G is acyclic.
Therefore, for any pair of terms x and y such that (x ∼ y)
holds in G, the path xy connecting these terms is unique. The
path xx is called an empty path. For an arbitrary path π, we
use the notation JπK to represent the equality of the terms that
π connects. If, for example, π = xy, then JπK := (x = y).
We also extend this notation over sets of paths P so that
JP K := ∧σ∈P JσK.

An edge may be added to a congruence graph G because of
two different reasons in Alg. 1 at line 7. Edges added because
of Condition (a) are called basic, while edges added because
of Condition (b) are called derived. Let e be a derived edge

40

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



(f(x1, . . . , xk), f(y1, . . . , yk)). The k parent paths of e are
x1y1, . . . , xkyk. Given a congruence graph G and two terms
x, y such that x ∼ y we denote by G[xy] the congruence graph
obtained from the graph G by including the edges and terms
that appear on the path xy and recursively all its parent paths.

To compute an interpolant for (A,B), the congruence graph
needs to be annotated with the information on which equalities
and terms belong to A and which to B. This information
is encoded using colors. Let F be a set of equalities and
disequalities, A ∪ B a partition of F , and (x ./ y) ∈ F
an equality or a disequality over the terms x and y (i.e.,
./∈ {=, 6=}). A term is a-colorable if all its non-logical
symbols occur in A; b-colorable if all its non-logical symbols
occur in B; and ab-colorable if both a and b-colorable.
Given a set of edges E of a congruence graph, a coloring
C : E → {a, b} assigns a color a or b to each edge in E
considering two restrictions: (i) basic edges e = (x, y) must
be colored a if (x = y) ∈ A and b if (x = y) ∈ B; and (ii) if
an edge (x, y) has color κ ∈ {a, b}, both x and y must be κ-
colorable. In particular a derived or basic edge e = (x, y) such
that both x and y are ab-colorable can be coloured arbitrarily.
A path in a congruence graph is colorable if all its edges are
colorable, and a congruence graph is colorable if all its edges
are colorable.

While it is possible to construct a non-colorable congruence
graph, the following lemma and its constructive proof in [17]
state that we may assume without loss of generality that
congruence graphs are colorable.

Lemma 1 (c.f. [17]): Let (A,B) be an interpolation instance
over EUF. If x and y are colorable terms and if A,B |= (x =
y), then there exist a term set T and a colorable congruence
graph over the equalities contained in A ∪ B ∪ T in which
(x ∼ y).

We denote a congruence graph G colored with a function C
by GC . A path is called an a-path if all its edges are colored
a, and a b-path if all its edges are colored b. A factor of a path
in GC is a maximal subpath such that all its edges have the
same color. Notice that every path is uniquely represented as
a concatenation of the consecutive factors of opposite colors.

Example 1: Let A := {(v1 = f(y1)), (f(y2) = v2), (y1 =
t1), (t2 = y2), (s1 = f(r1)), (f(r2) = s2), (r1 = u1), (u2 =
r2)} and B := {(x1 = v1), (v2 = x2), (t1 = f(z1)), (f(z2) =
t2), (z1 = s1), (s2 = z2), (u1 = u2), (x1 6= x2)}. Figure 1
shows a colored congruence graph GC built while proving
the unsatisfiability of A and B with Alg. 1. The curvy edges
with the labels s or w in GC are not relevant for this example
and are used later in Section III. The congruence graph GC

demonstrates the joint unsatisfiability of A and B, since it
proves (x1 = x2) and (x1 6= x2) is an original term. Edges
are represented by thick lines, and dotted arrows point to
the parents of derived edges. We present a-colorable nodes
(terms) and a-colored edges by black circles and solid lines,
b-colorable nodes and b-colored edges by white circles and
dashed lines, and ab-colorable nodes by gray circles. In the
first (top) path of GC , we see that basic edges (original
equalities from A ∪ B) are used to prove (r1 = r2). This

x2

w ww

ww

w wy1 t1 f (z1) f (z2) t2 y2

z1 s1 f (r1) f (r2) s2 z2

r1 u1 u2 r2

w

w

s ss

s

x1 v1 f (y1) f (y2) v2

Figure 1. Congruence graph GC that proves the unsatisfiability of A ∪B

fact is used to infer (f(r1) = f(r2)), which is in turn used
as a derived edge in the path below, proving (z1 = z2). The
equality (f(z1) = f(z2)) is then inferred and used to prove
(y1 = y2) in the path below. In the last (bottom) path of GC ,
the derived edge representing (f(y1) = f(y2)) is created and
finally (x1 = x2) is proved.

III. THE EUF INTERPOLATION SYSTEM

In this section we present the EUF-interpolation system
which extends the approach described in [17] with a modular
use of dual interpolants. Our main novelty is the control over
the interpolant strength. Due to lack of space all the proofs of
the theorems in this section are presented in Appendix ??.

Intuitively, the approach computes partial interpolants with
either a base or a dual interpolation algorithm using the
structure of a congruence graph. We show that while inter-
polating on a fixed congruence graph the liberty in choosing
between the two interpolation algorithms allows computing
several interpolants that can be partially ordered with respect
to their strength. To make this choice explicit we introduce the
labeling functions L for the EUF-interpolation system, and the
algorithm ItpL for computing the interpolants.

Definition 1 (Labeling function): Let G[xy]C be a colored
congruence graph and W its factors. A labeling function
L : W ∪ {xy} → {s, w} labels the factors and the path
corresponding to the conflict x 6= y as s or w.

We emphasize that colors, described in Sec. II-A, and labels
are different concepts. The colors a, b tell if an edge belongs
to A or B, whereas labels s, w determine whether to use the
primal or the dual interpolant.

Given an (unsatisfiable) interpolation instance (A,B), an
EUF interpolation algorithm ItpL(A,B,G[xy]

C) computes an
interpolant for (A,B); G[xy]C is a congruence graph with
coloring C; xy a path such that (x ∼ y) is in G and the
disequality (x 6= y) exists in A ∪ B; and L is a labeling
function. We omit A, B, GC and L when they are clear
from the context, referring to the interpolation algorithm and
the corresponding interpolant as Itp(xy). Given an arbitrary
path σ we define separately two constant labeling functions
Ls(σ) = Ls = s and Lw(σ) = Lw = w that will be useful in
the following analysis.

The interpolation algorithms in [16] and [17] essentially
compute an interpolant by collecting the A-factors that prove
(x = y) in GC . To maintain the unsatisfiability with the B
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part of the problem, the A factors will then be implied by their
B-premise set. A premise set for factor of a given color is the
set of equalities of the opposite color justifying the existence
of the factor’s parent edges. More technically, the B-premise
set B for a path π is

B(π) :=





⋃{B(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is a B-path; and⋃{B(σ)|σ is a parent path of an edge of π},

if π is an A-path.
(1)

As stated in Sec. II, it is also possible to compute a dual
interpolant for A as the negation of an interpolant for B. To
compute the dual interpolant we similarly collect the B-factors
that prove (x = y) in GC , implied by their A-premise set. The
A-premise set A for a path π is defined as

A(π) :=





⋃{A(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is an A-path; and⋃{A(σ)|σ is a parent path of an edge of π},

if π is a B-path.
(2)

We extend the notation of A and B over a set S of paths as
A(S) := ⋃σ∈S A(σ) and B(S) := ⋃σ∈S B(σ). We also write
AB(π) = A(B(π)) etc. to denote compositions of operators.
The functions JA and JB give, respectively, the contribution
of an individual A-factor and an individual B-factor to the
interpolants.

JA(π) := JB(π)K→ JπK (3)

JB(π) := JA(π)K→ JπK (4)

Let S be a set of factors. S|ν is the subset of S containing
the factors σ such that L(σ) = ν for ν ∈ {s, w}. Let
(A,B) be an EUF interpolation instance, G the corresponding
congruence graph, and x 6= y ∈ A∪B that is in conflict with
G. Let P = (A,B,G[xy]C). The algorithm ItpL(P ) computes
the EUF interpolant over A for a path xy. It is defined using
four sub-procedures IA, I ′A, IB , and I ′B that map congruence
graphs to partial interpolants, and are invoked depending on
which partition the conflict x 6= y belongs to and what label
the path xy has:

ItpL(P ) :=





IA(xy) if (x 6= y) ∈ B and L(xy) = s,

I ′A(xy) if (x 6= y) ∈ A and L(xy) = s,

¬IB(xy) if (x 6= y) ∈ A and L(xy) = w, and
¬I ′B(xy) if (x 6= y) ∈ B and L(xy) = w.

(5)
The sub-procedures for IA and IB are defined as

IA(π) :=
∧

σ∈A(π)

JA(σ)∧
∧

σ∈BA(π)|s
IA(σ)∧

∧

σ∈BA(π)|w
¬I ′B(σ)

(6)
and

IB(π) :=
∧

σ∈B(π)
JB(σ)∧

∧

σ∈AB(π)|w
IB(σ)∧

∧

σ∈AB(π)|s
¬I ′A(σ).

(7)

f (x6)

x6x5x3x2

f (x2) f (x3) x4 f (x5) x7x1

x2 = x3
[⊤][⊤] x5 = x6

x1 = x7 [x2 = x3 ∧ x5 = x6 → x1 = x7]

Figure 2. Computing partial interpolants for the EUF-interpolation system.

For the cases where either the conflict x 6= y ∈ A and L(xy) =
s, or the conflict x 6= y ∈ B and L(xy) = w, the path xy = π
needs to be decomposed for computing the partial interpolant
as π1θbπ2 or π1θaπ2, where θκ is the longest subpath of π
with κ-colorable endpoints. Hence, I ′A and I ′B are

I ′A(π) := IA(θb) ∧
∧

σ∈B(π1)∪B(π2)

IA(σ)

∧ (JB(π1) ∪ B(π2)K→ ¬JθbK),
(8)

and
I ′B(π) := IB(θa) ∧ (

∧

σ∈A(π1)∪A(π2)

IB(σ))

∧(JA(π1) ∪ A(π2)K→ ¬JθaK).
(9)

Theorem 2: Given two sets of equalities and disequalities A
and B such that A∪B is unsatisfiable, a colored congruence
graph GC containing a path π := xy such that (x 6= y) ∈
A ∪ B, and a labeling function L, Eq. (5) computes a valid
interpolant for A using L over GC .

The following example shows how Eq. (5) can be used to
compute the interpolants from [17].

Example 2: Let A := {(x1 = f(x2)), (f(x3) = x4), (x4 =
f(x5)), (f(x6) = x7)} and B := {(x2 = x3), (x5 =
x6), (x1 6= x7)}. Figure 2 shows a possible congruence graph
GC that proves the joint unsatisfiability of A and B by
proving (x1 = x7) such that (x1 6= x7) ∈ A ∪ B. We
denote the proof as a tree with each node annotated by its
partial interpolant. In this example we use the constant labeling
function Ls = s. From Eq. (5) we have that Itp(x1x7) =
IA(x1x7), because Ls(x1x7) = s and (x1 6= x7) ∈ B.
The call to IA(x1x7) is represented by the root node in the
tree in Fig. 2. First we compute A(x1x7) = {x1x7} and
BA(x1x7) = {x2x3, x5x6}. Then from Eq. (6) we have that
IA(x1x7) = JA(x1x7) ∧ IA(x2x3) ∧ IA(x5x6). The calls to
IA(x2x3) and IA(x5x6) are represented by the edges from the
leaf nodes to the root in the tree in Fig. 2. We then proceed
computing A(x2x3) = ∅ and BA(x2x3) = ∅ which lead to
IA(x2x3) = >; and A(x5x6) = ∅ and BA(x5x6) = ∅ which
lead to IA(x5x6) = >, the partial interpolants of the leaf
nodes. Finally we have that IA(x1x7) = ((x2 = x3) ∧ (x5 =
x6)) → (x1 = x7) is the partial interpolant of the root node,
representing the final interpolant for A.

A. The Interpolant Strength
Let P = (A,B,G[π]C) and Ls and Lw the strong and

the weak labeling functions. We will show in Th. 3 that
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ItpLs(P )→ ItpLw(P ), and then in Ex. 3 that there are cases
where the strength relation is strict in the sense that there
are models that satisfy ItpLw(P ) but do not satisfy ItpLs(P ).
Theorem 3 needs Lemma 4 which in turn is a generalization of
Lemma 2. We then show our main result on EUF in Theorem 4
on comparing the strength of interpolants based on the labeling
functions used.

Lemma 2: Let GC be a congruence graph with coloring C,
and ω a factor from G. Then IA(ω) ∧ IB(ω)→ JωK.

Lemma 3: Let π be an arbitrary path in the congruence
graph, and φ(π) the set of all factors in π. Then IA(π) =∧
σ∈φ(π) IA(σ) and IB(π) =

∧
σ∈φ(π) IB(σ).

Lemma 4: Lemma 2 holds when ω is a path containing
multiple factors.

Theorem 3: For fixed A,B, and G[xy]C , for the cor-
responding interpolants defined in Eq. (5) it holds that
ItpLs(A,B,G[xy]

C)→ ItpLw(A,B,G[xy]
C).

We demonstrate that the implication is not trivial in general
by constructing three different labeling functions for the con-
gruence graph from Ex. 1 that result in three pairwise unequal
interpolants.

Example 3: Consider again the sets A and B and the
congruence graph GC from Ex. 1 and Fig. 1. Let Lc be
a custom labeling function mapping the paths to labels as
{x1x2 7→ s, x1v1 7→ s, v1v2 7→ s, v2x2 7→ s, y1t1 7→
w, t1t2 7→ w, t2y2 7→ w, z1s1 7→ w, s1s2 7→ w, s2z2 7→
w, r1u1 7→ w, u1u2 7→ w, u2r2 7→ w}. We recall that the
labeling function only needs to be defined on the factors
and the path that contradicts the original disequality, in this
case x1x2. The labels are shown over curves representing
which path is being labeled. The labeling function Lc rep-
resents the intent of generating stronger partial interpolants
closer to (x1 = x2), and weaker partial interpolants in the
inner explanations. Let Itps, Itpw and Itpc be, respectively,
the interpolants generated by Eq. (5) by using the labeling
functions Ls, Lw and Lc. The computed interpolants are
Itps = ((t1 = t2)→ (v1 = v2)) ∧ ((u1 = u2)→ (s1 = s2)),
Itpw = ¬((u1 = u2)∧((s1 = s2)→ (t1 = t2))∧¬(v1 = v2)),
and Itpc = ((t1 = t2)→ (v1 = v2)) ∧ ¬(((s1 = s2)→ (t1 =
t2))∧(u1 = u2)∧¬(t1 = t2)). The reader is welcome to verify
that Itps → Itpc → Itpw, and none of them is equivalent to
another.

Finally we present our main result providing a way to
partially order interpolation algorithms into a lattice based
on their strength. From this follows that the constant labeling
functions Ls and Lw give, respectively, the strongest and the
weakest interpolants within this framework.

Theorem 4: Let w be a strength relation defined over the
labels s and w such that s w s, w w w and s w w. Let
(A,B) be an interpolation instance, GC a congruence graph
proving the unsatisfiability of A∧B, and L and L′ two labeling
functions such that L(σ) w L′(σ) for all the factors σ of GC .
Then ItpL(A,B,G

C)→ ItpL′(A,B,GC).

B. Interpolant Size

The EUF-interpolation system presented above introduces a
way of computing interpolants of different strength by labeling
the factors of a congruence graph as s or w, depending on the
required strength. Each labeling function results potentially
in a different interpolant, and creating meaningful labeling
functions is a challenging task on its own. For the labeling
functions Ls and Lw we give the following results with respect
to their size.

Theorem 5: Let P = (A,B,G[π]C). The interpolant with
the smallest number of equality occurrences over all inter-
polants computable with the EUF interpolation system is
ItpLs(P ) if π ∈ B and ItpLw(P ) if π ∈ A.

IV. EXPERIMENTS

We integrated the EUF interpolation system together with
propositional interpolation to the OpenSMT2 solver and
HiFrog, an interpolation-based incremental model checker
for C [6], [28]. We report experiments in two different
settings in the implementation: running the approach (i) in-
tegrated in HiFrog; and (ii) over unsatisfiable EUF bench-
marks from SMT-LIB (i.e., the QF UF benchmarks). The
benchmarks and the software are available at http://verify.inf.
usi.ch/euf-interpolation. Before describing the experiments we
give a concise explanation on how EUF and propositional
interpolation are integrated.

A. Integration of Propositional and EUF Interpolation.

An SMT solver takes as input a propositional formula where
some atoms are interpreted over the theory of equalities over
uninterpreted functions. If a satisfying truth assignment for
the propositional structure is found, a theory solver is queried
to determine the consistency of its equalities. In case of
inconsistency the theory solver adds a reason-entailing clause
to the propositional structure. The process ends when either
a theory-consistent truth assignment is found or the proposi-
tional structure becomes unsatisfiable. The SMT framework
provides a natural integration for the theory and propositional
interpolants. The clauses provided by the theory solver are
annotated with their theory interpolant and are used as partial
interpolants in the propositional interpolation system (see,
e.g., [15]). Similar to EUF, the propositional interpolation
algorithms control the strength of the resulting interpolant
by choosing the partition for the shared variables through
labeling [15]. The labeling has to be followed then by the
theory interpolation algorithm to preserve interpolant sound-
ness. In the following experiments we use instances of the
propositional labeled interpolation system [29], [15] supported
by OpenSMT2, and in particular the McMillan’s algorithms
Ms and Mw [7], the Pudlák’s algorithm P [30], and the proof-
sensitive algorithms PS ,PS s, and PSw [15] that use the proof
structure to optimize the labeling. Fig. 4 shows the algorithms
ordered with respect to the logical strength of the interpolants
they compute.
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Figure 3. HiFrog overview

B. Interpolation-Based Incremental Verification

We integrated the EUF-interpolation system with the in-
cremental model checker HiFrog as part of OpenSMT2, and
used it to verify a set of C benchmarks from SV-COMP
(https://sv-comp.sosy-lab.org/) and other sources. In total we
checked 973 verification conditions.

We use both purely propositional logic and QF UF to
model the programs. The incremental C model checker HiFrog
attempts to prove or refute the validity of a sequence of
verification conditions using an SMT solver and an encod-
ing in EUF or in bit-precise propositional logic. Figure 3
shows HiFrog’s verification flow; see [28] for a more detailed
description on function refinement. The problem instance is
pre-processed and encoded into an SMT instance. An SMT
solver computes whether the assertion holds by determining
the satisfiability of the instance. If the instance is unsatisfiable,
the assertion holds, and interpolation is used to extract function
summaries from the proof. These summaries are then stored
and used in lieu of the precise encoding of a function to
incrementally verify the consequent assertions. If the instance
is satisfiable, the witnessing truth assignment corresponds to
an execution violating the assertion. However, due to the over-
approximative nature of both EUF and the function summaries,
the execution might be spurious. In this case the model checker
uses the precise encoding instead of the summaries to decide
the correct answer.

Table I overviews of our results. The numbers in parentheses
after the names report the number of assertions in the instance.
The table shows the verification time for HiFrog with proposi-
tional logic in the column Bool; and with EUF in the columns
marked EUF Time. Unlike the bit-precise propositional model,
the EUF model provides an over-approximation of the program
behavior. If HiFrog reports that a safety property is true under
EUF it is also true for the propositional model. However, if
a property is reported false, it may indicate either a real or a
spurious counterexample introduced by the EUF abstraction.
In the spurious case the model checker should, for instance,
consult the propositional encoding. The three columns under
the label EUF Results list, from left to right, the number of cor-
rectly identified assertions using EUF encoding, the number of
reachable assertions, and how many of the reachable assertions
were spurious. The table reports run times for three variations

Table I
SUMMARY OF VERIFICATION RESULTS ON A SET OF C BENCHMARKS.

EUF Results EUF Time (s)
Name (asrts) Corr SAT Sp Bool EUF Sp Full

floppy1 (18) 15 3 3 69.6 8.3 34.7 34.7
floppy2 (21) 18 3 3 192.1 46.7 122.5 122.5
kbfiltr1 (10) 10 0 0 4.1 1.3 1.3 1.3
diskperf1 (14) 11 3 3 193.7 20.5 67.8 67.8
floppy3 (19) 16 4 3 76.2 9.6 36.4 43.7
kbfiltr2 (13) 13 0 0 10.2 3.0 3.1 3.1
floppy4 (22) 19 4 3 207.3 46.7 127.9 144.1
kbfiltr3 (14) 14 1 0 18.7 5.7 5.6 14.6
tcas asrt (162) 149 145 13 86.0 16.7 21.6 100.0
cafe (115) 100 100 15 19.2 4.2 5.8 14.7
s3 (131) 123 112 8 1.5 1.7 1.8 3.0
mem (149) 146 52 3 44.6 59.9 60.0 78.5
ddv (152) 56 105 96 260.3 11.2 122.0 122.9
token (54) 54 20 0 962.3 150.6 150.6 998.6
disk (79) 62 72 17 8195.0 237.6 638.2 8151.2

total (973) 806 624 167 10340.8 623.7 1399.3 9900.7

Table II
INTERPOLATION ALGORITHM COMPARISON ON A SET OF C BENCHMARKS.

Ms + Itps Ms + Itpw Mw + Itps Mw + Itpw

Name t refs t refs t refs t refs

floppy1 10.9 28672 9.8 27648 8.3 24320 12.7 32256
floppy2 58.9 37120 64.8 41216 46.7 37632 59.6 40704
kbfiltr1 1.5 4864 1.5 4864 1.3 4864 1.5 4864
diskperf1 30.1 45568 20.5 44544 29.7 47104 26.0 48384
floppy3 9.6 28928 13.6 34304 9.6 26624 10.8 29952
kbfiltr2 3.0 4864 3.1 4864 3.1 4864 3.0 4864
floppy4 57.2 41472 46.7 43008 48.6 40704 58.6 43776
kbfiltr3 5.7 10240 6.5 10496 5.6 10240 6.3 10496
tcas asrt 17.2 59648 16.8 60160 16.7 59648 17.3 60160
cafe 4.2 6656 4.3 6656 4.2 6656 4.3 6656
s3 1.7 0 1.7 0 1.6 0 1.6 0
mem 60.1 23808 59.9 25088 60.7 23808 60.1 25088
ddv 11.2 7936 11.6 7936 11.6 7936 11.7 7936
token 151.4 15616 151.0 13568 152.8 15616 150.6 13568
disk 237.6 9472 241.3 38912 240.4 9472 246.4 38912

Total 660.3 324684 653.1 363264 640.9 319488 670.5 367616

of the model checker. Column EUF reports the time used only
by the EUF check. Column Sp reports the time when HiFrog
is allowed to query the spuriousness of the counter-example
from an oracle (see [31] for heuristics for implementing such
an oracle) and only needs to consult the propositional encoding
if the answer is yes. Column Full reports the time when HiFrog
needs to resort to the propositional encoding always in case of
a failure to verify. Notably the use of EUF as an abstraction
technique usually speeds up the solving even in the case of
the full overhead.

Finally we report the effect of interpolation algorithm
strength to the number of required refinements and the run time
for the four combinations Ms+Itps, Ms+Itpw, Mw+Itps and
Mw + Itpw in Table II. The number of summary refinements
varies sometimes considerably over the combinations, demon-
strating the advantage of the flexibility our framework provides
for the EUF-interpolation. The number of summary refinement
shows the total number of function summaries that were used
in whole verification process, did not work, and were replaced
by precise encoding of functions, hence the smaller number is,
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≤ PS ≤ PSw Mw≤
P ≤

PS s ≤
≤Ms

Figure 4. The relative strength of the propositional interpolation algo-
rithms [15].

the more efficient is the solving process. The best-performing
algorithm in this benchmark set is Mw+Itps with both lowest
total run time and the lowest total number of refinements.
We note that the run time and the number of refinements do
not always correlate, and that in particular the combination
Ms + Itps works very well with respect to refinements while
losing nevertheless clearly in total run time. Finally, the worst
approach has 15% more refinements and 5% higher run-time
compared to the best approach.

Our experiments show two main results. First, using EUF
to represent software instead of only Boolean formulas is
beneficial, and leads to an impressive speed up in verification
time. Second, it is possible to obtain further speed-up by fine
tuning the interpolation algorithms used for Boolean and EUF
interpolation in order to ultimately optimize convergence in
the model checker.

C. Interpolation over SMT-LIB Benchmarks

We also report a more controlled set of experiments on
generating interpolants of different strength and size. We
computed interpolants from over 2000 benchmarks from the
QF UF category of SMT-LIB, and report here the results
of 106 benchmarks that resulted in non-trivial interpolation
instances having complex EUF proofs with large congruence
graphs. In total this set contains over two and a half million in-
dividual EUF interpolants. Following [17], [32], we randomly
split the assertions in each benchmark to partitions A and B.

a) Logical strength: The theory interpolation algorithms
use three labeling functions Ls, Lw (see Sec. III), and Lr, a
labeling function that labels all components randomly as either
s or w. The algorithms are called, respectively, Itps, Itpw, and
Itpr. We use the proof-sensitive interpolation algorithm [15]
in the propositional structure. This results in three final inter-
polants Is, Iw and Ir for each benchmark.

We computed the strength relationship for each theory
partial interpolant as well as the final SMT interpolants. Even
though the EUF interpolants are often simple, in 71% of
them it was possible to generate at least two interpolants
of different strength, and 5.7% resulted in all three having
different strength.

After solving and interpolating, we ran extra experiments
to check the strength relations of the final interpolants Is, Iw
and Ir. Since the final interpolants are much more complex, of
the 106 benchmarks, 55 ran out of memory while computing
the strength relations. For the remaining 51, all the three final
interpolants were pairwise inequivalent, confirming that the
framework is able to generate interpolants of different strength.

b) Interpolant size: Since the propositional and EUF
interpolation algorithms are to a large degree independent,
it is natural to ask what combination of the algorithms is
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Figure 5. Comparison between interpolation combinations with respect to the
number of Boolean connectives in the final interpolant

most efficient. This experiment studies the question using the
interpolant size as a measure of efficiency. The six propo-
sitional and three EUF interpolation algorithms result in 18
combinations. We measure the sizes of the final interpolants
both in (i) the number of Boolean connectives (Fig. 5); and (ii)
the number of EUF equalities (Fig. 6). Excluding the instances
where we encountered memory outs we report the results
on 82 of the original 106 benchmarks. For each benchmark,
we computed the smallest number of Boolean connectives or
equalities in the interpolant among all the configurations (best)
and the ratio combination/best for each possible combination,
which shows us how much worse each combination did
compared to the best combination for that benchmark. Notice
that the ratio of the best combination for a benchmark is one
and therefore no ratio can be less than one. The bars present
the average and the crosses the median of those ratios among
all the benchmarks for each combination.

In Fig. 5 the combination Mw + Itpw gives the smallest
number of Boolean connectives, and Ms + Itps appears in the
second place. The median of Mw + Itpw is 1, which means
that it was responsible for the smallest number of connectives
in at least half of the benchmarks, and its average of 1.2 shows
that even when this was not the case, the combination was
still close to the optimum. On the losing side, we make two
observations. The EUF interpolation algorithm Itpr leads to a
larger number of Boolean connectives, and the propositional
interpolation algorithm P leads to larger interpolants.

Interestingly the combinations PS + Itps and PS s + Itps
have low medians and averages. This seemingly contradicts
our earlier observation in [15] that PS and PS s consistently
lead to small number of connectives in the interpolant. The
likely reason is the soundness restriction in integration (see
Sec. IV-A), since the results gradually worsen as the proposi-
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Figure 6. Comparison between interpolation combinations with respect to the
number of equalities in the final interpolant
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tional and the EUF interpolation algorithms disagree more on
the labeling, best being PS s+Itps and the worst PSw+Itps.

The same trend is seen in Fig. 6 in the number of EUF
equalities. A strong propositional interpolation algorithm (Ms,
PS s) combined with Itps leads to smaller interpolants com-
pared to their combination with Itpw; and a weak propositional
interpolation algorithm (Mw, PSw) combined with Itpw leads
to smaller interpolants compared to their combination with
Itps. Interestingly PS , a propositional interpolation algorithm
that tends to balance the distribution of variables [15], leads
to very similar results when combined with Itps and Itpw.

Our experiments with interpolation over complex SMT
benchmarks show that the interpolants generated by the EUF
system presented in this work indeed have strictly different
logical strength. Moreover, in the combination of Boolean and
EUF interpolants, it is important to match the strength of the
used interpolation algorithms in order to reduce the size of the
generated interpolants.

V. CONCLUSIONS

We present and analyse a new interpolation framework for
the theory of Equalities and Uninterpreted Functions, capable
of generating interpolants of different strength and small size
in a controlled way. The technique bases on the use of dual
partial interpolants parameterized by a labeling function. We
confirm the analysis with experiments and show the feasibility
of generating multiple interpolants of different strengths. In
addition, we report on the size of the created interpolants,
comparing different combinations of propositional and EUF
interpolation algorithms. Our major contribution work is the
integration of a complete interpolation-based model checker to
the system, and showing the significant impact the interpolant
strength has on both run time and convergence.

In the future we intend to generalize the approach to be
applicable to other theories, and study the effects of different
labeling functions on fix-point computation in other model-
checking applications.
Acknowledgements. This work was financially supported by
SNF projects number 200020 163001 and 200020 166288.
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Abstract—We present LIAMC, a novel decision procedure for
(quantifier-free) linear arithmetic over both integers modulo 2N

(LIAN ) and integers (LIA).

There is no need to explain our motivation to design a new
efficient decision procedure for the widely used LIA logic. A
LIAN decision procedure can be extremely useful in the context
of software (SW) verification. SW verification usually requires
to reason about arithmetic constraints over finite integers. To
that end, modern SW verification tools commonly use fixed-width
bit-vector (BV) solvers. However, BV solvers’ efficiency drops
dramatically as the width increases. To solve the performance
problem, LIA solvers are applied, but they are imprecise as they
cannot handle integer overflow. An efficient LIAN solver would
be the ideal solution in this context.

Our decision procedure LIAMC is based on a transformation
of linear arithmetic into safety verification. We treat integers as
unbounded streams of bits over time. More precisely, for each
input integer, the least significant bit (LSB) corresponds to time
0 in the corresponding stream, and the k-th bit corresponds to
the bit received at time k. LIAMC then uses SAT-based model
checking (SATMC) to solve the resulting problem. In order to
achieve efficiency, LIAMC uses two forms of generalization. First,
if it finds a formula to be unsatisfiable for width N , it tries to
generalize this result for all the widths. Second, if LIAMC finds
a formula to be satisfiable for width N , it tries to “extend” and
thus generalize the assignment to a wider target width.

To evaluate LIAMC we used the QF LIA subset of SMT-
COMP’16, and ran two sets of experiments. First, we reinter-
preted the QF LIA over fixed-width bit-vectors of varying widths
and compared LIAMC in LIAN mode to both Boolector and Z3.
LIAMC solved the most satisfiable instances out of the three even
for the shortest width 32. Second, we compared LIAMC to CVC4
and Z3 on the original QF LIA benchmarks. LIAMC was able
to solve many instances that had not been solved by the other
solvers.

I. INTRODUCTION

Nowadays, Satisfiability Modulo Theory (SMT) [1] solvers
for the quantifier-free linear integer arithmetic (LIA) [2] logic
are widely used, and have become highly efficient. Despite
their efficiency, there is a growing demand for SMT solvers
that can efficiently solve quantifier-free linear arithmetic over
integers modulo 2N (LIAN ). This paper presents a novel
decision procedure, LIAMC, suitable for solving LIAN and ar-
bitrary LIA instances. Our motivation for designing a decision
procedure for LIAN originates in software (SW) verification.

Formal verification of SW is one of the main driving forces
in SMT research. SW verification usually involves reasoning
about arithmetic constraints, and in particular, linear arithmetic
constraints over integers modulo 2N for some N ∈ N. This

is due to the fact that SW uses a finite representation for
integers. More precisely, arithmetic operations over integers
are interpreted over the ring Z/2NZ (“machine arithmetic”)
rather than over the ring Z. As a result, efficient bit-precise
reasoning is highly desired.

In order to capture the semantics of linear arithmetic over
Z/2NZ (LIAN ), SMT solvers for the theory of fixed-width bit-
vectors (BV solvers) are often used, since LIAN is a proper
subset of QF BV. BV solvers, however, are not efficient when
the bit-vectors are wide. Namely, when the value of 2N is large
(e.g. N = 512), solving formulas in LIAN becomes intractable
for BV solvers. This inefficiency is mainly due to the way BV
solvers are implemented: in most cases, the formula is reduced
to a propositional formula using bit-blasting. Therefore, as
N increases, so does the complexity of the resulting SAT
formula. One way to overcome this inefficiency is by applying
a LIA solver. Unlike BV solvers, LIA solvers reason about
linear arithmetic over Z. While LIA solvers are more efficient
than that of BV solvers for this task, they are less precise.
This imprecision comes from the different semantics between
LIA and LIAN . Namely, arithmetic operations over Z cannot
result in an “overflow” (i.e. wrap-around). In the context of
SW verification, this may lead to unsound results. Hence, an
efficient LIAN solver, as presented in this paper, should be
extremely useful for SW verification.

Our novel decision procedure for LIAN and LIA, LIAMC,
is based on a reduction of the input formula to a safety
verification problem. Namely, a formula ϕ in either LIAN
or LIA is transformed to a transition system T such that
the satisfiability of ϕ corresponds to whether T is SAFE or
UNSAFE. The reduction treats integers as unbounded streams
of bits over time. More precisely, for each input integer,
the least significant bit (LSB) corresponds to time 0 in the
corresponding stream, and the k-th bit corresponds to the bit
received at time k. The structure of T captures the constraints
between the integer variables that appear in ϕ. To determine
if T is SAFE or UNSAFE, LIAMC uses SAT-based model
checking (SATMC) [3].

One possible way to reason about T is by using Bounded
Model Checking (BMC) [4], an efficient SATMC algorithm
that can show T is UNSAFE. Considering our reduction, if
BMC finds a counterexample of length N in T (T is UN-
SAFE), then ϕ is satisfiable over Z/2NZ. If no counterexample
of length N exists in T , then ϕ is unsatisfiable over Z/2NZ.
This can be used as a decision procedure for LIAN . However,
the performance of such an approach is usually not better then
that of BV solvers [5]. BMC can either find a counterexample
of length N , or prove that counterexample of length N does
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not exist. In that sense, in the context of LIAMC, it can only
reason about LIAN for a given N . In fact, this approach is
somewhat “equivalent” to how modern eager BV solvers are
implemented.

Unlike BMC, modern SATMC algorithms [6]–[8] use
generalization in order to show that no counterexample, of
any length, exists, and by that they can prove a transition
system is SAFE. LIAMC takes advantage of this generalization
mechanism. In case LIAMC finds ϕ to be unsatisfiable over
Z/2kZ, SATMC’s generalization mechanism is applied to
show ϕ is unsatisfiable over Z/2NZ for every N > k
and moreover, unsatisfiable over the integers. For the case a
counterexample of length k is found, we have implemented
an efficient procedure in LIAMC that tries to extend the
counterexample to some target N (where N > k) and by that
show ϕ is satisfiable over Z/2NZ. In addition, LIAMC can also
extend a counterexample over Z/2NZ to a counterexample
over Z.

We evaluated our approach on QF LIA subset of the SMT-
COMP’16 benchmark. Since LIAMC can be used for both LIA
and LIAN , we used two sets of experiments. For our first set
of experiments we translated QF LIA benchmarks to QF BV
using fixed-width bit-vectors of sizes 32, 64, and 128. We
then compared LIAMC to Boolector [9], and Z3 [10]. LIAMC
solved the most satisfiable instances out of the three, even for
a width as low as 32. For our second set of experiments we
used the LIA solvers in CVC4 [11] and Z3, and compared
LIAMC against them on QF LIA. Here too, LIAMC was able
to solve instances that were not solved by the other solvers.

II. PRELIMINARIES

In this section, we present notations and background that
is required for the description of LIAMC.

A. Linear Integer Arithmetic

We consider First Order Logic modulo the theory of
quantifier free Linear Arithmetic either over Integers (QF LIA)
or over Integers modulo a constant 2N (QF LIAN ). In what
follows we denote QF LIA and QF LIAN as LIA and LIAN ,
respectively. The following grammar is used to define this
theory:

ϕ ::=true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | term ./ term

term ::=c | x | term+ term | term− term | c× term |
ite(ϕ, term, term)

where ./∈ {=, <,≤, >,≥}, c and x are a constant symbol
and a variable either over Z/2NZ or Z, respectively.

Let ϕ be a formula in LIAN (or LIA) over a set of variables
V . V := VI ∪VB where VI and VB are the sets of Integer and
Boolean variables, respectively. Abusing notation, we write c ∈
ϕ for a constant integer c appearing in ϕ. Let N ∈ N be a
natural number such that N ≥ 2. We refer to the interpretation
of ϕ over the ring Z/2NZ as ϕ|N . For consistency, we use
either ϕ or ϕ|∞ as the interpretation of ϕ over Z.

Note that the semantics of linear arithmetic over Z and
over Z/2NZ is different. This is mainly due to “overflow”. As
an example, consider the following formula:

ϕ := (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z < 0)

While this formula is unsatisfiable over the ring Z, it is satis-
fiable over Z/2NZ. For example, for Z/4Z = {−2,−1, 0, 1}
x = 1, y = 1 and z = −2 is a satisfying assignment.

B. Integers as Bit-Vectors

Integers can be represented using bit-vectors. In this work,
we use the 2’s complement representation. Given an integer
c ∈ Z, there exists N > 0 s.t. for every k ≥ N , there exists
a bit-vector b = 〈bk−1, . . . , b0〉 of size k, and the following
holds:

c = −bk−1 · 2k−1 +
k−2∑

i=0

bi · 2i

Note that a constant c ∈ Z/2NZ for some N ≥ 2 can be
represented by a bit-vector of size N . With abuse of notation,
we define the function ω : Z→ N such that:

ω(c) :=

{
2 if c ∈ Z/4Z
N if c ∈ Z/2NZ ∧ c 6∈ Z/2N−1Z

(1)

Note that ω(c) ≥ 2 for all c ∈ Z.

C. Safety Verification

A transition system T is a tuple (U , Init ,Tr ,Bad), where
U is a set of Boolean variables, Init and Bad are formulas over
U denoting the set of initial states and bad states, respectively,
and Tr is a formula over U∪U ′ denoting the transition relation.
A state s ∈ 2U is said to be reachable in T if and only if there
exists k ≥ 0 and s0, s1, . . . , sk s.t. s0 ∈ Init , and (si, si+1) ∈
Tr for 0 ≤ i < k, and s = sk.

A transition system T is UNSAFE iff there exists a state
s ∈ Bad s.t. s is reachable. The path from s0 ∈ Init to
s ∈ Bad is called a counterexample (CEX).

A transition system T is SAFE iff all reachable states in T
do not satisfy Bad . Equivalently, there exists a formula Inv ,
called a safe inductive invariant, that satisfies:

Init(U)⇒ Inv(U) (2)
Inv(U) ∧ Tr(U ,U ′)⇒ Inv(U ′) (3)

Inv(U)⇒ ¬Bad(U) (4)

A safety verification problem is to decide whether a transition
system T is SAFE or UNSAFE.

Note that a transition system can be modeled by a se-
quential circuit with a single output. In this case, the Boolean
variables U represent registers and primary inputs, Init defines
the initial values for the registers, and Bad defines the logic
driving the output.
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III. REDUCING LIA TO SAFETY VERIFICATION

In this section we describe the transformation from con-
straints in LIA and LIAN to a safety verification problem.

First, we start with an intuitive example. Recall that linear
arithmetic includes addition, subtraction and multiplication
by a constant. Many arithmetic operations, and the above
in particular, can be represented by either a combinational
circuit or a sequential circuit. As an example, consider the
case of an adder. A N -bit adder can be implemented by
a combinational circuit by attaching N copies of a full-
adder (Figure 1). Alternatively, it can be implemented by a
sequential circuit (Figure 2) such that N bit addition takes
N cycles. In the case of the combinational circuit, all bits of
the operands must be available simultaneously. As a result, a
combinational implementation requires a fixed-width bit-vector
representation. In contrast, for the sequential adder, the bits
”flow” in, one by one, where at the k-th cycle, only the k-th
bit of a given operand is available. As a result the computation
takes several cycles. Moreover, there is no restriction on the
number of bits it can handle (wider bit-vectors mean more
cycles are required to complete the computation). While the
combinational implementation is considered more efficient, it
may not be the best representation for formal reasoning.

A. LIA to Transition System

From this point on, unless stated otherwise, ϕ is a formula
in either LIAN or LIA.

Given a formula ϕ, LIAMC reduces ϕ to a transition system
T . The reduction is based on the representation of integers as
bit-vectors. While an integer c ∈ Z/2NZ, for some N ≥ 2,
can be represented by a bit-vector of size k for k ≥ N , this is
not the case when considering an arbitrary integer v over Z. As
a result, a formula in LIA cannot be represented using fixed-
width bit-vectors. To overcome this issue, and considering our

intuitive example, we represent input variables in ϕ (either
fixed-width bit-vectors or integers) as inputs to a sequential
circuit, and thus, as unbounded bit-vectors. Intuitively, an
unbounded bit-vector b is modeled by an unbounded stream
of bits, starting from the LSB. More precisely, the bits of b
are read over time, such that the k-th bit bk is available at the
k-th time cycle. Representing a constant integer c ∈ Z/2NZ
by a bit-vector of size k, where k > N , can be achieved by
means of sign extension. Namely, by duplicating the N -th bit
for every k > N .

Arithmetic constraints and relations in ϕ are modeled with
sequential logic, and logical operators are treated using the
corresponding logical gates.

The top level LIATOMC procedure appears in Algorithm 1.
LIATOMC transforms a formula ϕ over variables V , to a
transition system T . T is represented by a sequential circuit
C. We discuss three different parts of LIATOMC: initialization
(lines 1-3), translation of constraints (lines 4-6), and the
modeling of the property, i.e. Bad (line 9).

1) Initialization: The main part of initialization is to find
the minimal width required to represent constants that appear
in ϕ. Recall that in this work, we use the 2’s complement
representation. For example, if −3 (101 in binary) and 12
(01100 in binary) appear in ϕ, then the minimal width is 5.
More formally, kmin = max

c∈ϕ
{ω(c)} (see Equation 1). Now,

assume that for a constant c ∈ ϕ, there exists a wire wc ∈ C
representing it. The value of wc at a given cycle is determined
by the 2’s complement representation of c. For example, for
−3, wc = 1 at cycle 0 and at cycle 2, and wc = 0 at cycle
1. To achieve this, we create a counter in C (line 3), which
counts cycles up to kmin. We denote by wmin the wire in C
that becomes > once the counter reaches kmin − 1 and is ⊥
otherwise (i.e. from 0 to kmin−1). For the example above, the
counter counts from 0 to 4. Using this counter we can set wc
to the right value at the right cycle. After hitting the maximum
value of the counter, wc is sign-extended. Going back to our
example, for every cycle k > 4, the value of wc equals the
value it was assigned to at the 4-th cycle.

2) Translating Linear Arithmetic Constraints: The function
TRANSLATE operates on a Directed Acyclic Graph (DAG)
mirroring the structure of ϕ. Leaf nodes in G represent
either a variable (in V) or a constant in ϕ, while internal
nodes represent the different operators. Starting from the root,
TRANSLATE recursively traverses G, and for each node in
G, the proper logic is added to C. TRANSLATE appears in
Algorithm 2.

Before describing the transformation in more detail, we
highlight the handling of the sign bit. The input variables of
ϕ are represented as streams of bits over time, namely, at
each cycle, a new bit is added. As a result, at every cycle,
the most recent bit is treated as the sign bit. Consequently, as
the computation progresses, the sign bit is updated.

We now describe the transformation in more detail. W.l.o.g.
every node g ∈ G has at most two operands, a and b.
In addition, for simplicity, we assume that g := ite(c, a, b)
is modeled by adding a new variable u s.t. g := u and
(c ⇒ u = a) ∨ (¬c ⇒ u = b) is added as a conjunct
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Algorithm 1: LIATOMC(ϕ)

Input: A LIA formula ϕ over variables V
Output: A safety verification problem (Init ,Tr ,Bad)

1 C ← InitCircuit()
2 kmin ← FindMinWidth(ϕ)
3 C.CreateCounter(kmin)
4 G← DAG(ϕ)
5 groot ← G.Root()
6 TRANSLATE(C,G, groot)
7 Init ← C.Init()
8 Tr ← C.Tr()
9 Bad ← wmin ∧ C.Output()

10 T = (Init ,Tr ,Bad)
11 return T

Algorithm 2: TRANSLATE(C,G, g)

Input: A circuit C, DAG G and a node g

1 for h ∈ g.Operands() do
2 if h is undefined in C then
3 TRANSLATE(C,G, h)

4 C.CreateLogic(g)

to the formula ϕ1. Once a node is translated, there exists a
wire wg in C that represents it. The logic of a full-adder is
represented by f(a, b, s, cin, cout), where a and b are the input
operands, s is the sum, cin and cout are the carry-in and carry-
out, respectively.

Let us assume that for unary and binary operators the
operands are a or a and b, respectively, where a and b can
be of sort Integer, bit-vectors, or Boolean. The rules below
describe the transformation.

• g is a leaf of sort integer/bit-vector: create an input
terminal vg in C. wg := vg .

• g is a leaf of a constant type (i.e. c ∈ Z): use the counter
to add logic that defines the right values for wg over time.

• g is a leaf of sort Boolean: create an uninitialized latch
vg such that v′g := vg and wg := vg .

• Boolean operations are implemented using their equiva-
lent logical gates.

• g := a+ b: add a sequential adder (see Figure 2). A latch
v+ and a full-adder f(va, vb, s, v+, cout) are added. v+
is defined as follows: init(v+) := ⊥ and v′+ := f.cout.
wg := f.s (note that f.cin := v+).

• g := a−b: subtraction uses the identity: x−y ≡ x+ȳ+1.
• g := c · a: multiplication by constant uses the “Shift and

Add” identity. Namely, c · a ≡
k∑
i=0

ci · 2i · a.

• The root node of G represents the output of the circuit
C.

We describe equality and inequality in more detail.

a) Equality g := a = b: The equality operator amounts
to bitwise comparison, namely, ai = bi for every i ≥ 0. The
sequential implementation of it uses a latch v= s.t. wg :=
v= ∧ (va = vb), init(v=) := > and v′= := wg . The latch
“remembers” the comparison of earlier bits. Note that if at

1Our implementation handles the ite operator directly.

any point in time, the bits are unequal, the value of v= can
never be > from that point on.

b) Inequality g := a < b: This case is more complex
since the sign bit changes at each cycle. Therefore, the se-
quential circuit representing it is built of two parts. The first
implements an unsigned comparison, and the second takes care
of the sign bit. For the unsigned comparison a latch v< is added
s.t. init(v<) := ⊥ and v′< := (¬va∧vb)∨ (¬(va∧¬vb)∧v<).
The sign is handled by wg := MUX(v<, va ∨ ¬vb, va ∧ ¬vb)

The other comparison operators ≤, > and ≥ can naturally
be adjusted based on the above reasoning. We therefore refrain
from describing them in detail.

Related transformations can be found in [5], [12].

3) Modeling the Property (Bad ): Recall that when model-
ing a transition system with a sequential circuit, the output
represents Bad . The above reduction creates a sequential
circuit C with an output o. A k-cycle execution of C represents
the interpretation of ϕ over Z/2kZ. Therefore, if o is evaluated
to > in k cycles, then ϕ is satisfiable over Z/2kZ.

Note that a k-cycle computation of the circuit is not
necessarily well defined for all k > 1. The reason for this
is the fact that ϕ includes constant values. Recall that kmin
represents the minimum bit-vector width required to represent
the constants in ϕ, and that wmin indicates when kmin cycles
of C has been completed. We can therefore use wmin as a
“guard” when defining Bad . The “guard” disables the output
until kmin-th cycle.

To complete the reduction from LIA to a transition system,
we create a safety verification problem T = (Init ,Tr ,Bad)
where Init = C.Init(), Tr = C.Tr() and Bad := wmin ∧
C.Output().

B. Naı̈ve Decision Procedure

Before describing LIAMC, let us first provide an intuition.
A well known SAT-based verification technique is Bounded
Model Checking (BMC) [4]. Given a transition system T ,
BMC searches for an execution that starts from the initial states
(i.e. Init) and reaches the bad states (i.e. Bad ) s.t. it satisfies
the transition relation. This path is called a counterexample.
To find such a counterexample of length N , BMC generates
the following N -unrolling formula:

µ(T,N) := Init(U0) ∧
(
N−1∧

i=0

Tr(U i, U i+1)

)
∧ Bad(UN )

(5)
This formula is then passed to a SAT solver. If it is satisfiable,
a counterexample of length N exists. When clear from the
context, we omit T and write µ(N).

Consider again our example in Figure 2. The combinational
adder that appears in Figure 1 is a result of unrolling the
sequential circuit 3 times.

Recall that the reduction of LIA to a transition system treats
integers as streams of bits. Let ϕ be a LIA formula and let
T = (Init ,Tr ,Bad) be the corresponding transition system.

Proposition 1 For N ≥ kmin, ϕ|N and µ(T,N) are equa-
satisfiable.

50

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



Algorithm 3: LIAMC (ϕ,N)

Input: A LIA formula ϕ over variables V , a constant
N ∈ N ∪ {∞}

Output: sat, unsat or unknown.
1 T ← LIATOMC(ϕ)
2 MC← InitMC(T,N)
3 repeat
4 (result, k)← MC.Solve()
5 if result = SAFE then
6 return unsat
7 else if result = UNSAFE then
8 if k = N then
9 return sat

10 π ← MC.GetCex()
11 if Extendable(ϕ, π,N) then
12 return sat
13 else
14 MC.BlockCex(π)
15 until ∞
16 return unknown

Given Proposition 1, BMC can be used to reason about lin-
ear arithmetic constraints over fixed-width bit-vectors, namely,
over Z/2NZ for some N . It is important to note, in fact, that
µ(N) is similar to a bit-blasted ϕ|N [5]. Consequently, this
approach is, in general, not superior to solving the bit-blasted
ϕ|N with a BV solver [5], since it requires a N -cycles long
computation of the sequential circuit.

IV. DECISION PROCEDURE FOR LIAN AND LIA

In this section we describe LIAMC, a decision procedure
for LIAN and LIA. In the previous section we show how a
formula ϕ can be reduced to a transition system, and how
BMC can be used as a decision procedure. Yet, such a decision
procedure is not more efficient than using BV solvers.

In order to achieve efficiency, LIAMC relies on the ability
of state-of-the-art SATMC algorithms to generalize a bounded
proof of correctness into a safe inductive invariant. This
generalization proves the absence of a counterexample for any
N . Note that this gives another intuitive justification for why
the reduction from LIAN and LIA treats both integers and
fixed-width bit-vectors as unbounded streams of bits. In case
the SATMC algorithm finds an inductive invariant, there exists
k such that ϕ|N is unsatisfiable for every N ≥ k.

For the case a counterexample of length k exists in T , we
have implemented a procedure that uses the “structure” for
T such that it can, iteratively, and incrementally extend the
counterexample to a target length N (for LIAN ) or extend the
counterexample for the integers. The key insight here is to treat
a counterexample of length k as a partial assignment.

LIAMC appears in Algorithm 3. It can operate in two
modes, which are determined by the value of N . If N = ∞,
then ϕ is interpreted over Z (LIA mode), otherwise it is inter-
preted over Z/2NZ (LIAN mode). The initialization (lines 1-
2) of LIAMC starts by transforming ϕ to a transition system
T = (Init ,Tr ,Bad) and setting up an instance of a model
checker MC. Note that MC receives N , the maximum time
frame it needs to consider. The main loop (lines 3-15) uses a
model checker to prove either T is SAFE or UNSAFE.

We assume that MC.Solve() (line 4) returns a pair
(result, k), where result is either SAFE or UNSAFE. In case
result = UNSAFE then k is the length of the counterexample.
Otherwise, if result = SAFE k is the depth at which an
inductive invariant is found, or if no invariant is found k = N
(indicating no counterexample up to N ).

We now describe LIAMC in more detail. We start by
describing the case ϕ|N is satisfiable, and then the case it
is unsatisfiable.

A. Satisfiability: T is UNSAFE (line 7)

Let us assume a counterexample of length k exists. In this
case, ϕ|k is satisfiable. Since the satisfiability of ϕ|k does not
entail the satisfiability of ϕ|N , LIAMC checks if the returned
counterexample can be “extended” into a counterexample of
ϕ|N . In what follows we detail this procedure for both LIAN
and LIA.

1) Extending a Counterexample: As noted above, a coun-
terexample of length k implies that ϕ|k is satisfiable. Due to the
different semantics of LIAN and LIAk (N > k), the satisfying
assignment for ϕ|k is not necessarily a satisfying assignment
for ϕ|N . The naive solution to the above problem, is to check
whether the given assignment is also an assignment for ϕ|N
(either when N =∞ or N <∞). This solution amounts to a
sign-extension of the satisfying assignment. While it is simple,
in most cases it does not work. As an example, consider again
the following formula:

ϕ := (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z < 0)

As noted before, x = 1, y = 1 and z = −2 is a satisfying
assignment for ϕ|2, but it is not a satisfying assignment for
ϕ|N for all N > 2.

Given a counterexample π of length k, let us assume we
would like to extend it for ϕ|k+1. Intuitively, π assigns values
for k bits out of k + 1. Therefore, if there exists a satisfying
assignment π∗ to π ∧ µ(k + 1) then π∗ is an extension of π
for ϕ|k+1, since it satisfies µ(k + 1).

Using the above intuition, we can iteratively, and incremen-
tally, extend a counterexample up to a desired depth N such
that N > k. This gives us an efficient procedure to determine
satisfiability for LIAN (N <∞).

We now need to handle the case of LIA (N =∞). For LIA,
we use the same intuition as above. Namely, a counterexample
π of length k gives a valuation to the lower k bits. However,
we need to adjust this intuition for integers in Z. Let us assume
an integer v ∈ Int(ϕ) is evaluated to cv ∈ Z/2kZ in π. In
order to extend it, we can add the following constraint: (v =
v∗ · 2k + |cv|) ∨ (v = −(v∗ · 2k + |cv|)) where v∗ is a fresh
integer variable.

Given a counterexample π of length k, let us define:

∆(π) :=
∧

v∈VI

(
(v = v∗ · 2k + |cv|) ∨ (v = −(v∗ · 2k + |cv|))

)

The function ∆(π) captures the value π assigns to the lower
k bits of an integer in ϕ.

Lemma 1 If ϕ ∧∆(π) is satisfiable, then ϕ is satisfiable.
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Algorithm 4: Extendable(ϕ, T, π,N)
Input: A LIA formula ϕ and its corresponding safety

verification problem T = (Init ,Tr ,Bad), a
counterexample π of length k, and a constant
N > k, s.t. N ∈ N ∪ {∞}

Output: (false,⊥) or (true, π∗).
1 if N =∞ then
2 (result, π∗)← LIA.IsSAT(ϕ ∧∆(π))
3 if result = sat then
4 return (true, π∗)
5 return (false,⊥)
6 else
7 m← k
8 i← k + 1
9 while i ≤ N do

10 (result, π∗)← IsSAT(µ(T, i) ∧ π)
11 if result = sat then
12 m← i
13 i← i+ 1

14 if m = N then return (true, π∗)
15 return (false,⊥)

In order to determine satisfiability of ϕ ∧∆(π), we use a
LIA solver. In case ϕ∧∆(π) is satisfiable, π can be extended
to a satisfying assignment for ϕ. We would like to emphasize
that using a LIA solver when N =∞ (LIA mode) is intended
to rule out counterexamples that may appear due to overflow.
Note that it may be possible to model T s.t. overflow is not
possible.

The procedure for extending counterexamples appears in
Algorithm 4. In the LIAN mode, we try and iteratively extend
a counterexample of length k to N (lines 9-13). As mentioned
above, extending a counterexample in LIA mode requires a
call to a LIA solver (line 2). In both cases, a counterexample
that cannot be extended is blocked.

Theorem 1 If LIAMC returns sat, then ϕ|N is satisfiable.

Proof Sketch: Let us assume a counterexample π of
length k < N exists. If N <∞, and π can be extended, then a
counterexample of length N exists and thus ϕ|N is satisfiable.
For N =∞, satisfiability of ϕ follows from Lemma 1.

B. Unsatisfiability: T is SAFE (line 5)

Due to the definition of Bad , the property being verified
(i.e. ¬Bad ) is of the form wmin ⇒ o. Moreover, since the
reduction from ϕ to T uses unbounded bit-vectors, if a safe
inductive invariant is found by the model checker, ϕ|N is
unsatisfiable for all N ≥ k.

Lemma 2 Let ϕ be a formula in LIA. If there exists k s.t. for
all N > k ϕ|N is unsatisfiable then ϕ is unsatisfiable.

The proof for Lemma 2 relies on the following: if ϕ is
satisfiable, there exists N ∈ N s.t. ϕ|N is satisfiable.

The above lemma gives us a way to determine the unsat-
isfiability of ϕ: if T is SAFE and (N = ∞), LIAMC only

returns SAFE if an inductive invariant is found. In that case,
using Lemma 2, LIAMC concludes ϕ is unsatisfiable.

In the case N < ∞ (LIAN mode), If T is SAFE
up to bound N , LIAMC can terminate concluding ϕ|N is
unsatisfiable even when an inductive invariant is not found.
This is due to the fact that if no counterexample exists at
depth N , ϕ|N is unsatisfiable

We do like to emphasize that while there is no requirement
to find a safe inductive invariant in case N < ∞, if such
an invariant is found at bound smaller than N , it implies the
unsatisfiability of ϕ|N .

Theorem 2 If LIAMC returns unsat, then ϕ|N is unsatisfi-
able.

Proof Sketch: We consider two cases. First, if no coun-
terexample is found during the execution of LIAMC, and the
model checker returns SAFE, then for N < ∞ the proof is
immediate, and for N =∞ we use Lemma 2.

The second case occurs when LIAMC blocks a counterex-
ample π. It remains to be shown that π cannot be part of a real
counterexample. Let us assume π is of length k (and k < N ).

For the case of N <∞, this is immediate - if π cannot be
extended up to N it cannot be part of a real counterexample
and therefore can safely be blocked.

For N = ∞, a similar logic applies. Let us assume that
ϕ ∧ ∆(π) is unsatisfiable. Since every positive integer can
be expressed by a sum of powers of 2, ∆(π) fixes only the
first k elements of that sum. The rest of the elements in this
summation are unrestricted, and therefore, if there exists an
assignment for this valuation, the LIA solver finds it. However,
if such an assignment does not exist, we can safely block this
valuation for the first k elements of the sum.

V. EXPERIMENTS

We implemented a prototype of LIAMC2 using a generic
SMT-LIB2 parser3 and ABC [13]. We use the SMT-LIB2
parser to transform a LIA or LIAN formula to a transition
system represented by an And-Inverter Graph (AIG) in ABC.
For the SATMC procedure we use ABC’s dprove command.

For evaluation, we use the QF LIA4 benchmarks from
SMT-COMP’165. Since LIAMC targets both LIA and LIAN ,
we used two sets of experiments. First, we reinterpreted the
LIA benchmark over Z/2NZ for N ∈ {32, 64, 128} and
evaluated LIAMC against Boolector [9] and the Bit-Vector
solver in Z3 [10]. Second, we compared the performance of
LIAMC against the LIA solver in CVC4 [11] and Z3.

We set a 900 seconds time limit for all benchmarks. All
experiments were conducted on a machine running Ubuntu

2Available at http://www.cs.technion.ac.il/∼yvizel/liamc.html
3Source code is available from https://es-static.fbk.eu/people/griggio/misc/

smtlib2parser.html
4Only nec-smt subset was excluded due to its size, as even without this

subset our benchmark includes more than 2700 test cases.
5Benchmarks are available from http://smtcomp.sourceforge.net/2016/

benchmarks.shtml
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TABLE I: Number of solved instances for LIAN . Total stands for
the total number of test cases in that benchmark. The difference is
due to the fact that not all LIA test cases can be represented in LIAN

for certain values of N .

Benchmark Total Status LIAMC Boolector Z3 Virtual Best

LIA32 (32bit) 2647 SAT 1475 1257 1373 1539
UNSAT 784 988 881 995

LIA64 (64bit) 2784 SAT 1630 1340 1448 1781
UNSAT 680 1017 889 1023

LIA128 (128bit) 2742 SAT 1565 1233 1347 1734
UNSAT 637 1013 861 1020
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Fig. 3: Z/232Z: Trend for satisfiable instances (32 bit).

16.04.2 LTS, with Intel Xeon E3-1240V2 running at 3.4GHz
and 32GB of RAM.

Table I shows the number of solved instances for the
different experiments of LIAN . As can be seen from the
table, LIAMC has a big advantage specifically on satisfiable
instances, for all values of N . LIAMC constructs a satisfying
assignment, incrementally, starting from the LSB. We believe
this is the main reason for the performance advantage of
LIAMC over the other methods. Figures 3-5 further emphasize
the performance advantage of LIAMC on satisfiable instances.
Moreover, we can see the performance advantage of LIAMC
grows as the width of bit-vectors grows.

It is important to note that the approaches are comple-
mentary as many test cases are solved by LIAMC and not
by Boolector, and vice-versa. Overall, LIAMC solves 205 test
cases not solved neither by Boolector nor Z3 for N = 32.
For N = 64 and for N = 128, LIAMC solves 288 and 331
test cases that are not solvable by the other solvers. When
compared to Boolector, for N = 32, LIAMC solves 370 test
cases not solved by Boolector, and Boolector solves 331 test
cases not solved by LIAMC. For N = 64 and N = 128,
LIAMC solves 427 and 496 test cases not solved by Boolector,
while Boolector solves 482 and 501 test cases not solved by
LIAMC. In the case of Z3, for N = 32, 64, 128, LIAMC solves
324, 329 and 397 cases not solved by Z3, while Z3 solves 265,
337, 349 cases not solved by LIAMC.

When considering unsatisfiable instances, LIAMC finds an
inductive invariant in 577 cases. It is important to note that
for large values of N (e.g. N ≥ 512) this fact translates to a
clear advantage of LIAMC over the other solvers.

Table II presents solved instances in LIA mode. It compares
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Fig. 4: Z/264Z: Trend for satisfiable instances (64 bit).
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Fig. 5: Z/2128Z: Trend for satisfiable instances (128 bit).

LIAMC to CVC4 and Z3. The table shows that both CVC4 and
Z3 perform better than LIAMC. Analyzing the results shows
that LIAMC can solve 88 instances not solved by CVC4, and
126 instances not solved by Z3.

We would like to note that the current results of LIAMC
(in both modes) can be greatly improved. While the dprove
command in ABC is capable, we are sure that LIAMC can
benefit from a portfolio-based model checker, as well as from
SATMC algorithms that target the kind of transition systems
LIAMC generates. To evaluate this idea, we have chosen a
random subset of unsolved instances and used the SATMC
algorithm AVY [8] as part of LIAMC. Many of these unsolved
instances (UNSAT) were solvable by AVY6. Moreover, an
efficient BMC engine can probably solve many of the UNSAT
cases LIAMC did not solve. This is due to the conceptual
similarity between using BMC and an eager BV solver (as
mentioned before). We intend to explore these avenues in our
future work.

6We did not add these solved instances to the results presented in this paper
since we had not run AVY on the entire benchmark set.

TABLE II: Number of solved instances for LIA.

LIAMC CVC4 Z3
SAT 1289 1657 1581

UNSAT 577 1106 1103
Uniquely Solved 18 18 0
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VI. RELATED WORK

A translation from linear arithmetic to finite automata
had been proposed more that 20 years ago [14] and studied
further in a number of works [15]–[17]. Our work belongs
to that line of research as a finite automata can be thought
of as a sequential circuit. The added value of our work is
that we present an efficient decision procedure, achieved by
leveraging a symbolic representation of the automata (i.e. the
sequential circuit) and advancements from modern SATMC
research, enhanced by novel generalization techniques. Our
results challenge the pessimistic forecast in [16]: “there is little
hope that these techniques will consistently outperform more
traditional approaches when these can be applied”.

Several related methods for synthesizing unbounded bit-
vector arithmetic were proposed in [12], [18], but in these
works the context is synthesis and no efficient decision proce-
dure was detailed.

A closely related line of work is [5], [19], where a reduc-
tion from a fragment of BV (restricted to bitwise operators,
addition, subtraction, shift by one, indexing and comparators)
to propositional model checking has been introduced (as a
by-product of studying the complexity of bit-vector logic).
The proposed method has been implemented and shown to
outperform traditional SMT solvers on crafted BV bench-
marks, restricted to the aforementioned BV fragment. Unlike
the transformation applied by LIAMC, the modeling suggested
in [19] encodes the width of the bit-vectors into the model
checking problem, making SATMC algorithms inefficient. As
a result, BDD-based model checking algorithms were found
to be the most efficient experimentally [19]. LIAMC shows
how SATMC can be applied efficiently even for the subset
supported by [19]7 by applying generalization techniques.
Generalization is possible for LIAMC since the width of bit-
vectors is not encoded in the transition system. In addition,
our approach also handles multiplication by a constant, which
makes it applicable to arbitrary formulas in LIAN and LIA.

LIAMC constructs a satisfying assignment incrementally
by iteratively extending a satisfying assignment from a simple
theory to a more complex one (i.e. from Z/2kZ to Z/2NZ
where N > k). A somewhat similar concept is applied by [20]
in the context of floating-point arithmetic (FPA). In [20], the
formula is solved w.r.t. a simpler “proxy” theory. In case that
a satisfying assignment is found, it is then tried to be adjusted
to FPA semantics.

VII. CONCLUSION

In this paper we introduced LIAMC, a novel decision
procedure for LIAN and LIA. LIAMC is based on a transfor-
mation of linear arithmetic constraints to a transition system.
While this approach, in general, has been suggested and
explored in the past in different contexts, to our knowledge
LIAMC is the first efficient implementation. There are three
key insights that make LIAMC efficient and different from
previous approaches: 1) We treat both integers and fixed-width
bit-vectors as unbounded streams of bits, which allows us to
apply SATMC, and 2) We use generalization to efficiently
reason about wide bit-vectors and integers.

7Note that throughout our experiments, the transition systems include more
than thousands of state elements, making BDD-based MC intractable.

Our experiments show that LIAMC can solve many in-
stances that cannot be solved by other top-tier SMT solvers, for
both LIAN and LIA. Moreover, in the case of LIAN , LIAMC
is the best performer solving the most instances. We therefore
believe that this approach has a promising future.
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Abstract—We present a new string SMT solver, Z3str3, that
is faster than its competitors Z3str2, Norn, CVC4, S3, and
S3P over a majority of three industrial-strength benchmarks,
namely, Kaluza, PISA, and IBM AppScan. Z3str3 supports string
equations, linear arithmetic over length function, and regular
language membership predicate. The key algorithmic innovation
behind the efficiency of Z3str3 is a technique we call theory-aware
branching, wherein we modify Z3’s branching heuristic to take
into account the structure of theory literals to compute branching
activities. In the traditional DPLL(T) architecture, the structure
of theory literals is hidden from the DPLL(T) SAT solver because
of the Boolean abstraction constructed over the input theory
formula. By contrast, the theory-aware technique presented in
this paper exposes the structure of theory literals to the DPLL(T)
SAT solver’s branching heuristic, thus enabling it to make
much smarter decisions during its search than otherwise. As a
consequence, Z3str3 has better performance than its competitors.

I. INTRODUCTION

String SMT solvers are increasingly becoming important
for security applications and in the context of analysis of
string-intensive programs [6], [9], [11], [15], [16], [18], [22].
Many string SMT solvers, such as Z3str2 [23], [24] (and
its predecessor Z3str [25]), CVC4 [12], Norn [2], S3 [20]
(and its successor S3P [21]), and Stranger (and its successor
ABC [4]) have been developed to address these challenges
and applications. We have developed the Z3str3 string solver
as a native first-class theory solver directly integrated into the
Z3 SMT solver [7]. Z3str3 is the primary string solver in the
official Z3 codebase. Our tool is competitive with respect to
its predecessor Z3str2 and the CVC4 solver, and much faster
than Norn, S3, and S3P. Having direct access to the core solver
of Z3 has allowed us to develop and implement novel theory-
aware DPLL(T) techniques, described below. We follow the
latest string SMT language standard supported by all major
string solvers, and published on the CVC4 website [12].

A. Contributions

1) Theory-aware branching: We leverage the integration
between the Z3 SMT solver’s DPLL(T) SAT layer
(henceforth referred to as the “core solver”) and the string
solver to guide the search and prioritize certain branches
of the search tree over others. In particular, we modify
the activity computations of the branching heuristic of
the Z3 core solver, making it aware of the structure

of the theory literals underlying the Boolean abstraction
of the input formula such that “simpler” theory literals
are prioritized over more complex ones. The question of
whether branching can be made theory-aware was first
posed in a paper by Roberto Sebastiani [17]. However,
to the best of our knowledge we are the first to propose
a theory-aware branching technique which prioritizes
certain branches over others in a DPLL(T) setting.

2) Theory-aware case-split: We add an optimization to
Z3’s core solver that enables efficient representation of
mutually exclusive Boolean variables in the Boolean
abstraction of the input theory formula.

3) Experimental evaluation: To validate the effectiveness
of our techniques, we present a comprehensive and thor-
ough evaluation of Z3str3, and compare against Z3str2,
CVC4, S3, and Norn on several large industrial-strength
benchmarks. We could not directly compare against S3P
since its source is not available, but summarize the results
from their CAV 2016 paper and compare against Z3str3.
We also could not compare against Stranger/ABC because
they do not produce models, do not support dis-equations
over arbitrary string terms, and have correctness issues as
noted in their paper [4].

II. THEORY-AWARE BRANCHING

Several of the key enhancements we make in Z3str3 over
Z3str2 involve changes to the Z3 core solver, which handles
the Boolean structure of the formula and performs propagation
and branching. The first of these enhancements is referred to
as theory-aware branching. We modify the Z3 core solver
to allow theory solvers to give certain literals increased or
decreased priority during the search. Consider the case where
the solver learns the equality X · Y = A · B for non-
constant terms X,Y,A,B. Z3str3, in line with Z3str2, handles
this equality by considering a disjunction of three possible
arrangements [23], [24]:
Arrangement 1: X = A and Y = B
Arrangement 2: X = A · s1 and s1 · Y = B for a fresh non-

empty string variable s1
Arrangement 3: X · s2 = A and Y = s2 ·B for a fresh non-

empty string variable s2
Of the three possible arrangements, the first is the simplest

to check because it does not introduce any new variables and
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only asserts equalities between existing terms. Therefore, we
would like Z3’s core solver to prioritize checking this arrange-
ment before the others. The advantage gained by theory-aware
branching is the ability to give the core solver information
regarding the relative importance of each branch, allowing the
theory solver to exert additional control over the search. We
always prioritize simpler branches over more complex ones.

We implement theory-aware branching as a modification of
the branching heuristic in Z3. The default branching heuristic
in Z3 is activity-based, similar to VSIDS [13]. The core
solver will branch on the literal with the highest activity that
has not yet been assigned. Activity is increased additively
when a literal appears in a conflict clause, and decayed
multiplicatively at regular intervals. Although we are not aware
of any other work on theory-aware branching, there has been
some work in taking domain-specific knowledge into account
in the context of branching heuristics and custom decision
strategies [10], [14], [8].

The theory-aware branching technique computes the activity
of a literal A as the sum of two terms Ab and At, wherein the
term Ab is the “base activity”, which is the standard activity of
the literal as computed and handled by Z3’s core solver. The
term At is the “theory-aware activity”. The value of this term is
provided for individual literals by theory solvers, and is taken
to be 0 if no theory-aware branching information has been
provided. This modification causes the core solver to branch
on the literal with the highest activity A, taking into account
both the standard activity value and the theory-aware activity.
Therefore, assigning a (small) positive theory-aware activity to
a literal will cause it to have higher activity than usual, making
it more likely for the core solver to choose it to branch on.
Conversely, assigning a (small) negative theory-aware activity
will deter the core solver from choosing that literal. Theory-
aware branching in Z3str3 modifies the activities of theory
literals as follows:

1) Literals corresponding to arrangements that do not create
new variables (as in Arrangement 1 above) are given a
large (0.5) At. Other arrangements in the same case are
given a small (0.1) At.

2) Arrangements that allow a variable to become equal to a
constant string are given a small (0.2) At.

3) When searching for length of strings, literals correspond-
ing to longer length values have small negative (-0.1) At.

The values of At were chosen to be similar in scale to
the initial activity values assigned to literals by the default
branching heuristic. Although this technique is currently used
by the string solver component, theory-aware branching is also
useful in many other contexts where new search paths may
have unequal importance, such as non-linear arithmetic.

III. THEORY-AWARE CASE-SPLIT

During the search, a theory solver can create terms which
encode a disjunction of Boolean literals that are pairwise
mutually exclusive, i.e., exactly one of the literals must be
assigned true and the others must be assigned false. We refer
to this as a theory-aware case-split. As an example, consider

the case where the string solver learns that a concatenation
of two string variables X and Y is equal to a string constant
c = c1c2 . . . cn of length n, where each ci is a character in
c. There are n + 1 possible ways in which we can split the
constant c over X and Y resulting in different arrangements:

• X = ε, Y = c1c2 . . . cn
• X = c1, Y = c2c3 . . . cn
• . . .
• X = c1c2 . . . cn, Y = ε

Note that each of these arrangements represents a case that
can be explored by the solver, and also that all of these
cases are mutually exclusive (as clearly X cannot be equal
to both ε and c1 simultaneously, etc.). Thus, this represents
a theory-aware case-split. However, the Boolean abstraction
constructed over theory literals hides the fact that these are
mutually exclusive cases. A naı̈ve solution is to encode O(n2)
extra mutual exclusion Boolean clauses over these variables.
Unfortunately, this would result in very poor performance
because of the quadratic blowup in formula size. Another
option is to let the congruence closure solver in the Z3 core
discover the mutual exclusivity of these Boolean variables.
This can result in unnecessary backtracking, unnecessary calls
to congruence closure, and, in the worst case, reduces to the
same set of mutual exclusion clauses being learned in the form
of conflict clauses.

The means of handling such cardinality constraints effi-
ciently has been well-studied; previous work has investigated
the possibility of alternate encodings, e.g. totalizers [5] and
lazy cardinality [3]. Our implementation, by contrast, shows
a way to handle these constraints in the inner loop of the
SAT solver in a theory-aware manner. This means that theory
solvers do not have to perform rewriting or assert extra clauses
to enforce mutual exclusivity of choices. Instead, they can
provide this information directly to the core solver, which can
use these facts during the search. This saves on the propagation
effort of the DPLL(T) framework. Our implementation of this
technique is as follows:

1) The theory solver provides the core solver with a set S
of mutually exclusive literals that correspond to a theory
case-split. This set is maintained by the core solver in a
list of all such sets.

2) During branching, the core solver checks if the current
branching literal belongs to some such set S. If yes,
the current branching literal is assigned true and all
other theory case-split literals in S are assigned false.
Otherwise, the default branching behaviour is used.

3) During propagation, the core solver may assign a truth
value to a literal l in some set S of theory case-split
literals. If so, the theory case-split check is invoked, i.e.,
the core solver checks whether two literals l1, l2 in the
same set S have been assigned the value true. If this is the
case, the core solver immediately generates the conflict
clause (¬l1 ∨ ¬l2).
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Fig. 1. Cactus plot of string solvers over the Kaluza benchmark (SAT cases).

Fig. 2. Cactus plot of string solvers over the Kaluza benchmark (UNSAT cases).

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation of
the Z3str3 solver to validate the effectiveness of the techniques
presented in this paper. We compare Z3str3 against four
other state-of-the-art string solvers, namely, Z3str2 [24], [23],
CVC4 [12], S3 [20], and Norn [2], across industrial bench-
marks obtained from Kaluza [16], PISA [19], and AppScan
Source [1]. Each of these benchmark suites draw from real-
world applications with diverse characteristics. All experi-
ments were performed on a workstation running Ubuntu 15.10
with an Intel i7-3770k CPU and 16GB of memory. Also, we
cross-verified the models generated by Z3str3 against Z3str2
and CVC4, and vice-versa.

Table I shows the summary of results for the Kaluza
benchmark. As can be seen from the cactus plots over SAT
and UNSAT cases from the Kaluza benchmark, in Figures 1
and 2, Z3str3 (red series) outperforms competing solvers. On
SAT cases, Z3str3 is competitive with CVC4 and significantly

outperforms all other solvers. On UNSAT cases, Z3str3 is
the fastest solver over all cases it can complete. As binaries
for S3P are not publicly available, we report the aggregate
results presented for this benchmark in the most recent S3P
paper [21]. From Table I and Figures 1 and 2 it is clear that
Z3str3 is highly competitive with respect to CVC4, and is
much faster than other tools. Z3str3 solves more SAT instances
than any other tool we benchmarked except S3P, and has the
lowest total solving time on non-timeout cases. Notably, over
all instances where both solvers finish, Z3str3 solves more
cases in total than Z3str2 and completes 30% faster. The
unknowns in Z3str3 are because it lacks the feature to handle
string equations with overlapping variables, similar to Z3str2.
However, Z3str3 has far fewer unknowns than Z3str2.

Z3str3 Z3str2 CVC4 Norn S3 S3P
sat 35147 34868 35128 33527 35016 35270

unsat 11799 11799 11957 11568 12049 12014
unknown 223 617 6 1913 0 0
timeout 115 0 0 276 219 0

error 0 0 193 0 0 0
Time (s) 4939.52 3997.63 4851.66 109280.76 10544.06 6972

Time w/o timeouts (s) 2971.02 3997.63 4851.66 97784.00 6164.06 6972

TABLE I
KALUZA BENCHMARK RESULTS. TIMEOUT=20 S. TOTAL TIME INCLUDES

ALL SOLVED, TIMEOUT, UNKNOWN, AND ERROR INSTANCES.

Table II shows the results on the PISA benchmark, a set
of industrial program analysis instances from IBM. Norn was
not able to solve any of the cases as it crashed upon seeing
unrecognized string operators (e.g. indexof). From Table II
we make the following observations. The tools Z3str3, Z3str2,
and CVC4 are in agreement on all cases they are able to solve,
with CVC4 and Z3str2 timing out on one SAT case which
Z3str3 can solve in 0.43 seconds. The results for S3 are sig-
nificantly worse; it is unable to solve pisa-009.smt2 while
the other three solvers all answer SAT very quickly; and in ad-
dition S3 incorrectly answers UNSAT for pisa-008.smt2,
pisa-010.smt2, and pisa-011.smt2, on which Z3str3
and (for two of these cases) Z3str2 and CVC4 all return SAT
and produce a valid model. The performance of Z3str3 on this
benchmark is highly competitive with other solvers, improving
on the result from Z3str2.

Table III shows the results on the AppScan benchmark, a
second set of industrial instances from IBM. Norn crashed on
these cases as well upon seeing unrecognized string operators.
From Table III we make the following observations. Z3str3,
Z3str2, and CVC4 all agree on all cases they are able to
solve. CVC4 performs slightly better than Z3str3 on 3 cases,
equally well on 1, and worse on 4, timing out on one case
that Z3str3 can solve in 0.73 seconds. In total, on non-timeout
cases, CVC4 takes twice as long as Z3str3 (7.89 seconds vs.
4.15 seconds). Z3str2 performs better than Z3str3 on 1 case
and worse on 7, taking almost ten times as long on all cases
(33.17 seconds vs. 4.15 seconds). S3 returns UNKNOWN on
two cases that are solved by the other three tools and produces
invalid models which fail cross-validation for four other cases.
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input Z3str3 Z3str2 CVC4 S3
result time (s) result time (s) result time (s) result time (s)

pisa-000.smt2 sat 0.03 sat 0.25 sat 0.08 sat 0.07
pisa-001.smt2 sat 0.05 sat 0.19 sat 0.00 sat 0.07
pisa-002.smt2 sat 0.03 sat 0.10 sat 0.00 sat 0.05
pisa-003.smt2 unsat 0.02 unsat 0.02 unsat 0.01 unsat 0.02
pisa-004.smt2 unsat 0.02 unsat 0.05 unsat 0.39 unsat 0.05
pisa-005.smt2 sat 0.02 sat 0.14 sat 0.02 sat 0.04
pisa-006.smt2 unsat 0.03 unsat 0.05 unsat 0.32 unsat 0.05
pisa-007.smt2 unsat 0.02 unsat 0.05 unsat 0.37 unsat 0.05
pisa-008.smt2 sat 0.43 timeout 20.00 timeout 20.00 unsat X 4.73
pisa-009.smt2 sat 0.60 sat 0.62 sat 0.00 timeout 20.00
pisa-010.smt2 sat 0.02 sat 0.09 sat 0.00 unsat X 0.02
pisa-011.smt2 sat 0.03 sat 0.06 sat 0.00 unsat X 0.02

TABLE II
PISA BENCHMARK RESULTS. TIMEOUT=20 S. X = INCORRECT RESPONSE.

input Z3str3 Z3str2 CVC4 S3
result time (s) result time (s) result time (s) result time (s)

t01.smt2 sat 0.18 sat 1.31 sat 0.01 sat 0.23
t02.smt2 sat 0.17 sat 0.38 sat 0.01 unknown 0.04
t03.smt2 sat 0.27 sat 9.54 sat 3.82 sat X 0.14
t04.smt2 sat 0.73 sat 4.45 timeout 20.00 sat X 0.10
t05.smt2 sat 0.57 sat 16.84 sat 3.87 sat X 0.55
t06.smt2 sat 0.02 sat 0.15 sat 0.01 sat 0.13
t07.smt2 sat 2.18 sat 0.25 sat 0.00 unknown 0.02
t08.smt2 sat 0.03 sat 0.25 sat 0.17 sat X 0.03

TABLE III
APPSCAN BENCHMARK RESULTS. TIMEOUT=20 S. X = INCORRECT

RESPONSE.

Heuristic Neither Theory-aware
branching

Theory-aware
case split

Both

sat 35079 35147 35092 35147
unsat 11799 11799 11799 11799

unknown 221 230 223 223
timeout 185 108 170 115
Time (s) 6252.26 6055.04 5027.35 4939.52

TABLE IV
PERFORMANCE COMPARISON WITH THEORY-AWARE BRANCHING AND

THEORY-AWARE CASE SPLIT ENABLED AND DISABLED IN ALL
COMBINATIONS. TIMES TAKEN OVER KALUZA BENCHMARK WITH 20 S

TIMEOUT. TOTAL TIME INCLUDES ALL SOLVED, TIMEOUT, AND UNKNOWN
INSTANCES.

Table IV presents the results of a comparison in which
each of the new heuristics in Z3str3, namely theory-aware
branching and theory case split, was enabled and disabled in
all combinations, in order to measure the change in behaviour
of the solver when run over the same benchmark (Kaluza).
The experiment clearly shows that both techniques improve the
performance of the solver both in isolation and in combination.
One intuition for the disparity in performance with respect to
each heuristic is that the theory case-split heuristic applies in
every instance, due to the frequency of generation of mutually-
exclusive options during the search, while the theory-aware
branching heuristic is only effective in cases with a large
amount of backtracking and search activity, and as such the
solver may not benefit from it if the solution is easy to find.

V. DISCUSSION ON EXPERIMENTAL RESULTS, AND
CONCLUSIONS

The experimental results discussed here make clear the
efficacy of theory-aware branching and case-split. The crucial
insight behind these techniques is that biasing the search
towards easier branches of the search tree (e.g., an arrangement
that doesn’t require splitting variables, as opposed to one
with overlapping variables) is often very effective since most
string constraints obtained from practical applications have the
“small model” property. The slogan of theory-aware branching
is “bias search towards easy cases first”. We also note that
Z3str3 and CVC4 do not give any incorrect results, and are
more robust than Norn and S3 which sometimes give wrong
answers or crash on the benchmarks we used.
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Abstract—In this paper, we verify a modern lazy cache
coherence protocol, TSO-CC, against the memory consistency
model it was designed for, TSO. We achieve this by first
showing a weak simulation relation between TSO-CC (with a
fixed number of processors) and a novel finite-state operational
model which exhibits the laziness of TSO-CC and satisfies TSO.
We then extend this by an existing parameterisation technique,
allowing verification for an unbounded number of processors.
The approach is executed entirely within a model checker, no
external tool is required and very little in-depth knowledge of
formal verification methods is required of the verifier.

I. INTRODUCTION

In parallel architectures with local caches, cached values
can become stale. Therefore, it is imperative that the system
guarantees shared memory correctness by ensuring that it
correctly implements a memory consistency model (MCM)—
the formal model that determines what value a read should
return [1]. An integral component of enforcing an MCM is
the cache coherence protocol (CCP), which is responsible
for making writes visible to other caches in an order that is
consistent with the MCM.

Traditionally, CCPs have been designed for the strictest
of MCMs—sequential consistency (SC). Previously, this has
been beneficial as a way to decouple the design of a CCP
from the MCM; indeed, a CCP designed for the strongest of
MCMs could bolt-on to other weaker MCMs. Unfortunately,
this simplicity comes at a cost.

The strict program order requirements of SC mandates
that writes are made globally visible before any subsequent
memory operation from the same processor. To guarantee this,
CCPs eagerly invalidate other non-local shared copies upon a
write. In effect, such eager CCPs enforce the Single-Writer–
Multiple-Reader (SWMR) invariant [2]—a cache line may
only have either a single writer or multiple readers. To this
end, eager CCPs must maintain a vector of processors sharing
a cache line, but this vector scales linearly with the number
of processors [3], [4]. Thus these protocols do not scale well
to large-scale many-core processors.

Luckily, modern architectures tend to have more relaxed
MCMs like Total Store Order (TSO)—used in prevalent archi-
tectures such as x86 and SPARC. Consequently, it is possible
for CCP designers to take advantage of these relaxations.
Indeed, there has been significant recent research on lazy
coherence protocols [5], [3], [6], [4], that exploit the fact

∗Now at Google.
†This work is supported by EPSRC grant EP/M027317/1

that relaxed models only require memory to be consistent at
synchronisation boundaries. In these protocols, shared lines are
self-invalidated on synchronisation boundaries and therefore
no longer require a (poorly scaling) sharing vector.

This poses a problem for the verification of such protocols.
Traditionally, formal verification approaches for CCPs [7],
[8] have focused on model checking protocol-specific safety
properties such as the SWMR invariant [2]. However, these
new lazy CCPs that are designed to take advantage of weak
MCMs violate SWMR by design and hence cannot be verified
in the usual way. They need to be verified in a stronger manner:
for adherence to the MCM. This is especially appropriate for
the protocol we study, TSO-CC [6], because it was designed
specifically with the TSO memory model in mind.

Challenges: If these new scalable lazy CCPs are to
see the light of day, we believe they need to be formally
verified against the MCM. A testing approach does not cover
all corner cases and does not give the confidence that for-
mal verification brings. Equally, the subtlety of behaviours
exhibited by both lazy CCPs and weak MCMs warrants a
rigorous approach. Only formal verification will suffice to
allay skepticism surrounding the behaviour of lazy CCPs.
Furthermore, the verification technique should be generally
applicable, should not assume the verifier to have sophisticated
knowledge beyond the protocol, and it should scale to many-
core processors.

Our result: In this paper, for the first time, we formally
and exhaustively verify a modern lazy CCP against the MCM
which it is supposed to implement. Our protocol of interest is
TSO-CC (Section II), a scalable lazy CCP which was designed
to target TSO. We establish our result for fixed cache sizes,
but for any number of processors. Our verification focuses on
safety; we do not tackle liveness. This enables our verification
approach to use a slightly abstract version of CCP where, for
example, access counters are not modelled explicitly.

Our approach to verification proceeds as follows. First, we
propose a novel finite-state operational model TSO-LB, based
on load buffers, that abstracts our lazy CCP TSO-CC. Second,
we use a model checker to establish that TSO-CC is a refine-
ment of the TSO-LB operational model. Initially we show
refinement for a fixed number of processors; subsequently we
deploy the parameterised verification technique of Chou et
al. [9] to extend our refinement result to an arbitrary number
of processors. Finally, we show that the TSO-LB operational
model is stricter than an axiomatic specification of TSO.

Contributions: Our approach is inspired by Chatterjee et
al. [10], who showed how CCPs can be verified against their
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MCMs using a model checker. Beyond this work, we make a
number of specific advances.

First, we support, for the first time, a lazy CCP through
the use of a novel abstract operational model. A lazy CCP
like TSO-CC pulls new values via self-invalidates upon a
read, in contrast to conventionally eager CCPs which push
invalidates upon a write. The nature and timing of invalidations
in eager and lazy CCPs are different. Current operational
models abstract the push-based invalidates, which makes it
difficult to show that lazy CCPs refine them. We therefore
needed to introduce this novel operational model we call TSO-
LB which abstracts pull-based self-invalidates.

Second, we provide a proof that our TSO-LB model satisfies
an axiomatic characterisation of TSO, however in Chatterjee
et al. the task of showing the abstract operational models are
consistent with axiomatic descriptions of the MCMs is not
completed (and, as far as we can tell, was never subsequently
completed). In our case, the proof is particularly important
given how TSO-LB differs from conventional operational
models for TSO.

Third, we employ the parameterisation technique of Chou
et al. [9] to verify for an arbitrary number of processors
(whereas Chatterjee et al. only verified for a fixed number
of processors). In doing so, we demonstrate that the technique
is not only useful when model checking CCP properties, but
also is useful when using model checking to verify refinement
and show a CCP satisfies the relevant MCM.

Other related work: Another alternative approach by
Manerkar et al. [11] uses CCICheck, which explores ordering
relations between CCP and MCM; however, protocols must
be described in an axiomatic style—orthogonal to typical
operational descriptions of protocols—and verification is with
respect to specific litmus tests—which may not capture every
MCM behaviour and hence not exhaustive. It is notable that
these approaches only verify for a fixed number of processors;
an approach to solving this problem is found in compositional
model checking approaches pioneered by McMillan [12]. This
method was further refined by Chou et al. [13], [9] and
made practical; however, they, once again, only deal with
protocol-specific properties. Likewise, Pong and Dubois [14],
[15] verify compositionally, using Symbolic State Models, but
again only against protocol-specific properties.

Abdulla et al. [16] recently propose the Dual-TSO opera-
tional model for TSO for program verification, in which they
replace the store buffer in the traditional operational model
with a load buffer. However, their notion of a load buffer
has unbounded queues with potentially multiple values for an
address, and thus does not help us with the infinite state-space
problem. Our model also works very differently (but similar
to CCP’s like TSO-CC) by propagating multiple addresses to
a load buffer atomically. So our model is not obviously a
refinement of some finite restriction of the Dual-TSO model.
It is also worth noting that we first defined our TSO-LB
model [17] concurrently with Abdulla et al.

II. TSO-CC
TSO-CC [6] is a lazy CCP, designed to address the scala-

bility issues surrounding CCPs for large numbers of cores.

Lazy CCPs, like TSO-CC, take account of the fact that
the relaxed memory models employed in modern multi-core
processors only require memory to be consistent at synchroni-
sation boundaries. Consequently, instead of eagerly enforcing
coherence at every write, coherence is enforced lazily only
at synchronisation boundaries. Thus, upon a write, data is
merely written to a processor-local write-buffer, the contents of
which are flushed to the shared cache upon a release. Upon an
acquire, shared lines in the local caches are self-invalidated—
thereby ensuring that reads to shared lines fetch the up-to-date
data from the shared cache. In effect, the CCP may be much
simpler and does not require a sharing vector.

However, the design of TSO-CC is specifically directed
by the TSO memory model which has no explicit release
or acquire instructions. It follows that, as reads have acquire
semantics and writes have release semantics, a TSO com-
pliant CCP would only need to consider each read/write an
acquire/release; this, of course is not efficient because all reads
and writes would need to be propagated, effectively negating
the provision of local caches.

The approach in TSO-CC is that for each cache line in the
shared cache, it keeps track of whether the line is exclusive,
shared, or read-only. Shared lines do not require tracking
of sharers (making TSO-CC more scalable than standard
directory-based protocols). Additionally, for exclusive cache
lines, it only maintains a pointer to the owner.

Since it does not track sharers, writes do not eagerly
invalidate shared copies in other processors. On the contrary,
writes are merely propagated to the shared cache in program
order (thus ensuring write-write order). To save bandwidth,
instead of writing the full data block to the shared cache, it
merely propagates the coherence states. Intuitively, the most
recent value of any data is maintained in the shared cache.

Reads to shared cache lines are allowed to read from the
local cache, up to a predefined number of accesses (potentially
causing a stale value to be read), but are forced to re-request
the cache line from the shared cache after exceeding an access
threshold (the implementation maintains an access counter per
line). This ensures that any write (used as a release) will
eventually be made visible to the matching acquire, ensuring
eventual write propagation. When a read misses in the local
cache, it is forced to obtain the most recent value from the
shared cache. In order to ensure the read-read order, future
reads will also need to read the most recent values. To
guarantee this, whenever a read misses in the local cache,
it self-invalidates all shared cache lines. Finer details of the
protocol may be found in the original paper by Elver and
Nagarajan [6]. It should be noted that our model implements
the basic protocol, without timestamps.

Prior TSO-CC verification work: In order to check that
the protocol implementation adheres to TSO, the original
authors of TSO-CC used the diy [18] tool to generate litmus
tests for TSO (according to the method detailed in Owens et
al. [19]) and ran it in a full-system simulator. An independent
approach to verification was made by CCICheck [11], using
TSO-CC as a case study. CCICheck uses abstract axiomatic
models of pipeline and memory system, and verifies that a set
of litmus tests is not violated. However, whilst a litmus test
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based approach provides some confidence that the protocol is
correct, it is by no means an exhaustive means of verification
and corner cases may be missed. In order to minimise the
potential for missed corner cases in a detailed cycle-accurate
full-system implementation, Elver and Nagarajan developed
McVerSi [20], a test generation framework for fast memory
consistency verification in simulation. This approach, whilst
it further increased confidence and testing of corner cases,
is still not exhaustive. The remainder of this paper solves
this problem with an entirely exhaustive approach to verifying
TSO-CC against the TSO memory model.

III. TSO-CC SATISFIES TSO

In this section, we show that the lazy cache coherence
protocol TSO-CC does indeed satisfy the constraints of the
TSO memory consistency model. This solves the problems
associated with the previous verification approaches: corner
cases which could be missed by insufficient testing would now
be revealed by exhaustive exploration of the state space. For
now, we only show that this is true for the simpler case of a
fixed number of processors. We go on to show, in Section IV,
that this is true for a parameterised model of TSO-CC with
any number of processors.

We took a number of discrete steps in the process of
verifying the protocol. The first step was to translate the
protocol into a suitable model for verification. For this purpose
we chose the Murϕ language and model checker [21]. Murϕ
is a well-established model checker and extensively used
in both previous academic studies [21], [10], [22] and in
industry [12], [7], [9], [23], [3]. We then went on to show that
this model satisfied some basic properties, such as freedom
from deadlock, using the model checker. Our approach to this
is detailed in Section III-A.

The next step in the process was to show that the TSO-CC
model satisfied the constraints of TSO. One way to achieve this
was to show there exists a weak simulation relation between
TSO-CC and an operational model of TSO. A weak simulation
relation exists if the observable actions (reads/writes to a
memory location) in the CCP model can be matched by actions
in the model of TSO. This concept is defined more formally
in Section III-D, in which we also explain our approach to
showing weak simulation using the model checker.

However, in order for our approach to work, we needed
an operational model of TSO. Such models exist in the
literature but tend to be store buffer based [19], [24]. These
models, while abstracting push-based eager CCPs well, make
it difficult to show that lazy CCPs (which pull new values
via self-invalidates) refine them. Furthermore, whereas such
models require unbounded store buffers, we needed a finitely
enumerable model for use with a model checking approach.
Hence, in Section III-B we define TSO-LB, a load buffer
based operational model with bounded buffers that abstracts
lazy CCPs. After establishing that TSO-LB exhibits only TSO
behaviour, we were able to use the operational model as part
of our verification strategy.
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Fig. 1. Concrete model structure.

A. Model checking in Murϕ

We began by defining a Murϕ model of the TSO-CC
protocol. The model implements the basic TSO-CC protocol
as described in the original paper [6], with each rule in the
protocol description relating to a rule in the Murϕ model;
it has parameters for the number of processors, number of
addresses, and number of values; the model was checked using
three address locations and two values. The model is a faithful
implementation of the protocol with the only abstraction being
the abstract interpretation of the access counter—as described
below. The model is constructed as a set of caches and
a directory, each having a state and a set of addresses or
memory locations, each with a set of possible values. The
interconnection network is represented as a set of sets of
messages; each node (cache or directory) can write or read
to or from the network (Figure 1).

A set of rules, each a guard =⇒ action pair, then defines
the behaviour of the model. As an example, the following is
a pair of sample rules taken from the full ruleset1:

c[a].state = I =⇒ SendGetS(c,Dir, a);

c[a].state :=WS (Read I)

c[a].state = E =⇒ c[a].val := v

c[a].state :=M ; (Write E)

where c is a cache, a is an address (memory location), v is
a value, and c[a].state (or c[a].val) is the state (or value)
for the given cache and address. The first rule (Read I) is
the Read rule for the Invalid cache state and the second is
the Write rule for the Exclusive cache state. When a cache is
in state I and does a Read, it sends a GetS message to the
directory and switches to state WS. When a cache is in state E
it may do a Write, store the written value, and switch to state
M (Modified). The function SendGetS handles the passing of
a GetS message to the network.

We then define a rule that handles the receipt of messages
from the network at each node (cache or directory). Within
this rule are some functions which handle actions performed
when a message is received; the following is an extract from
the DirectoryReceive function for handling the messages
in the previous example:

1The full ruleset can be found at https://github.com/icsa-caps/tso-cc
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DirectoryReceive(msg, a) =

if Dir[a].state = I ∧msg.type = GetS

then SendDataS(msg.src, a, . . .);

ReplaceOwner(msg.src, a);

Dir[a].state := WE1

else . . .

There is a function CacheReceive which has similar
conditions for receiving messages at a cache.

Another pair of rules which are of interest are the Read
rules for the Shared cache state. Part of the lazy invalidation
scheme for TSO-CC is that a cache must self-invalidate after
a certain number of reads, specifically once an access counter
reaches a predefined limit. In our model, we abstract the access
counter by just having two rules corresponding to a Read in
the Shared state: one where the access count is within its limit
and another for when the limit has been reached. There is thus
a non-deterministic choice between the two options:

c[a].state = S =⇒ SendGetS(c,Dir, a);

c[a].state :=WS

(Read S[MAX])

c[a].state = S =⇒ //do nothing
(Read S[<MAX])

In the first rule, the access count has been reached, causing
self-invalidation followed by re-requesting a fresh value from
the directory; in the second rule, the access count has not
been reached, and the cache is free to read hit on its own
value with no further action. The model checker accounts for
the non-deterministic choice between these rules.

Once the full ruleset in the model checker is defined,
the rules are then exhaustively applied using an appropriate
strategy (e.g. breadth first, depth first) until every possible
state of the model has been enumerated; during this process
of state enumeration the model checker checks that it can
always proceed to another state (deadlock freedom) and that
any defined invariants hold for each state. For efficiency, Murϕ
also reduces the set of states which need to be enumerated by
using various techniques, such as symmetry reduction [25].

The next problem was to decide what property to check the
model against. The derived properties which usually hold for
CCPs, like SWMR do not hold for TSO-CC, by design, so a
new strategy has to be applied. Our verification strategy is to
establish that TSO-CC satisfies TSO by: (a) devising TSO-LB,
a finite operational model for abstracting TSO-CC, (b) proving
that TSO-LB shows only TSO behaviour, and (c) showing that
TSO-CC is a refinement of TSO-LB within a model checker.

B. TSO-LB operational model

This section introduces the abstract TSO load-buffering
model (TSO-LB). For our approach, existing operational mod-
els of TSO [19], [24] are not ideal for two reasons. The first
being that they require unbounded buffers, making algorithmic
verification difficult. Second, a refinement between a lazy CCP

and an existing store-buffering model would be difficult, as
a lazy CCP effectively follows a load-buffering rather than
a store-buffering approach: loads, viz. reads, hitting on a
locally “buffered” (potentially) stale value, until the current
value is pulled in (i.e. propagates) from global memory via
a self-invalidate. The load-buffering based operational model
formalised below abstracts a lazy CCP better and hence
simplifies verification.

Definition 1 (Labelled Transition System): A labelled tran-
sition system (LTS) is a tuple (L,Q, I, T ) where, L is a set
of labels, Q is a set of states, I ⊆ Q is a set of initial states
and T ⊆ Q× L×Q is the transition relation.
If (q, l, q′) ∈ T then we say there is a transition labelled l ∈ L
from state q ∈ Q to state q′ ∈ Q and we may abbreviate this
as q l−→ q′.

Definition 2 (TSO-LB): We define an LTS for TSO-LB as
follows. The transition relation is given by the rules:

localq(p)(a) = v

q
Read(p,a,v)−−−−−−−→ q

READ

q
Write(p,a,v)−−−−−−−→ 〈localq[(p)(a) 7→ v], globalq[(a) 7→ v]〉

WRITE

q
τ−→ 〈localq[(p) 7→ globalq], globalq〉

PROPAGATE

where P is a finite set of processors, with p ∈ P ; A is a
finite set of addresses (memory locations), with a ∈ A; V is a
finite set of data values, with v ∈ V ; localq : P → A → V
is a function where localq(p)(a) is the value at address a in
the local buffer of p in state q and globalq : A → V is a
function where globalq(a) is the value at address a in the
global buffer in state q.

The set of states Q consists of all pairs 〈localq, globalq〉
and the set of labels L = {τ,Read(p, a, v),Write(p, a, v)}
where p ∈ P , a ∈ A, v ∈ V and τ is the silent action. We
define the set of initial states I to be I , {q : ∀p ∈ P. ∀a ∈
A. localq(p)(a) = globalq(a)}.

C. TSO-LB satisfies TSO

In the following, we outline a proof sketch that the TSO-LB
operational model defined in Definition 2 permits only TSO
behaviour. Since TSO-LB is defined as a LTS, its behaviour
is defined with respect to an arbitrary trace of this LTS. We
show (Theorem 1), by means of an interpretation of logical
and physical time over these traces, that the behaviour satisfies
the herd axiomatic characterisation of TSO [26]. We also
show via a counterexample that TSO-LB does not permit all
allowable behaviours of TSO, i.e. TSO-LB is in fact stricter
than TSO.

Theorem 1 (TSO-LB satisfies TSO): The read and write
events of traces of the TSO-LB LTS satisfy the TSO axiomatic
MCM (as formalised in Alglave et al. [26].

Our proof strategy starts with defining a trace P of TSO-LB
(Definition 3). The trace order might be seen as the physical-
time representation of events, which contains writes, reads,
and propagates. We will then construct a strict linear order L
from P which contains the same writes and reads (with the
same values). We then show how to instantiate the required
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ordering relations from the herd framework of Alglave et
al. [26] from L, and show all those orders are contained in
L. This will then allow us to show that the herd axiomatic
constraints of TSO hold over the write and read events. Note
that we assume a simplified TSO model excluding fences, as
TSO-LB does not model fences by definition.

Definition 3 (Trace): A trace of an LTS is a sequence (finite
or infinite) of labels that results from a path of transitions
starting at the initial state. Let us call this trace order P .

Definition 4 (Logical-time L): We define L to be an order
on the read and write events in the trace P . All writes
Write(p, a, v) appear in L in the same order as in the physical-
time trace P . A read Read(p, a, v) is pulled backwards in the
trace to just after the event in P which made the processor
p get the value v for a. Such an event is either a write from
the same processor p, or a propagate to the processor p (if
Read(p, a, v) reads from a write on another processor).

Note that several reads from the same processor can be
pulled back to the same point in this scheme, if the same
address is read by multiple reads, or if the propagated values
for different addresses for the same propagate event are read
from by different reads. In such a case, we order these multiple
reads in L (which have to be from the same processor)
according to program order.

Definition 5 (co in TSO-LB): The order co is defined in
TSO-LB as Write(p, a, v) co→ Write(q, b, w) if and only if
Write(p, a, v) occurs before Write(q, b, w) in the physical-
time trace P , and the addresses a and b are the same.
Note that p and q may be the same or different processors,
and v and w the same or different values.

Definition 6 (rf in TSO-LB): The order rf is defined as
Write(p, a, v) rf→ Read(q, a, v) where p and q may be the
same or different processors, and the read gets its value from
the write.

We can now show that co , rf , and all the derived relations
of the herd TSO formalisation are sub-orders of L. Then
all axioms state the acyclicity and irreflexivities of various
order relations, which are satisfied by any sub-orders of a strict
linear order L. For the complete proof we refer to the online
appendix.2

D. Weak simulation by model checking

Our core goal here is to check that a value read from a
memory location by a processor at any point in time adheres to
the TSO-LB specification, if all memory accesses are governed
by the TSO-CC protocol.

We model both the TSO-LB specification and the TSO-
CC protocol as labelled transition systems. In both cases,
the labels are either observable actions concerning reads and
writes or they are silent actions. For convenience below, we
use the single label τ for all silent actions, though in our
implementation it is useful to consider each system having a
number of silent actions.

Our formal notion of correctness is that every observable
trace of the TSO-CC protocol LTS is also an observable trace

2https://github.com/icsa-caps/tso-cc/blob/master/TSO-LB-proof.pdf

of the TSO-LB specification LTS. An observable trace is a
trace with all the silent actions removed. We establish this
inclusion property of observable traces by exhibiting a weak
simulation relation between the TSO-CC LTS and the TSO-
LB LTS such that the pair of initial states of the two LTSs is
included in the relation.

A weak simulation relation shows step-by-step that for
every observable action in TSO-CC there is a corresponding
observable action in TSO-LB; it makes no attempt to match
the silent actions in the two LTSs. This notion of weak
simulation may be defined more formally as follows (following
Milner [27]).

Definition 7 (Weak transition): Let A = (L,Q, I, T ) be an
LTS. A weak transition q l

=⇒ q′ is defined as q τ−→∗ x l−→
y

τ−→∗ q′ for some x,y, where τ−→∗ is the reflexive transitive
closure of τ−→ and q, q′, x, y ∈ Q, l ∈ L and l 6= τ .

Later we use the notation q =⇒ q′ for q τ−→∗ q′ or, if
we allow multiple silent-action labels, to say that q′ can be
reached from q by zero or more transitions labelled by silent
actions.

Definition 8 (Weak simulation): Let C = (L,QC , IC , TC)
and A = (L,QA, IA, TA) be two LTSs with the same label
set. Let l ∈ L be an observable action. A weak simulation
W ⊆ QC × QA is a binary relation such that if (p, q) ∈ W ,
written pWq, then

1) if p l−→ p′ then there exists q′ ∈ QA such that q l
=⇒ q′

and p′Wq′, and
2) if p τ−→ p′ then there exists q′ ∈ QA such that q =⇒ q′

and p′Wq′.
In our setting, QC are the states of the CCP and QA are the
states of the MCM.

To prove that there exists a weak simulation relation using
a model checker, we construct an unlabelled transition system
M = (Q, T ) from the two LTSs with Q = QC × QA and
a specially crafted transition relation T . If a certain property
holds for every reachable state ofM, then the set of reachable
states is a weak simulation relation between C and A. As
the initial state of M is a pair of the initial states of C
and A, we have that the initial state pair are related by the
weak simulation, and hence every observable trace of C is
also an observable trace of A. We can describe the transi-
tion relation and checked property as follows. The transition
relation 〈p, q〉 −→ 〈p′, q′〉 is defined as ∃l ∈ L. p

l−→
p′∧q′ = last(AbsWitness(p, q, l)) where AbsWitness(p, q, l)
computes an alternating sequence of abstract states and labels
〈q0, l0, q1, l1, . . . , qn〉 for some n ≥ 0, q = q0 and the last()
function picks out the last state qn of such a sequence.

The checked property Match(〈p, q〉) is defined as
∀l ∈ L, p′ ∈ QC . p l−→ p′ ⇒ AbsWitness(p, q, l) is a witness
for:

1) q
l

=⇒ last(AbsWitness(p, q, l)) if l is observable. and
2) q =⇒ last(AbsWitness(p, q, l)) if l = τ .

Here, an alternating sequence of abstract states and labels
〈q0, l0, q1, l1, . . . , qn〉 is a witness for q0 =⇒ qn if all the
li are silent and qi

li−→ qi+1 for all i ∈ {0, . . . , n − 1}, and
is a witness for q0

l
=⇒ qn if there exists a unique li = l in
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the sequence such that ∀j 6= i lj is silent and qi
li−→ qi+1 for

all i ∈ {0, . . . , n−1}. Witnesses for weak transition instances
enable the straightforward checking of the truth of instances.

A conceptual sketch of the witness function AbsWitness
we use is as follows:

• If TSO-CC does a write action, then TSO-LB is made to
take a single corresponding write action step.

• For silent transitions of TSO-CC, the witness is a single
state—i.e. TSO-LB takes no steps.

• If TSO-CC does a read action, then in TSO-LB we either
do a read action, or a propagate action followed by a read.
We settle for the single read step if it is allowed by TSO-
LB. If not, we go for the 2 step witness. As propagate
is the only silent action in TSO-LB and it is idempotent,
there are no other options to consider.

In general the abstract LTS might permit several silent tran-
sitions and the AbsWitness function has to embody some
strategy for testing possible silent actions; however, it is
worthy of note that the trivial strategy, as described here, is
generally applicable to checking any CCP against TSO-LB.

E. Weak simulation in Murϕ

To realise the above in Murϕ we started with the TSO-
CC Murϕ model introduced in Section III-A and augmented
the state with components for the TSO-LB specification. At
the rules in the TSO-CC model where observable actions
(reads/writes) are performed, we also step forward the TSO-
LB model with the same actions, as explained above.

Coding the Match predicate is much simpler than the
conceptual presentation above suggests. For the step forward
of the TSO-LB system on write actions, the step is guaranteed
by construction to satisfy the TSO-LB labelled transition
relation, there is nothing to check. Only for the read action
do we need to check that the value read in the TSO-LB
specification actually matches that from the TSO-CC system.
We simply use an invariant in Murϕ to check the read value
at each read step.

In the following, we detail how we implemented the tran-
sition system model and Match check in Murϕ. The imple-
mentation of TSO-LB involves a pair of arrays to represent
the global and local buffers for each cache and address, Murϕ
procedures TSOStore and TSOUpdate, and the Murϕ func-
tion TSOVerify. These functions compute the next TSO-
LB state for the Write, Propagate, and Read TSO-LB rules
respectively. In addition TSOVerify returns a Boolean value
indicating whether TSO-LB can indeed make one or two steps
forward that result in a correct read. Calling TSOVerify
returns true if the expected value is in the local buffer, or it
tries a TSOUpdate and returns true if the expected value is
now in the local buffer, else it returns false. A Murϕ invariant
ensures that TSOVerify always returns true.

The rules of TSO-CC incorporate these TSO-LB procedures
and function. Taking our previous example rules, we amend
them as follows:

Cache
1

Cache
n

...

Dir

Net 1 M1 Mm.. Net n M1 Mm.....

Net d M1 Mm..

Abstract Caches

1 a..
..
..

S1 Sa
V1 Va

1 a..
..
..

S1 Sa
V1 Va

1 a..
..
..

S1 Sa
V1 Va

Fig. 2. Parameterised model structure with abstract caches.

c[a].state = E =⇒ c[a].val := v

c[a].state :=M ;

TSOStore(c, a, v)

(Write E)

c[a].state = S =⇒ //do nothing;

Assert(TSOVerify(c, a, c[a].val))

(Read S[<MAX])

and likewise wherever a Read or Write action occurs in the
CCP model. In this way our model shows that the values at
the CCP level are consistent with the values at the MCM level.

Thus, for a fixed number of processors, we show that the
simulation relation between TSO-CC and TSO-LB holds. The
next problem was to show that the simulation relation holds
for any number of processors. The next section shows how we
solved this problem.

IV. TSO-CC WITH n PROCESSORS SATISFIES TSO

After showing that TSO-CC indeed satisfies TSO for a finite
number of processors, we now show that this is also the case
irrespective of the number of processors. In this section we
present a parameterised model, parameterised in the number
of processors, showing the same weak simulation relation
between TSO-CC and TSO still applies with n processors.

In order to define a parameterised model we follow the
method of Chou et al. [9], who in turn refined the ideas of
McMillan [28]; the method is proven mathematically correct
by Krstić [29]. The essence of the method is that one takes
the original concrete model, but adds a new abstract cache.
The abstract cache represents any number of caches connected
to the concrete model (Figure 2). Initially the abstract cache
can send any possible message to the concrete caches. This
over-approximated set of messages is then reduced to only the
set of legal messages by a process of counterexample guided
abstraction refinement [30].

The initial over-approximated set of messages coming from
the abstract cache will generate a counterexample when a
spurious message is sent. One can then introduce a restriction
to the abstract cache which disallows the spurious message.
However it is then necessary to show that the restriction is
valid and does not lead to an under-approximation of legal
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messages. In order to achieve this, one can write a non-
interference lemma which shows the restricted message cannot
occur in the concrete model. The key to the method is that
the process is manual, but simply mechanical: the restriction
is guided by the counterexample, the lemma is guided by the
restriction, then the model checker checks both simultaneously
and automatically. The apparent circular reasoning in proving
the lemma on the amended system is dealt with by example
by Chou et al. [9] and proved correct by Krstić [29].

A. Parameterised model in Murϕ

The implementation of the parameterised model begins with
the definition of a set of rules which generate all the possible
messages which could be received at each node from the
abstract caches. For example, one of the rules which handles
the receipt of a DataX message at a cache is:

c[a].state = WX

=⇒ SendAck(c,Dir, a);

c[a].state := M;

InvalidateAllOtherLines(c, a)

(Cache Recv DataX Abs)

and similar rules are defined for each combination of node,
state, and message received.

To extend the MCM to the parameterised model, we must
consider what happens when our observable actions are per-
formed by the abstract part of the parameterised model. As we
do not track the state of abstract processors a Read action is
not explicitly defined in the abstract part of the model, however
a Write action by an abstract processor would have an effect
(eventually) on the state of the concrete caches. We do not
keep track of values at the abstract caches, so local buffers for
abstract caches are not needed in the memory model. However,
a Write at an abstract cache will go to the global buffer,
because it may at some point be read by a concrete cache.

Thus, we implement a new function, TSOStoreAbs,
which writes only to the global buffer. Now, in our abstract
cache rules, we add a call to TSOStoreAbs wherever we
see a Write action. For example, when the directory receives
a Data message from an abstract cache a Write has occurred
and we record this in the global buffer:

c[a].state = WS =⇒ dir[a].val := v;

TSOStoreAbs(a, v)

dir[a].state := S

(Dir Recv Data Abs)

Once these rules are defined the model checker will generate
all possible messages coming from the abstract cache. At
this stage we have an over-approximation of the system. Of
course, some of these messages will not be valid in the current
state. When this occurs a counterexample will be generated
by the model checker. The modeller must then inspect the
counterexample and work out why the message was spurious.

It is then possible to add a restriction to the rule that generated
it such that the spurious message is eliminated.

For example, in the above rule (Cache Recv DataX Abs),
we allow the cache to receive a DataX even when it is not
the owner of the cache line. This produces a counterexample,
because to receive a DataX from another cache (here an
abstract cache) the other cache must have received a FwdX
message first telling it to forward data to the new owner.
Therefore the receiving cache must be the owner. To eradicate
the counterexample we must add a restriction to check the
receiving cache is the owner:

c[a].state = WX ∧ IsOwner(c, a)

=⇒ SendAck(c,Dir, a);

c[a].state := M;

InvalidateAllOtherLines(c, a)

(Cache Recv DataX Abs)

However, we must now show that the restriction is not too
strict, i.e. we have not inadvertently caused the system to be
under-approximated and, in essence, we are not changing the
protocol. To do this, we introduce a non-interference lemma;
this is a lemma which states the restriction as an invariant
in the context of the concrete model, thus ensuring that the
spurious messages eliminated are indeed not possible in the
fully concrete model. For example, the lemma for the above
restriction is:

∀n∀a∀i. net[n][a][i].msgType = DataX =⇒ IsOwner(n, a)

where n is a node, a is an address, and i is a position in
the message buffer. This is implemented in the model checker
as an invariant3 and if it does not fail then we know that we
have not over-constrained the abstract cache.

Now, the model checker may catch a new counterexam-
ple. If this is the case then we repeat the process until all
counterexamples are eliminated. Once all counterexamples are
eliminated, we are done.

V. RESULTS

In summary, the result of applying the method described
in this paper to the TSO-CC protocol was that we showed
that the protocol does, in fact, conform to the TSO memory
model with any number of processors. Execution times for
checking the full model are in the order of 14–15 hours on
a single core of an Intel Xeon 1.8GHz machine with 64GB
of RAM. The process of manually refining the model for
parameterisation required 30 passes around the refinement
loop, generating 30 non-interference lemmas. The time needed
to define each lemma varied, depending on the complexity of
the counterexample—at this stage, detailed knowledge of the
protocol was a boon. Of note, however, is that for each pass
around the refinement loop does not require 14 hours of model
checking; generally, the model checker needed only to run

3Details of the restrictions and non-interference lemmas can be found in
the model source at https://github.com/icsa-caps/tso-cc
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for a few minutes to find the next counterexample—this time
gradually increased as more counterexamples were eliminated.

It is also worth noting that one needs to consider vacuity
in model checking and we must consider whether or not
the specification holds trivially. We believe that our model
is not vacuous, given that during the development of the
model we observed and analysed a number of counter-example
traces, both when we intentionally introduced bugs, during
development, and when we iterated through the CEGAR loop,
generating and refining the non-interference lemmas.

VI. CONCLUSION

We have shown that it is possible to verify a modern, lazy
CCP against its counterpart TSO MCM. Our main contribu-
tions have been three fold:

1) the extension of a previous method [10] in order to
formally verify a lazy CCP against the TSO weak
MCM that it implements: the key novelty that enables
this extension is the introduction of the new abstract
operational model, TSO-LB;

2) a proof that our TSO-LB model satisfies a well-regarded
axiomatic model of TSO;

3) extending the result of 1) to an arbitrary number of
processors, using the parameterisation method of Chou
et al. [9]: in establishing this result, we demonstrate that
Chou et al.’s method for parameterised verification can
be used to prove that a CCP refines an abstract oper-
ational model, not just for verifying protocol-specific
properties such as SWMR.

We believe it would be straightforward to use our approach
to verify other lazy CCPs that implement TSO. As such, one
direction of future work is to improve the degree of automation
in the method. Whilst the process of parameterisation of the
model is simple, requiring more knowledge of the protocol
than of formal methods, of note is the time and effort required
to write restrictions, write lemmas, model check, and repeat.
It is our belief that more of this process may be automated,
as was the goal of both Chou et al. [9] and Krstić [29].
Some research on this topic already exists in the literature,
for example O’Leary et al. [23] and Bingham et al. [31].
Another direction for future work is to check how we might
use results similar to those of Henzinger et al. [32] to justify
the verification for arbitrary numbers of addresses and data
values.
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Abstract—We address the problem of statically checking con-
trol state reachability (as in possibility of assertion violations,
race conditions or runtime errors) and plain reachability (as
in deadlock-freedom) of phaser programs. Phasers are a modern
non-trivial synchronization construct that supports dynamic par-
allelism with runtime registration and deregistration of spawned
tasks. They allow for collective and point-to-point synchroniza-
tions. For instance, phasers can enforce barriers or producer-
consumer synchronization schemes among all or subsets of the
running tasks. Implementations are found in modern languages
such as Habanero Java. Phasers essentially associate phases to
individual tasks and use their runtime values to restrict possible
concurrent executions. Unbounded phases may result in infinite
transition systems even in the case of programs only creating
finite numbers of tasks and phasers. We introduce an exact gap-
order based procedure that always terminates when checking
control reachability for programs generating bounded numbers
of coexisting tasks and phasers. We also show verifying plain
reachability is undecidable even for programs generating few
tasks and phasers. We then explain how to turn our procedure
into a sound analysis for checking plain reachability (including
deadlock freedom). We report on preliminary experiments with
our open source tool.

Index Terms—phasers, safety verification, dynamic synchro-
nization, collective synchronization, Point-to-point synchroniza-
tion, model checking

I. INTRODUCTION

We focus on safety verification of programs using phasers
for task synchronization [1]–[3]. This sophisticated construct
dynamically unifies collective and point-to-point synchroniza-
tions. For instance, it allows for dynamic registration and
deregistration of tasks allowing for a more balanced usage
of the computing resources when compared to static producer-
consumer or barrier constructs [4]. The construct can be added
to any parallel programming language with a shared address
space. For instance, it can be found in Habanero Java [3], an
extension of the Java programming language. Phasers build on
the clock construct from the X10 programming language [1].
They can be created dynamically and spawned tasks may get
registered or deregistred at runtime.

Intuitively, each phaser associates two phases (hereafter
wait and signal phases) to each registered task. Apart from
creating phasers and registering each other to them, tasks can
individually issue wait and signal commands to a phaser
they are registered to. Intuitively, signal commands are used
to inform other registered tasks the issuing task is done with
its signal phase. The command is non-blocking. It increments

This work is partially supported by the CENIIT research organization.

the signal phase associated to the issuing task on the given
phaser. The wait command is instead used to check whether
all registered tasks are done with (i.e., have a signal phase
that is strictly larger than) the issuing task’s wait phase. This
command may get blocked by a task that did not yet finish the
corresponding phase. Unlike classical barriers, phasers need
not force registered tasks to wait for each other at each single
phase. Instead they allow them to proceed with the following
phases (by issuing signal commands), or even to exit the
construct by deregistering from the phaser. Such dynamic
behavior allows for better load balancing and performance, but
comes at the price of making it easy to introduce programming
mistakes such as assertion violations, race conditions, runtime
errors and, in the important situation where wait and signal
commands are decoupled for maximum flexibility, deadlocks.
We summarize our contributions in this work:

• We propose an operational model based on [2], [3], [5].
• We show undecidability of checking deadlock-freedom

for programs with fixed numbers of tasks and phasers.
• We describe an exact gap-order based symbolic verifica-

tion procedure for checking control state reachability (as
in assertion violations, race conditions or runtime errors)
and plain reachability (as in checking deadlock freedom).

• We show termination of the procedure for control state
reachability when numbers of tasks and phasers are fixed.

• We describe how to turn the procedure into a sound over-
approximation for plain reachability.

• We report on our preliminary experiments with our open
source tool.

Related work. We are not aware of automatic formal ver-
ification works that focus on constructs allowing for such
a degree of dynamic parallelism. Unlike [6], we focus on
fully automatic verification and consider the richer and more
challenging phaser construct. The work of [5] considers the
dynamic verification of phaser programs and can therefore
only reason about particular program inputs and runs. The
work in [7] uses Java Path Finder [8] to explore several runs,
but still for one concrete input at a time. The works in [9],
[10] target gap-order systems. Although phaser programs share
some of their properties (larger gaps can do more), the results
in [9], [10] do not apply since gap-order systems crucially
forbid exact increments.

Outline. We describe a phaser program and recall some
preliminaries in Sections II and III. This is followed in
Section IV by a formal description of phaser programs and
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of the properties we want to check. We also establish the
undecidability of checking deadlock freedom. We introduce
a gap-order based symbolic representation in Section V and
describe in Section VI a simple verification procedure. We
then show decidability of checking control state reachability
and introduce a relaxation procedure for checking plain reach-
ability. Finally, we report on our experiments and conclude the
work. Descriptions of the proofs can be found in [11].

II. MOTIVATING EXAMPLE

The program listed in Fig. (1) uses Boolean shared variables
B = {a, b, done}. A main task creates two phasers (lines 5
and 6). When creating a phaser, the task gets automatically
registered to it. The main task also creates three other task
instances (lines 9, 10 and 11). Several tasks can be registered
to several phasers. When a task t is registered to a phaser p, a
pair of numbers (waittp, sig

t
p), each in N∪{+∞}, is associated

to the couple (t, p). The pair represents the individual wait and
signal phases of task t on phaser p.

Registration of a task to a phaser can occur in one of three
modes: SIG WAIT, WAIT and SIG. In SIG WAIT mode, a task
may issue both signal and wait commands. In WAIT mode,
a task may only issue wait commands on the phaser. Finally,
when registered in SIG mode, a task may only issue signal

commands. Issuing a signal command by a task on a phaser
results in the task incrementing its signal phase associated to
the phaser. This command is non-blocking. On the other-hand,
issuing a wait command by a task on a phaser p will block
until all tasks registered on p exhibit signal values on p that
are strictly larger than the wait value of the issuing task on
phaser p. In this case, the wait phase of the issuing task is
incremented. Intuitively, a signal command allows the issuing
task to state other tasks need not wait for it to complete its
signal phase. In retrospect, a wait command allows a task to
make sure all registered tasks have moved past its wait phase.

Upon creation of a phaser, wait and signal phases are
initialized to 0 (except in WAIT mode where the signal phase is
instead initialized to +∞ in order to not block other waiters).
The only other way a task may get registered to a phaser
is if an already registred task does register it in the same
mode (or in WAIT or SIG if the registrar is registered in
SIG WAIT). In this case, wait and signal phases of the newly
registered task are initialized to those of the registrar. Tasks
are therefore dynamically registered (e.g., lines 9-11). They
can also dynamically deregister themselves (e.g., lines 25-26);

In this example, two producers and one consumer are
synchronized using two phasers. The consumer requires the
two producers to be ahead of it (wrt. the phaser main pointed
to with prod) in order for it to consume their respective
products. At the same time, the consumer needs to be ahead
of both producers (wrt. the phaser main pointed to with cons)
in order for these to produce their pair of products. It should
be clear that phasers can be used as barriers for synchronizing
dynamic subsets of concurrent tasks. Observe producers need
not, in general, proceed in a lock step fashion. Producers may
produce many items before consumers “catch up”.

We are interested in checking: (a) control state reachability
as in assertions (e.g., line 44), race conditions (e.g., mutual
exclusion of lines 20 and 49) or runtime errors (e.g., signaling
a dropped phaser), and (b) plain reachability as in deadlocks
(e.g., a producer at line 23 and a consumer at line 50 with equal
phases). Intuitively, both problems concern themselves with
the reachability of target sets of program configurations. The
difference is that control state reachability defines the targets
with the states of the tasks (their control locations and whether
they are registered to some phasers). Plain reachability can, in
addition, use values or relations between values of involved
phases. Observe that control state reachability depends on the
values of the actual phases, but these values are not used to
define the target sets. For example, assertions are expressed as
predicates over Boolean variables (e.g., line 44). Establishing
such an assertion requires capturing the constraints imposed
by the phasers on the program behaviors.

Our work proposes a sound and complete algorithm for
checking control state reachability in case a bounded number
of tasks and phasers are generated. The algorithm can handle
arbitrarily large phases, e.g., generated using nested signaling
loops. The algorithm starts from a symbolic representation
of all bad configurations and successively computes sets of
predecessor configurations. We show termination based on
a well-quasi-ordering argument that imposes restrictions on
what can be expressed with our symbolic representation. For
instance putting upper bounds on differences between phases
is forbidden. Deadlock configurations cannot be faithfully
captured with such restricted representations. Intuitively, a
deadlocked configuration will have a cycle where each in-
volved task is waiting for the task to its right but where the
wait phase of each task equals the signal phase of the task
it is waiting for. We show the problem of checking deadlock
freedom to be undecidable even for programs only generating
a bounded number of tasks and phasers. We explain how to
turn our verification algorithm into a sound but incomplete
procedure for checking deadlock-freedom. Precision can then
be augmented on demand to eliminate false positives.

III. PRELIMINARIES

We use N and Z for natural and integer numbers respec-
tively. We write A ] B to mean the union of disjoint sets A
and B. We let Pfn (A,B) be the set of partial functions from
A to B and use ∅A for the empty function over A, i.e., ∅A(a)
is undefined (written ∅A(a) ↑) for all a ∈ A. Given function
g ∈ Pfn (A,B) we write g(a) ↓ to mean that g(a) is defined
and write g \ {a} to mean the restriction of g to the domain
A\{a}. We write g[a← b] for the function that coincides with
g on A except for a that is sent to b. We abuse notation and let,
for pairwise different {ai | i ∈ I}, g[{ai ← bi | i ∈ I}] mean
the function that coincides with g on A except for each ai that
is sent to the corresponding bi. We sometimes write a function
g as a set {a 7→ g(a) | a ∈ A}. It is then implicitly undefined
outside of A.
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1 bool a, b, done;
2 main()
3 {
4 done = false;
5 prod = newPhaser(SIG_WAIT);
6 cons = newPhaser(SIG_WAIT);
7 cons.signal();
8
9 asynch(aProducer, prod(SIG), cons(WAIT));

10 asynch(bProducer, prod(SIG), cons(WAIT));
11 asynch(abConsumer, prod(WAIT), cons(SIG));
12
13 prod.drop();
14 cons.drop();
15 }
16
17 aProducer(p(SIG), c(WAIT))
18 {
19 c.wait();
20 while(¬done){
21 a = true;
22 p.signal();
23 c.wait();
24 };
25 p.drop();
26 c.drop();
27 }

28 bProducer(p(SIG), c(WAIT))
29 {
30 c.wait();
31 while(¬done){
32 b = true;
33 p.signal();
34 c.wait();
35 };
36 p.drop();
37 c.drop();
38 }
39
40 abConsumer(p(WAIT), c(SIG))
41 {
42 while(¬done){
43 p.wait();
44 assert(a ∧ b);
45 a = false;
46 b = false;
47
48 if(ndet())
49 done = true;
50 c.signal();
51 };
52 c.drop();
53 p.drop();
54 }

Fig. 1. Two producers and one consumer are synchronized using two phasers. In this construction, the consumer requires both producers to be ahead of it
(wrt. the prod phaser) in order for it to consume their respective products. At the same time, the consumer needs to be ahead of both producers (wrt. the
cons phaser) in order for these to be able to produce their pair of products.

aProducer : @23

bProducer : @34

main : @15

abConsumer : @42(phaser) (phaser)

prod cons

p

(sig = 90)

p

(sig = 91)

p

(wait = 90)

c

(wait = 90)

c

(wait = 91)

c

(sig = 91)

Fig. 2. Possible wait and signal phase values for Fig. (1). Observe that there
is no a priori bound on the values of the different wait and signal phases. In
this example, the difference between signal and wait phases is bounded. This
is not always the case in general.

IV. LANGUAGE

A program may use a set B of shared Boolean variables and
a set V of local phaser variables:

prg ::= bool b1, . . . , b|B|;
task1(v11 , . . . , vk1 ) {stmt1}
. . .
taskn(v1n , . . . , vkn ) {stmtn}

stmt ::= v = newPhaser() || asynch(task, v1, . . . , vk)
|| v.drop() || v.signal() || v.wait() || exit
|| stmt; stmt || b = cond || assert(cond)
|| while(cond) {stmt} || if(cond) {stmt}

cond ::= ndet() || true || false || b || cond ∨ cond

|| cond ∧ cond || ¬cond

A program consists in a set of tasks T. A task is declared with
task(v1, . . . , vk) {stmt} where v1, . . . vk are phaser variables

that are local to the declared task. A task can also create a
new phaser with v = newPhaser() and store the identifier
of the phaser in a local variable v. We let V be the union of
all local phaser variables. When creating a phaser, a task gets
registered to it. To simplify our description, we will assume
all registrations to be in SIG WAIT mode. Including the other
modes is a matter of changing the initial phase values at
registration and of statically ensuring the issued commands
respect the registration mode. A task can deregister itself from
a phaser referenced by a variable v with v.drop(). It can
also issue signal or wait commands on a phaser on which
it is registered and that is referenced by v. A task can spawn
another task with asynch(task, v1, . . . , vn). The issuing task
registers the spawned task to the phasers it points to with
v1, . . . , vn. The issuing task need not wait for the spawned
task and may directly continue its execution.

Assume a phaser program prg = (B, V, T). We inductively
define the finite set S of control sequences as follows. S

is the smallest set containing: (i) suffixes of each “stmti”
appearing in some “taski(v1i , . . . , vki) {stmti}”; and
(ii) suffixes of “stmti; while(cond) {stmti}; stmtj”
(respectively “stmti; while(cond) {stmti}”) for
each “while(cond) {stmti}; stmti” (respectively
“while(cond) {stmti}”) in S; and (iii) suffixes
of “stmti; stmtj” (respectively “stmti”) for
each “if(cond) {stmti}; stmtj” (respectively
“if(cond) {stmti}”) appearing in S. We write s to
mean some control sequence in S, and hd(s) and tl(s) to
respectively mean the head and the tail of the sequence s.
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A. Semantics.

A configuration c of prg = (B, V, T) is a tuple
(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) where:
• T is the current finite set of task identifiers. We let t, u

range over the values in T .
• P is the current finite set of phaser identifiers. We let p, q

range over the values in P .
• bvbvbv : B → {true, false} is a total mapping that

associates a value to each b ∈ B.
• pcpcpc : T → S is a total mapping that associates tasks to

their remaining sequences (i.e., control location).
• pvpvpv : T → Pfn (V, P ) is a total mapping that associates, to

each task identifier in T , a partial mapping from the local
phaser variables V to phaser identifiers P . It captures the
values of the phaser variables V of each task.

• ϕϕϕ : P → Pfn
(

T ,N2
)

is a total mapping that associates
to each phaser p ∈ P a partial mapping ϕϕϕ(p) that is
defined exactly on the identifiers of the tasks registered
to p. For such a task t, ϕϕϕ(p)(t) is the pair (waittp, sig

t
p)

representing wait and signal values of t on p.
The set of tasks T is altered by asynch(task, v1, . . . , vn)

and exit statements (rules (asynch) and (exit) in Fig.(3)).
The set of phasers P is updated upon creation of new phasers
(rule (newPhaser) in Fig.(3)). The mapping pvpvpv associates
values to program phaser variables. Accessing variables with
undefined values, or phasers to which the task is not currently
registered, leads to runtime errors (rule (runtime error)).
The total mapping ϕϕϕ captures states of phasers. It associates
to each phaser identifier p in P a partial mapping ϕϕϕ(p).
This partial mapping is defined for a task identifier t ∈ T
(i.e., ϕϕϕ(p)(t) ↓) iff the task t is registered to the phaser
p. In this case, ϕϕϕ(p) gives the waiting phase waittp and
the signaling phase sigtp of the task t on the phaser p.
Initially, a unique “main” task t0 starts executing its stmtmain
with no phasers. ϕϕϕ is the empty function with an empty
domain ∅∅. After a task t executes a v := newPhaser()
statement (rule (newPhaser) in Fig.(3)), a new phaser p
is associated to the variable v using pvpvpv and ϕϕϕ(p) becomes
the partial function {t 7→ (0, 0)}. The initial configuration
is cinit = ({t0} , {} , bvbvbvfalse, {t0 7→ stmt} ,∅,∅), where a
“main” task with identifier t0 and code stmt is the unique
initial task. No phasers are present in the initial configuration,
and all Boolean variables are mapped to false.

Given two configurations c and c′ with c =

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ), we write c
t−→ c′ if there is a task

t ∈ T such that one of the rules in Fig.(3) holds. We use ∗−→
for the reflexive transitive closure of −→ and write c

∗−→ c′

to mean that c′ is reachable from c. A configuration is said
reachable if it is reachable from the initial configuration cinit.

1) Control-state reachability: Checking the possibility of
assertion violations, of runtime errors and of race con-
ditions amounts to checking reachability of configurations
respectively in badConfs

(n,p)
assert, badConfs

(n,p)
runtime and in

badConfs
(n,p)
race for some number of tasks n and number of

phasers p. We introduce in Section V a complete procedure

for checking reachability of such sets of configurations and
show it to be sound for programs with fixed upper bounds on
numbers of generated phasers and tasks.

2) Deadlocks as in plain reachability: We are also inter-
ested in checking the possibility of deadlocks. For this we
need to define the notion of a blocked task. Assume in the
following a configuration c = (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ).

Definition 1 (Blocked). A task t ∈ T is blocked at phaser
p ∈ P by task u ∈ T if hd(pcpcpc(t)) = v.wait() with pvpvpv(t)(v) =
p and ϕϕϕ(p)(t) = (waittp, ) when ϕϕϕ(p)(u) = ( , sigup ) and
sigup ≤ waittp.

Intuitively, a task t is blocked by a task u if it cannot finish
its wait command on some phaser because it is waiting for
task u that did not issue enough signal commands on the
same phaser.

Definition 2 (Deadlock). (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) is a deadlock
configuration if each task of a non empty subset U ⊆ T is
blocked by some task in U.

Theorem 1 (Deadlock-Freedom). It is undecidable in general,
even for programs with only three phasers and four tasks, to
check for deadlock-freedom.

The idea of the proof is to encode the reachability problem
of any given 3-counters reset-VAS (vector addition system
with reset arcs) as the reachability problem of a configuration
with a cycle involving three phasers and three tasks (in
addition to the main task). Indeed, reachability of configuration
(sF , 0, 0, 0) (three counters with zero values at some control
location sF ) is undecidable for reset-VASs. The idea then is
to spawn three tasks and as many phasers. The value of each
counter is captured with the difference between the signal and
the wait of a pair of tasks on one phaser. Resets are encoded
by asking a task to drop a phaser and exit and spawning a
new task. The encoding ensures that a deadlock is reached
exactly when the vector addition system reaches configuration
(sF , 0, 0, 0). (See [11] for more details.)

V. SYMBOLIC VERIFICATION OF PHASER PROGRAMS

We briefly introduce gap-order constraints and use them to
define a symbolic representation (hereafter constraints) that we
use in Section VI for checking reachability.

A. Gap-order constraints and graphs [9], [10], [12], [13].

Gap-order constraints can be regarded as a particular case of
the octagons or the unit two variables per inequality (utvpi)
constraints. Assume in this section that x and y are integer
variables and that k is an integer constant. We use X and Y
to mean finite sets of integer variables. A valuation val is a
total function X → Z. Valuations are implicitly extended to
preserve constants (i.e. val(k) = k for any k ∈ Z). A gap-
order clause δ over X is an inequality of the form a− b ≥ k
where a, b ∈ X ∪ {0}. A gap-order constraint ∆ over X is
a finite conjunction of gap-order clauses over the same set
X . Observe that (x = y + 2 ∧ y ≤ 5) is essentially a gap-
order constraint because it can be equivalently rewritten as
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hd(pcpcpc(t)) = v := newPhaser() ∧ p 6∈ P ∧
P ′ = P ∪ {p} ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← p]]

∧ ϕϕϕ′ = ϕϕϕ[p← {t 7→ (0, 0)}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P ′, bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv′,ϕϕϕ′
) (newPhaser)

hd(pcpcpc(t)) = v.signal() ∧
pvpvpv(t)(v) = p ∧ ϕϕϕ(p)(t) = (waittp, sig

t
p) ∧

ϕϕϕ′ = ϕϕϕ
[
p← ϕϕϕ(p)

[
t← (waittp, 1 + sigtp)

]]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))],ϕϕϕ′
) (signal)

hd(pcpcpc(t)) = assert(cond) ∧
bvbvbv(cond) = true

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→ (T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ)

(
assert.

ok

) hd(pcpcpc(t)) = v.drop() ∧ pvpvpv(t)(v) = p ∧
ϕϕϕ(p)(t) ↓ ∧ ϕϕϕ′ = ϕϕϕ[p← ϕϕϕ(p)[t← ↑]]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ′
) (drop)

hd(pcpcpc(t)) = asynch(task, v1, . . . vk){s1} ∧ paramOf(task) = (w1, . . . wk) ∧
for each i : 1 ≤ i ≤ k. pvpvpv(t)(vi) = pi ∧ ϕϕϕ(pi) ↓ ∧

u 6∈ T ∧ pvpvpv′ = pvpvpv[u← {wi 7→ pvpvpv(t)(vi) | 1 ≤ i ≤ k}] ∧ pcpcpc′ = pcpcpc[u← s1] ∧
ϕϕϕ′ = ϕϕϕ[{pi ← ϕϕϕ(pi)[u← ϕϕϕ(pi)(t)] | pvpvpv(t)(vi) = pi for pi ∈ P and 1 ≤ i ≤ k}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , bvbvbv,pcpcpc′[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ′
) (asynch)

hd(pcpcpc(t)) = v.wait() ∧ pvpvpv(t)(v) = p ∧ ϕϕϕ(p)(t) = (waittp, sig
t
p) ∧

∀u ∈ T .
(
ϕϕϕ(p)(u) = (waitup , sig

u
p )⇒ waittp < sigup

)
∧

ϕϕϕ′ = ϕϕϕ
[
p← ϕϕϕ(p)

[
t← (1 + waittp, sig

t
p)
]]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , pvpvpv,pcpcpc[t← tl(pcpcpc(t))],ϕϕϕ′
) (wait)

hd(pcpcpc(t)) = exit ∧ pvpvpv′ = pvpvpv \ {t} ∧ pcpcpc′ = pcpcpc \ {t} ∧
ϕϕϕ′ = ϕϕϕ[{p← (ϕϕϕ(p) \ {t}) | p ∈ P}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T \ {t} , P , bvbvbv,pcpcpc′, pvpvpv′,ϕϕϕ′
) (exit)

hd(pcpcpc(t)) = assert(cond) ∧
bvbvbv(cond) = false

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
assert

(
assert.
fault

)
hd(pcpcpc(t)) = s ∧ (s = v.drop() ∨ s = v.signal()
∨ s = v.wait() ∨ s = asynch(task, . . . , v, . . .) )

∧ (pvpvpv(t)(v) ↑ ∨ ϕϕϕ(pvpvpv(t)(v))(t) ↑)

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
runtime

(
runtime
error

)

{t0, . . . tn} ⊆ T ∧ {p0, . . . pn} ⊆ P ∧
∀ i : 0 ≤ i ≤ n. hd(pcpcpc(ti)) = vi.wait() ∧
pvpvpv(ti)(wi) = p(i+1)%n ∧ pvpvpv(ti)(vi) = pi ∧

wait
ti
p(i+1)%n

≥ sig
t(i+1)%n
p(i+1)%n

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
deadlock

(deadlock)

hd(pcpcpc(t)) = b := cond ∧ hd(pcpcpc(u)) = s′ ∧ t 6= u ∧


s′ = b := cond′ ∨ b appears in cond′ and


(s′ = if(cond′) {stmt}∨
s′ = while(cond′)

{
stmt′

}
∨

s′ = assert(cond′) ∨ s′ = b′ = cond′)







(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs(|T |,|P|)race

(race)

Fig. 3. Operational semantics of phaser statements.

the conjunction (x− y ≥ 2 ∧ y − x ≥ −2 ∧ 0− y ≥ −5).
Given a gap-order constraint ∆ over X and a valuation val :
X → Z, we write val |= ∆ to mean that val(a)− val(b) ≥ k
holds for each gap-order clause δ : a− b ≥ k appearing in ∆.
We let Sat(∆) be the set {val : X → Z | val |= ∆}.

A gap-order graph (or graph for short) ℘ over X is a graph
(V,E) with vertices V = X∪{0} where edges in E are of the
form a

k−→ b with a, b ∈ V and weight k in Z ∪ {−∞,+∞}.
We let varsOf(℘) = X . Given a gap-constraint ∆ over X ,
we can build the graph graphOf (∆) with vertices X ∪ {0}
and where E only contains a representative a k−→ b edge for
each clause a − b ≥ k appearing in ∆. A valuation val :
X → Z satisfies a graph ℘ = (V,E) (written val |= ℘) iff
val(a)−val(b) ≥ k for each a k−→ b ∈ E. We let Sat(℘) be the
set {val : X → Z | val |= ℘}. Clearly, Sat(graphOf (∆)) =
Sat(∆). The closure clo (℘) of a graph ℘ = (V,E) is the
unique complete graph with the same vertices V and where
a

k′−→ b is an edge of clo (℘) iff k′ ∈ Z ∪ {−∞,+∞} is the
least upper bound of all weight-sums for any path in ℘ from a
to b. Closure allows us to deduce (0−x ≥ −7) from (y−x ≥
−2 ∧ 0 − y ≥ −5). The result of the closure procedure is a
special graph ℘false denoting the graph without any satisfying

valuation each time a weight k=+∞ is generated. The closure
of a graph can be computed in polynomial time and we get
Sat(clo (℘)) = Sat(℘). We define the degree of a graph ℘
(written degreeOf(℘)) to be 0 if no edge in clo (℘) has a
negative weight apart from −∞. Otherwise, degreeOf(℘) is
the largest natural k ∈ N such that there is an edge in clo (℘)
with weight −k. For instance, the degree of the graph resulting
from (x− y ≥ 2∧ y− x ≥ −4) is 4. We systematically close
all manipulated graphs and write G(X) for the set of closed
graphs over X . Given a graph ℘, we write ℘[x/y] to mean
the graph obtained by replacing the vertex x by the vertex y.
We abuse notation and write ℘[{xi/yi | i ∈ I}], for pairwise
different xi elements to mean the simultaneous application
of the individual substitutions. For a set of variables Y , we
write ℘ 	 Y to mean the graph obtained by removing the
variables in Y from the vertices of ℘. Given two closed graphs
℘ and ℘′ over the same X , we write ℘ vG ℘′ to mean that
each directed edge in ℘ is labeled with a larger weight in
℘′. As a result, Sat(℘′) ⊆ Sat(℘). Finally, we write ℘ ℘′

to mean the closure of the graph obtained with merging the
two sets of vertices and edges. As a result, Sat(℘ ℘′) =
Sat(℘) ∩ Sat(℘′).
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B. Constraints as a symbolic representation.

A constraint φ is a tuple (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) where
the only difference with the definition of a configuration
(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) is the adoption of a gap-order con-
straint γγγ instead of ϕϕϕ. More specifically, γγγ : P →
∪U⊆T G(∪t∈U{ωtp, σtp}) is a total mapping that associates a
gap-order graph to each phaser p ∈ P . Intuitively, we use
variables ωtp and σtp to constrain in graph γγγ(p) possible values
of both wait (waittp) and signal (sigtp) phases of each task t
registered to phaser p. As a result, we can check if task t
is registered to phaser p according to graph ℘ = γγγ(p) by
checking if {ωtp, σtp} ⊆ varsOf(℘). We will write Reg(p, ℘)
to mean the set of tasks {t | {ωtp, σtp} ⊆ varsOf(℘)}. We also
write isReg(t, p, ℘) for the predicate t ∈ Reg(p, ℘). Observe
that the language semantics impose that, for each phaser p
and for any pair t, u of tasks in Reg(p, ℘), the predicate
0 ≤ waittp ≤ sigup is an invariant. For this reason, we always
safely strengthen, in any obtained γγγ(p) = ℘, weights k in
σtp

k−→ ωup , σtp
k−→ 0 and ωtp

k−→ 0 with max(k, 0). The
following definition helps us characterize configurations for
which our procedure terminates.

Definition 3 (degree and freeness of constraints). A constraint
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) has as degree the largest degree among
all its graphs γγγ(p) for p ∈ P if P is not empty and 0
otherwise. Furthermore, a constraint is said to be “free” if,
for any p ∈ P , the only edges in γγγ(p) with weights different

from −∞ are edges of the forms (i) σtp
k(σtp,ωup )

−−−−−→ ωup , (ii)

σtp
k(σtp)−−−→ 0, or (iii) ωtp

k(ωtp)−−−→ 0 for some t, u ∈ Reg(p,γγγ(p))
and k(σtp,ω

u
p ), k(σtp), k(ωtp) ∈ N

Free constraints are only allowed to impose, for the same
phaser, non-negative lower bounds on differences between
signals and waits, between signals and 0, and between waits
and 0. Like degree-0-constraints, free constraints are not
allowed to put a positive upper bound on how much a signal
is larger than a wait. Unlike degree-0-constraints, they are
not allowed to put bounds on the differences among signal
values, or among wait values. For instance a free constraint
cannot impose σtp − σup = 0 while a degree-0-constraint can.
Intuitively, freeness does not oblige our verification procedure
to maintain exact differences when firing ”signal” or ”wait”
instructions, jeopardizing termination. This will be stated in
Section VI.

C. Denotations of constraints.

Given a configuration c = (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) and a con-
straint φ = (T ′, P ′, bvbvbv′, pcpcpc′, pvpvpv′, γγγ′), we say that c satisfies φ,
and write c |= φ, if c satisfies (up to a renaming of the tasks
and the phasers) conditions imposed by φ. More concretely,
c |= φ if bvbvbv = bvbvbv′ and there are bijections τ : T → T ′

and π : P → P ′ such that: (i) pcpcpc(t) = pcpcpc′(τ(t)) for each
t ∈ T ; and (ii) π(pvpvpv(t)(v)) = pvpvpv′(τ(t))(v) for each t ∈ T
and v ∈ V; and (iii) the renaming of tasks and phasers
in ϕϕϕ wrt. τ and π satisfies γγγ, i.e., (iii.a) for each t ∈ T

and each p ∈ P , ϕϕϕ(p)(t) ↓ iff isReg(τ(t), π(p), γγγ(π(p))),
and (iii.b) for each p′ ∈ P ′, ℘(

∧
t′∈Reg(p′,γγγ(p′))((ω

t′
p′ , σ

t′
p′) =

ϕϕϕ(π−1(p′))(τ−1(t′)))) |= γγγ(p′). We let [[φ]] denote
{c | c |= φ}. Intuitively, [[(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)]] contains all
configurations c with the same number of tasks and phasers
and such that there are renamings of tasks and phasers
that preserve in c the correspondence between pcpcpc, pvpvpv and
γγγ. We write [[Φ]], for a set Φ of constraints, to mean the
union ∪φ∈Φ[[φ]]. Given a program (B, V, T), we can exactly
characterize with a finite set of constraints all configurations
involving n tasks and p phasers and satisfying the premises
of rules (runtime error), (assert. fault), (race) and
(deadlock) from Fig.(3).

Lemma 1 (Characterizing badness). Given a program (B, V, T)
and natural numbers (n, p), we can exhibit finite sets of
constraints badCstrs(n,p)

race , badCstrs(n,p)
assert, badCstrs(n,p)

runtime

and badCstrs
(n,p)
deadlock such that:

badConfs(n,p)
race = [[badCstrs(n,p)

race ]]

badConfs
(n,p)
assert = [[badCstrs

(n,p)
assert]]

badConfs
(n,p)
runtime = [[badCstrs

(n,p)
runtime]]

badConfs
(n,p)
deadlock = [[badCstrs

(n,p)
deadlock]]

In addition, we can choose the constraints in
badCstrs

(n,p)
deadlock to be of degree 0 while those in

badCstrs
(n,p)
race , badCstrs

(n,p)
assert or in badCstrs

(n,p)
runtime

to be free.

D. Entailment.

We say that a constraint φ = (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) is weaker
than a constraint φ′ = (T ′, P ′, bvbvbv′, pcpcpc′, pvpvpv′, γγγ′), written φ v
φ′, to mean the following. First, the two constraints have the
same number of phasers and tasks, agree on the values of the
Boolean variables and, up to renamings, on the values of the
phaser variables and on which tasks are registered to which
phasers. Second, the constraints on the wait and signal values
are stronger in φ′ than in φ. More formally, φ v φ′ if bvbvbv = bvbvbv′

and there are bijections τ : T → T ′ and π : P → P ′ s.t. for
each t ∈ T and p ∈ P the following four conditions hold: (i)
pcpcpc(t) = pcpcpc′(τ(t)); and (ii) π(pvpvpv(t)(v)) = pvpvpv′(τ(t))(v); and
(iii) π(Reg(p,γγγ(p))) = Reg(π(p), γγγ′(π(p))); and (iv) γγγ(p) vG
γγγ′(π(p))

[{
ω
τ(t)
π(p)/ω

t
p, σ

τ(t)
π(p)/σ

t
p | t ∈ Reg(p,γγγ(p))

}]
. Clearly,

φ v φ′ implies [[φ′]] ⊆ [[φ]]. We say that v is sound.
We can show that v is a well-quasi-order1 over constraints

of bounded degrees and involving fixed numbers of tasks and
phasers since vG is itself a well-quasi-ordering over graphs
of bounded degrees over a finite set of variables ( [9], [12]).

Lemma 2 (WQO). Given k, n, p ∈ N, the entailment relation
v over the set of constraints of degree k involving at most n
tasks and p phasers is a well-quasi-order.

1A reflexive and transitive binary relation � is a well-quasi-order over a
set A if there is no infinite sequence a0, a1, . . . of A elements s.t. ai 6� aj
for all i < j.
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pcpcpc′ = pcpcpc[t← v := newPhaser();pcpcpc(t)] ∧
pvpvpv(t)(v) = p ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← ↑]] ∧{
ωtp 7→ 0, σtp 7→ 0

}
|= γγγ(p) ∧ γγγ′ = γγγ \ {p} ∧

(isReg(u, p,γγγ(p)) =⇒ u = t)

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T , P \ {p} , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (newPhaser I)

pcpcpc′ = pcpcpc[t← v := newPhaser();pcpcpc(t)] ∧
pvpvpv(t)(v) = p ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← q]] ∧{
ωtp 7→ 0, σtp 7→ 0

}
|= γγγ(p) ∧ γγγ′ = γγγ \ {p} ∧

(isReg(u, p,γγγ(p)) =⇒ u = t)

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T , P \ {p} , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (newPhaser II)

pcpcpc′ = pcpcpc[t← v.signal();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ isReg(t, p,γγγ(p)) ∧ ℘ =
(
γγγ(p) graphOf

(
∧u∈Reg(p,γγγ(p))(σtp > ωup ≥ 0)

))

∧ isSat(℘) ∧ γγγ′ = γγγ
[
p←

((
℘
[
σtp/σ

]
graphOf

(
σtp = σ − 1

))
	 {σ}

)]

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (signal)

pcpcpc′ = pcpcpc[t← v.wait();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ isReg(t, p,γγγ(p)) ∧ ℘ =
(
γγγ(p) graphOf

(
∧{u∈Reg(p,γγγ(p))}(σup ≥ ωtp > 0)

))

∧ isSat(℘) ∧ γγγ′ = γγγ
[
p←

((
℘
[
ωtp/ω

]
graphOf

(
ωtp = ω − 1

))
	 {ω}

)]

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (wait)

pcpcpc′ = pcpcpc[t← v.drop();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ ¬isReg(t, p,γγγ(p)) ∧
γγγ′ = γγγ

[
p←

(
γγγ(p) graphOf

(
(σtp ≥ ωtp ≥ 0) ∧u∈Reg(p,γγγ(p)) (σup ≥ ωtp ≥ 0) ∧ (σtp ≥ ωup ≥ 0)

))]

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (drop)

pcpcpc′ = pcpcpc[t← asynch(task, v1, . . . vk){s1};pcpcpc(t)] ∧ paramOf(task) = (w1, . . . wk) ∧ u ∈ T \ {t} ∧
pvpvpv′ = pvpvpv \ {u} ∧ pcpcpc(u) = s1 ∧ ∀i : 1 ≤ i ≤ k. pvpvpv(t)(vi) = pvpvpv(u)(wi) = pi ∧ (isReg(t, pi, γγγ(pi))⇔ isReg(u, pi, γγγ(pi))) ∧

℘i =
(
γγγ(pi) graphOf

(
ωtpi

= ωupi
∧ σtpi = σupi

))
∧ isSat(℘i) ∧ γγγ0 = γγγ ∧ γγγi = γγγi−1

[
pi ←

(
℘i 	

{
ωupi

, σupi

})]

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T \ {u} , P , bvbvbv,pcpcpc′ \ {u} , pvpvpv′, γγγn
) (asynch)

t 6∈ T ∧ pcpcpc′ = pcpcpc[t← exit] ∧ f ∈ Pfn (V, P) ∧ pvpvpv′ = pvpvpv ] {t 7→ f} ∧
Q ⊆ P ∧ γγγ′ = γγγ

[{
p← ϕϕϕ(p) graphOf

(
(σtp ≥ ωtp ≥ 0) ∧u∈Reg(p,γγγ(p)) (σup ≥ ωtp ≥ 0) ∧ (σtp ≥ ωup ≥ 0)

)
| p ∈ Q

}]

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t (

T ∪ {t} , P , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (exit)

Fig. 4. Derivation rules for computing pre(t, φ) for phaser statements as union of all {φ′ | φ t φ′ with φ = (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) and t ∈ T }. Derivations
for other program statements are straightforward.

VI. VERIFICATION PROCEDURE

Input: A program prg = (B, V, T), a set Φbad of pairwise
v-incomparable constraints, maximum upper bounds t• and p•
(in N ∪ {+∞}) on coexisting tasks and phasers.

Output: A symbolic run to Φbad or the value unreachable
1 Initialize both Working and Visited to {(φ, φ) | φ ∈ Φbad};
2 while there exists (φ, τ) ∈ Working do
3 remove (φ, τ) from Working;
4 let (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) = φ;
5 if |T | > t• or |P | > p• then continue;
6 if cinit |= φ then return τ ;
7 foreach t ∈ T do
8 foreach φ′ ∈ pre(t, φ) do
9 if ψ 6v φ′ for all (ψ, ) ∈ Visited then

10 Remove from Working and Visited each (ψ, )
for which φ′ v ψ;

11 Add (φ′, φ′ · t · τ) to both Working and Visited;
12 return unreachable ;

Procedure check(prg,Φbad,t•, p•), a simple working list
procedure for checking constraints reachability.

We discuss in the following the procedure check depicted
above and assume a program prg and a set Φbad of constraints
the reachability of which we want to check. Φbad can for
example be any subset of badCstrs(n,p)

deadlock (degree 0) or of
badCstrs

(n,p)
assert (free) in case we want to check the possibility

of a deadlock or of an assertion violation.
It is not difficult to show that [[pre(t, φ)]] (obtained as de-

scribed in Fig.(4)) coincides with {c′ | c′ t−→ c and c ∈ [[φ]]}.

Using the soundness of v, we can show by induction the par-
tial correctness of the procedure check(prg,Φbad,+∞,+∞).

Lemma 3 (Partial correctness). If check(prg,Φbad,+∞,+∞)
returns unreachable, then cinit 6 ∗−→ [[Φbad]]. If it returns a
trace φn ·tn · · · t1 ·φ1 then there are cn, . . . c1 with cn = cinit,
c1 ∈ [[Φbad]] and ci

ti−→ ci−1 for i : 1 < i ≤ n.

Theorem 2 (Free termination). check(prg,Φbad,t•,p•) termi-
nates for t•, p• ∈ N and free Φbad.

Proof. Sketch. Freeness is preserved by the pre computation
(Fig.(4)). Suppose the procedure does not terminate. The
infinite sequence of constraints passing the test at line 9 of
the procedure violates well-quasi-orderness of v over free
constraints with fixed numbers of tasks and phasers.

In order to check reachability of arbitrary constraints, we
may need to force termination. We do this by soundly bound-
ing the degree of generated constraints using a relaxation ρk.
The relaxation ρk((T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)) replaces, in each graph
γγγ(p), each weight k′′ s.t. k′′ < −k with −∞.

1 foreach φ′′ ∈ pre(t, φ) do
2 Let φ′ = ρk(φ′′);

Fig. 5. Systematic relaxation
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Theorem 3 (Forced termination). Procedure
check(prg,Φbad,t•,p•) for t•, p• ∈ N, with line 8 replaced by
the lines of Fig. (5), is sound and guaranteed to terminate.

Proof. Soundness is due to the validity of ρk(φ) v φ while the
termination argument relies, similarly to Theorem (2), on well-
quasi orederness of v on the set of constraints with bounded
degree and fixed numbers of tasks and phasers.

VII. EXPERIMENTAL RESULTS

We report on experiments with our open source prototype
hjVerify (https://gitlab.ida.liu.se/apv/hjVerify) for the verifi-
cation of phaser programs. We conducted experiments on
12 different programs (some of which are from [5]). We
considered both deadlock and assertion reachability problems.
For each property, we considered correct and buggy versions.
This gave 48 different instances with 2 to 3 phasers and 2 to 4
tasks (except for the parameterized case). Our tool uses global
phaser and task variables as in [5]. We have experimented with
adapting the view abstraction technique [14] to verify phaser
programs generating arbitrary many tasks, i.e., parameterized
verification where the number of phasers is fixed. (see [11]
for more details.) We report on two parameterized examples.
Experiments were conducted on a 2.9GHz processor with 8GB
of memory.

program property safe / buggy times

01.Loopless deadlock: ok / trace 1s / 1s
assertion: ok / trace 1s / 1s

02.Iterative deadlock: ok / trace 1s / 1s
averaging assertion: ok / trace 1s / 1s

03.Ordered deadlock: ok / trace 1s / 1s
phasers assertion: ok / trace 13s / 1s

04.Conditional deadlock: ok / trace 2s / 1s
assertion: ok / trace 4s / 7s

05.Loop Synch. deadlock: ok / trace 178s / 145s
assertion: ok / trace 7s / 13s

06.Nested forks deadlock: ok / trace 2s / 1s
assertion: ok / trace 1s / 1s

07.Conditional deadlock: ok / trace 1s / 1s
membership assertion: ok / trace 12s / 3s
08.Producer- deadlock: ok / trace 37s / 222s

consumer assertion: ok / trace 79s / 34s
09.Parameterized deadlock: ok / trace 20s / 1s

loopless assertion: ok / trace 67s / 1s
10.Parameterized deadlock: ok / trace 1s / 1s

iterative-averaging assertion: ok / trace 1s / 1s

11.Running-2 deadlock: ok / trace 5s / 1s
assertion: ok / trace 26s / 4s

12.Running-3 deadlock: ok / trace 4318s / 128s
assertion: ok / trace 18631s / 54s

Our implemented procedure does not eagerly concretize all
task states as described in the predecessor computation of
Section V. Instead we collect conditions on the phases of the
tasks that did not take any action yet and lazily concretize
them. Reported times for checking deadlocks are the sums of
the times required to check reachability for each cycle. The
prototype is only a proof of concept. For instance, the example
(12.Running-3) is a variant of (11-Running-2) where a task in-
stance is spawned twice leading to two symmetrical tasks (out
of four). This required up to three orders of magnitude more
time to check. We believe partial order reduction techniques
would help here. Other relevant heuristics would be to make

use of priority queues and to organize the minimal sets. All
examples are available on the tool homepage.

VIII. CONCLUSION

We have proposed a gap-order based reachability analysis
for phaser programs. We have showed our analysis to be exact
and guaranteed to terminate when checking runtime, race and
assertion errors. We have established the undecidability of
deadlock verification and explained how to turn our analysis
into a sound over-approximation. To the best of our knowl-
edge, this is beyond the capabilities of current verification
techniques which currently only target concrete inputs to
phaser programs. We are currently working on tackling the
parameterized case and have obtained preliminary encouraging
results. Apart from improving the scalability of the tool and
from using it in combination with predicate abstraction and ab-
stract interpretation in order to analyze actual source code, we
are investigating the applicability of the presented techniques
for the verification of similar synchronization constructs.
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Abstract—We revisit the classic problem of proving safety
over parameterised concurrent systems, i.e., an infinite family
of finite-state concurrent systems that are represented by some
finite (symbolic) means. An example of such an infinite family is
a dining philosopher protocol with any number n of processes
(n being the parameter that defines the infinite family). Regular
model checking is a well-known generic framework for modelling
parameterised concurrent systems, where an infinite set of
configurations (resp. transitions) is represented by a regular set
(resp. regular transducer). Although verifying safety properties in
the regular model checking framework is undecidable in general,
many sophisticated semi-algorithms have been developed in the
past fifteen years that can successfully prove safety in many
practical instances. In this paper, we propose a simple solution
to synthesise regular inductive invariants that makes use of
Angluin’s classic L∗ algorithm (and its variants). We provide a
termination guarantee when the set of configurations reachable
from a given set of initial configurations is regular. We have tested
L∗ algorithm on standard (as well as new) examples in regular
model checking including the dining philosopher protocol, the
dining cryptographer protocol, and several mutual exclusion
protocols (e.g. Bakery, Burns, Szymanski, and German). Our
experiments show that, despite the simplicity of our solution, it
can perform at least as well as existing semi-algorithms.

I. INTRODUCTION

Parameterised concurrent systems are infinite families of
finite-state concurrent systems, parameterised by the number n
of processes. There are numerous examples of parameterised
concurrent systems, including models of distributed algorithms
which are typically designed to handle an arbitrary number n
of processes [32], [53]. Verification of such systems, then,
amounts to proving that a desired property holds for all
permitted values of n. For example, proving that the safety
property holds for a dining philosopher protocol entails prov-
ing that the protocol with any given number n of philosophers
(n ≥ 3) can never reach a state when two neighbouring
philosophers eat simultaneously. For each given value of n,
verifying safety/liveness is decidable, albeit the exponential
state-space explosion in the parameter n. However, when the
property has to hold for each value of n, the number of
system configurations a verification algorithm has to explore
is potentially infinite. Indeed, even safety checking is already
undecidable for parameterised concurrent systems [9], [12],
[30]; see [13] for a comprehensive survey on the decidability
aspect of the parameterised verification problem.

Various sophisticated semi-algorithms for verifying pa-
rameterised concurrent systems are available. These semi-
algorithms typically rely on a symbolic framework for repre-

senting infinite sets of system configurations and transitions.
Regular model checking [42], [7], [14], [15], [6], [1], [22],
[45], [65] is one well-known symbolic framework for mod-
elling and verifying parameterised concurrent systems. In reg-
ular model checking, configurations are modelled using words
over a finite alphabet, sets of configurations are represented as
regular languages, and the transition relation is defined by a
regular transducer. From the research programme of regular
model checking, not only are regular languages/transducers
known to be highly expressive symbolic representations for
modelling parameterised concurrent systems, they are also
amenable to an automata-theoretic approach (due to many nice
closure properties of regular languages/transducers), which
have often proven effective in verification.

In this paper, we revisit the classic problem of verify-
ing safety in the regular model checking framework. Many
sophisticated semi-algorithms for dealing with this problem
have been developed in the literature using methods such as
abstraction [4], [5], [21], [20], widening [15], [23], accelera-
tion [57], [42], [11], and learning [54], [55], [38], [63], [62].
One standard technique for proving safety for an infinite-state
systems is by exhibiting an inductive invariant Inv (i.e. a set
of configurations that is closed under an application of the
transition relation) such that (i) Inv subsumes the set Init of
all initial configurations, but (ii) Inv does not intersect with the
set Bad of unsafe configurations. In regular model checking,
the sets Init and Bad are given as regular sets. For this reason,
a natural method for proving safety in regular model checking
is to exhibit a regular inductive invariant satisfying (i) and
(ii). The regular set Inv can be constructed as a “regular
proof” for safety since checking that a candidate regular set
Inv is a proof for safety is decidable. A few semi-algorithms
inspired by automata learning — some based on the passive
learning algorithms [38], [55], [2] and some others based on
active learning algorithms [55], [62]— have been proposed
to synthesise a regular inductive invariant in regular model
checking. Despite these semi-algorithms, not much attention
has been paid to applications of automata learning in regular
model checking.

In this paper, we are interested in one basic research
question in regular model checking: can we effectively apply
the classic Angluin’s L∗ automata learning [8] (or variants
[58], [44]) to learn a regular inductive invariant? Hitherto
this question, perhaps surprisingly, has no satisfactory answer
in the literature. A more careful consideration reveals at least

76

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



two problems. Firstly, membership queries (i.e. is a word w
reachable from Init?) may be asked by the L∗ algorithm,
which amounts to checking reachability in an infinite-state
system, which is undecidable in general. This problem was
already noted in [54], [55], [62], [63]. Secondly, a regular
inductive invariant satisfying (i) and (ii) might not be unique,
and so strictly speaking we are not dealing with a well-defined
learning problem. More precisely, consider the question of
what the teacher should answer when the learner asks whether
v is in the desired invariant, but v turns out not to be reachable
from Init? Discarding v might not be a good idea, since this
could force the learning algorithm to look for a minimal (in
the sense of set inclusion) inductive invariant, which might
not be regular. Similarly, let us consider what the teacher
should answer in the case when we found a pair (v, w) of
configurations such that (1) v is in the candidate Inv , (2)
w /∈ Inv , and (3) there is a transition from v to w. In the ICE-
learning framework [35], [34], [54], the pair (v, w) is called an
implication counterexample. To satisfy the inductive invariant
constraint, the teacher may respond that w should be added to
Inv , or that v should be removed from Inv . Some works in the
literature have proposed using a three-valued logic/automaton
(with “don’t know” as an answer) because of the teacher’s
incomplete information [37], [26].

a) Contribution: In this paper, we propose a simple and
practical solution to the problem of applying the classic L∗

automata learning algorithm and its variants to synthesise a
regular inductive invariant in regular model checking. To deal
with the first problem mentioned in the previous paragraph,
we propose to restrict to length-preserving regular transducers.
In theory, length-preservation is not a restriction for safety
analysis, since it just implies that each instance of the consid-
ered parameterised system is operating on bounded memory of
size n (but the parameter n is unbounded). Experience shows
that many practical examples in parameterised concurrent sys-
tems can be captured naturally in terms of length-preserving
systems, e.g., see [52], [7], [6], [42], [22], [57], [1]. The benefit
of the restriction is that the problem of membership queries is
now decidable, since the set of configurations that may reach
(be reachable from) any given configuration w is finite and
can be solved by a standard finite-state model checker. For
the second problem mentioned in the previous paragraph, we
propose that a strict teacher be employed in L∗ learning for
regular inductive invariants in regular model checking. A strict
teacher attempts to teach the learner the minimal inductive in-
variant (be it regular or not), but is satisfied when the candidate
answer posed by the learner is an inductive invariant satisfying
(i) and (ii) without being minimal. [In this sense, perhaps a
more appropriate term is a strict but generous teacher, who
tries to let a student pass a final exam whenever possible.]
For this reason, when the learner asks whether w is in the
desired inductive invariant, the teacher will reply NO if w is
not reachable from Init . The same goes with an implication
counterexample (v, w) such that the teacher will say that an
unreachable v is not in the desired inductive invariant.

We have implemented the learning-based approach in a

prototype tool with an interface to the libalf library, which
includes the L∗ algorithm and its variants. Despite the simplic-
ity of our solution, it (perhaps surprisingly) works extremely
well in practice, as our experiments suggest. We have taken
numerous standard examples from regular model checking,
including cache coherence protocols (German’s Protocol), self-
stabilising protocols (Israeli-Jalfon’s Protocol and Herman’s
Protocol), synchronisation protocols (Lehmann-Rabin’s Din-
ing Philosopher Protocol), secure multi-party computation pro-
tocols (Dining Cryptographers Protocol [25]), and mutual ex-
clusion protocols (Szymanski’s Protocol, Burn’s Protocol, Di-
jkstra’s Protocol, Lamport’s bakery algorithm, and Resource-
Allocator Protocol). We show that L∗ algorithm can perform at
least as well as (and, in fact, often outperform) existing semi-
algorithms. We compared the performance of our algorithm
with well-known and established techniques such as SAT-
based learning [55], [54], [51], [52], abstract regular model
checking (ARMC), which is based on abstraction-refinement
using predicate abstractions and finite-length abstractions [20],
[21], and T(O)RMC, which is based on extrapolation (a
widening technique) [16]. Our experiments show that, despite
the simplicity of our solution, it can perform at least as well
as existing semi-algorithms.

b) Related Work: The work of Vardhan et al. [63], [62]
applies L∗ learning to infinite-state systems and, amongst
other, regular model checking. The learning algorithm attempts
to learn an inductive invariant enriched with “distance” in-
formation, which is one way to make membership queries
(i.e. reachability for general infinite-state systems) decidable.
This often makes the resulting set not regular, even if the
set of reachable configurations is regular, in which case our
algorithm is guaranteed to terminate (recall our algorithm is
only learning a regular invariant without distance information).
Conversely, when an inductive invariant enriched with distance
information is regular, so is the projection that omits the dis-
tance information. Unfortunately, neither their tool Lever [63],
nor the models used in their experiments are available, so
that we cannot make a direct comparison to our approach.
A learning algorithm allowing incomplete information [37]
has been applied in [55] for inferring inductive invariants
of regular model checking. Although the learning algorithm
in [37] uses the same data structure as the standard L∗

algorithm, it is essentially a SAT-based learning algorithm (its
termination is not guaranteed by the Myhill-Nerode theorem).

Despite our results that SAT-based learning seems to be less
efficient than L∗ learning for synthesising regular inductive
invariants in regular model checking, SAT-based learning
is more general and more easily applicable when verifying
other properties, e.g., liveness [52], fair termination [48], and
safety games [56]. View abstraction [5] is a novel technique
for parameterised verification. Comparing to parameterised
verification based on view abstraction, our framework (i.e.
general regular model checking framework with transducers)
provides a more expressive modelling language that is required
in specifying protocols with near-neighbour communication
(e.g. Dining Cryptographers and Dining Philosophers).
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When preparing the final version, we found that a very
similar algorithm had already appeared in Vardhan’s thesis [61,
Section 6] from 2006; in particular, including the trick to
make a membership query (i.e. point-to-point reachability)
decidable by bounding the space of the transducers. The
research presented here was conducted independently, and
considers several aspects that were not yet present in [61],
including experimental results on systems that are not counter
systems (parameterised concurrent systems with topologies),
and heuristics like the use of shortest counterexamples and
caching. We cannot compare our implementation in detail with
the one from [61], since the latter tool is not publicly available.

c) Organisation: The notations are defined in Section II.
A brief introduction to regular model checking and automata
learning is given in Section III and Section IV, respectively.
The learning-based algorithm is provided in Section V. The
result of the experiments is in Section VI.

II. PRELIMINARIES

d) General Notations: Let Σ be a finite set of symbols
called alphabet. A word over Σ is a finite sequence of symbols
of Σ. We use λ to represent an empty word. For a set I ⊆ Σ∗

and a relation T ⊆ Σ∗ × Σ∗, we define T (I) to be the post-
image of I under T , i.e., T (I) = {y | ∃x. x ∈ I∧(x, y) ∈ T}.
Let id = {(x, x) | x ∈ Σ∗} be the identity relation. We
define Tn for all n ∈ N in the standard way by induction:
T 0 = id, and T k = T ◦T k−1, where ◦ denotes the composition
of relations. Let T ∗ denote the transitive closure of T , i.e.,
T ∗ =

⋃∞
i=1 T

i. For any two sets A and B, we use A	B to
denote their symmetric difference, i.e., the set A \B ∪B \A.

e) Finite Automata and Transducer: In this paper, au-
tomata/transducers are denoted in calligraphic fonts A,B, I, T
to represent automata/transducers, while the corresponding
languages/relations are denoted in roman fonts A,B, I, T .

A finite automaton (FA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q ×
Σ × Q is a transition relation, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final states. A run of A on a word
w = a1a2a3 · · · an is a sequence of states q0, q1, · · · , qn such
that (qi, ai+1, qi+1) ∈ δ. A run is accepting if the last state
qn ∈ F . A word is accepted by A if it has an accepting
run. The language of A, denoted by A, is the set of word
accepted by A. A language is regular if it can be recognised
by a finite automaton. A is a deterministic finite automaton
(DFA) if |{q′ | (q, a, q′) ∈ δ}| ≤ 1 for each q ∈ Q and a ∈ Σ.

Let Σλ = Σ ∪ {λ}. A (finite) transducer is a tuple T =
(Q,Σλ, δ, q0, F ) where Q is a finite set of states, δ ⊆ Q ×
Σλ × Σλ × Q is a transition relation, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We say that T is
length-preserving if δ ⊆ Q × Σ × Σ ×Q. We define relation
δ∗ ⊆ Q × Σ∗ × Σ∗ × Q as the smallest relation satisfying
(1) (q, λ, λ, q) ∈ δ∗ for any q ∈ Q and (2) (q1, x, y, q2) ∈
δ∗ ∧ (q2, a, b, q3) ∈ δ =⇒ (q1, xa, yb, q3) ∈ δ∗. The relation
represented by T is the set {(x, y) | (q0, x, y, q) ∈ δ∗ ∧ q ∈
F}. A relation is regular and length-preserving if it can be
represented by a length-preserving transducer.

III. REGULAR MODEL CHECKING

Regular model checking (RMC) is a uniform framework for
modelling and automatically analysing parameterised concur-
rent systems. In the paper, we focus on the regular model
checking framework for safety properties. Under the frame-
work, each system configuration is represented as a word in
Σ∗. The sets of initial configurations and of bad configurations
are captured by regular languages over Σ. The transition
relation is captured by a regular and length-preserving relation
on Σ∗. We use a triple (I, T ,B) to denote a regular model
checking problem, where I is an FA recognizing the set
of initial configurations, T is a transducer representing the
transition relation, and B is an FA recognizing the set of
bad configurations. Then the regular model checking problem
(I, T ,B) asks if T ∗(I) ∩ B = ∅. A standard way to prove
T ∗(I) ∩B = ∅ is to find a proof based on a set V satisfying
the following three conditions: (1)I ⊆ V (i.e. all initial
configurations are contained in V ), (2) V ∩ B = ∅ (i.e. V
does not contain bad configurations), (3) T (V ) ⊆ V (i.e.
V is inductive: applying T to any configuration in V does
not take it outside V ). We call the set V an inductive
invariant for the regular model checking problem (I, T ,B). In
the framework of regular model checking, a standard method
for proving safety (e.g. see [55], [7]) is to find a regular
proof, i.e., an inductive invariant that can be captured by finite
automaton. Because regular languages are effectively closed
under Boolean operations and taking pre-/post-images w.r.t.
finite transducers, an algorithm for verifying whether a given
regular language is an inductive invariant can be obtained by
using language inclusion algorithms for FA [3], [19].

Example 1 (Herman’s Protocol). Herman’s Protocol is a self-
stabilising protocol for n processes (say with ids 0, . . . , n−1)
organised as a ring structure. A configuration in the Herman’s
Protocol is correct iff only one process has a token. The
protocol ensures that any system configuration where the
processes collectively holding any odd number of tokens will
almost surely be recovered to a correct configuration. More
concretely, the protocol works iteratively. In each iteration,
the scheduler randomly chooses a process. If the process with
the number i is chosen by the scheduler, it will toss a coin
to decide whether to keep the token or pass the token to the
next process, i.e. the one with the number (i + 1)%n. If a
process holds two tokens in the same iteration, it will discard
both tokens. One safety property the protocol guarantees is
that every system configuration has at least one token.

The protocol and the corresponding safety property can be
modelled as a regular model checking problem (I, T ,B). Each
process has two states; the symbol T denotes the state that the
process has a token and N denotes the state that the process
does not have a token. The word NNTTNN denotes a system
configuration with six processes, where only the processes with
numbers 2 and 3 are in the state with tokens. The set of
initial configurations is I = N∗T(N∗TN∗TN∗)∗, i.e., an odd
number of processes has tokens. The set of bad configuration is
B = N∗, i.e., all tokens have disappeared. We use the regular
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language E = ((T,T) + (N,N)) to denote the relation that a
process is idle. The transition relation T can be specified as a
union of the following regular expressions: (1) E∗ [Idle], (2)
E∗(T,N)(T,N)E∗ + (T,N)E∗(T,N) [Discard both tokens],
and (3) E∗(T,N)(N,T)E∗+ (N,T)E∗(T,N) [Pass the token].

IV. AUTOMATA LEARNING

Suppose R is a regular target language whose definition
is not directly accessible. Automata learning algorithms [8],
[58], [44], [17] automatically infer a FA A recognising R. The
setting of an online learning algorithm assumes a teacher who
has access to R and can answer the following two queries:
(1) Membership query Mem(w): is the word w a member
of R, i.e., w ∈ R? (2) Equivalence query Equ(A): is the
language of FA A equal to R, i.e., A = R? If not, it returns a
counterexample w ∈ A 	 R. The learning algorithm will
then construct a FA A such that A = R by interacting
with the teacher. Such an algorithm works iteratively: In each
iteration, it performs membership queries to get from the
teacher information about R. Using the results of the queries, it
proceeds by constructing a candidate automatonAh and makes
an equivalence query Equ(Ah). If Ah = R, the algorithm
terminates with Ah as the resulting FA. Otherwise, the teacher
returns a word w distinguishing Ah from R. The learning
algorithm uses w to refine the candidate automaton of the
next iteration. In the last decade, automata learning algorithms
have been frequently applied to solve formal verification and
synthesis problems, c.f., [27], [24], [38], [37], [26], [31].

More concretely, below we explain the details of
the automata learning algorithm proposed by Rivest and
Schapire [58] (RS), which is an improved version of the classic
L∗ learning algorithm by Angluin [8]. The foundation of the
learning algorithm is the Myhill-Nerode theorem, from which
one can infer that the states of the minimal DFA recognizing R
are isomorphic to the set of equivalence classes defined by the
following relations: x ≡R y iff ∀z ∈ Σ∗ : xz ∈ R↔ yz ∈ R.
Informally, two strings x and y belong to the same state of the
minimal DFA recognising R iff they cannot be distinguished
by any suffix z. In other words, if one can find a suffix z′

such that xz′ ∈ R and yz′ /∈ R or vice versa, then x and y
belong to different states of the minimal DFA.

The algorithm uses a data structure called observation table
(S,E, T ) to find the equivalence classes correspond to ≡R,
where S is a set of strings denoting the set of identified
states, E is the set of suffixes to distinguish if two strings
belong to the same state of the minimal DFA, and T is a
mapping from (S ∪ (S · Σ)) · E to {>,⊥}. The value of
T (w) = > iff w ∈ R. We use rowE(x) = rowE(y) as a
shorthand for ∀z ∈ E : T (xz) = T (yz). That is, the strings x
and y cannot be identified as two different states using only
strings in the set E as the suffixes. Observe that x ≡R y
implies rowE(x) = rowE(y) for all E ⊆ Σ∗. We say that
an observation table is closed iff ∀x ∈ S, a ∈ Σ : ∃y ∈ S :
rowE(xa) = rowE(y). Informally, with a closed table, every
state can find its successors wrt. all symbols in Σ. Initially,
S = E = {λ}, and T (w) = Mem(w) for all w ∈ {λ} ∪ Σ.

Algorithm 1: The improved L∗ algorithm by Rivest and
Schapire
Input: A teacher answers Mem(w) and Equ(A) about a

target regular language R and the initial
observation table (S,E, T ).

1 repeat
2 while (S,E, T ) is not closed do
3 Find a pair (x, a) ∈ S × Σ such that

∀y ∈ S : rowE(xa) 6= rowE(y). Extend S to
S ∪ {xa} and update T using membership
queries accordingly;

4 Build a candidate DFA Ah = (S,Σ, δ, λ, F ), where
δ = {(s, a, s′) | s, s′ ∈ S ∧ rowE(sa) = rowE(s)},
the empty string λ is the initial state, and
F = {s | T (s) = > ∧ s ∈ S};

5 if Equ(Ah) = (false, w), where w ∈ A	R then
Analyse w and add a suffix of w to E;

6 until Equ(Ah) = true;
7 return Ah is the minimal DFA for R;

The details of of the improved L∗ algorithm by Rivest
and Schapire can be found in Algorithm 1. Observe that, in
the algorithm, two strings x, y with x ≡R y will never be
simultaneously contained in the set S. When the equivalence
query Equ(A) returns false together with a counterexample
w ∈ A 	 R, the algorithm will perform a binary search over
w using membership queries to find a suffix e of w and extend
E to E∪{e}. The suffix e has the property that ∃x, y ∈ S, a ∈
Σ : rowE(xa) = rowE(y) ∧ rowE∪{e}(xa) 6= rowE∪{e}(y),
that is, add e to E will identify at least one more state. The
existence of such a suffix is guaranteed. We refer the readers
to [58] for the proof.

Proposition 1. [58] Algorithm 1 will find the minimal DFA R
for R using at most n equivalence queries and n(n+n|Σ|) +
n logm membership queries, where n is the number of state of
R and m is the length of the longest counterexample returned
from the teacher.

Because each equivalence query with a false answer will
increase the size (number of states) of the candidate DFA by
at least one and the size of the candidate DFA is bounded
by n according to the Myhill-Nerode theorem, the learning
algorithm uses at most n equivalence queries. The number of
membership queries required to fill in the entire observation
table is bounded by n(n + n|Σ|). Since a binary search
is used to analyse the counterexample and the number of
counterexample from the teacher is bounded by n, the number
of membership queries required is bounded by n logm.

We would like to introduce the other two important variants
of the L∗ learning algorithm. The algorithm proposed by
Kearns and Vazirani [44] (KV) uses a classification tree data
structure to replace the observation table data structure of the
classic L∗ algorithm. The algorithm of Kearns and Vazirani
has a similar query complexity to the one of Rivest and
Schapire [58]; it uses at most n equivalence queries and
n2(n|Σ| + m) membership queries. However, the worst case
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Learner

Teacher
(I, T ,B) = true and

an inductive
invariant A

or
(I, T ,B) = false and

a word w ∈ T ∗(I) ∩B

w ∈ T ∗(I)?

(1)I ⊆ Ah?
(2)Ah ∩B = ∅?
(3)T (Ah) ⊆ Ah?

Mem(w)

yes or no

Equ(Ah)

false, w

Fig. 1. Overview: using automata learning to solve the regular model checking
problem (I, T ,B). Recall that we use calligraphy font for automata/transduc-
ers and roman font for the corresponding languages/relations.

bound of the number of membership queries is very loose. It
assumes the structure of the classification tree is linear, i.e.,
each node has at most one child, which happens very rarely
in practice. In our experience, the algorithm of Kearns and
Vazirani usually requires a few more equivalence queries, with
a significant lower number of membership queries comparing
to Rivest and Schapire when applied to verification problems.

The NL∗ algorithm [17] learns a non-deterministic finite
automaton instead of a deterministic one. More concretely,
it makes use of a canonical form of nondeterministic finite
automaton, named residual finite-state automaton (RFSA) to
express the target regular language. In some examples, RFSA
can be exponentially more succinct than DFA recognising
the same languages. In the worst case, the NL∗ algorithm
uses O(n2) equivalence queries and O(m|Σ|n3) membership
queries to infer a canonical RFSA of the target language.

V. ALGORITHM

We apply automata learning algorithms, including Angluin’s
L∗ and its variants, to solve the regular model checking
problem (I, T ,B). Those learning algorithms require a teacher
answering both equivalence and membership queries. Our
strategy is to design a “strict teacher” targeting the minimal
inductive invariant T ∗(I). For a membership query on a word
w, the teacher checks if w ∈ T ∗(I), which is decidable under
the assumption that T is length-preserving. For an equivalence
query on a candidate FA Ah, the teacher analyses if Ah can
be used as an inductive invariant in a proof of the problem
(I, T ,B). It performs one of the following actions depending
on the result of the analysis (Fig. 1):

• Determine that Ah does not represent an inductive invari-
ant, and return false together with an explanation w ∈ Σ∗

to the learner.
• Conclude that (I, T ,B) = true, and terminate the learn-

ing process with an inductive invariant Ah as the proof.
• Conclude that (I, T ,B) = false, and terminate the

learning with a word w ∈ T ∗(I) ∩B as an evidence.

Similar to the typical regular model checking approach, our
learning-based technique tries to find a “regular proof”, which
amounts to finding an inductive invariant in the form of a
regular language. Our approach is incomplete in general since
it could happen that there only non-regular inductive invariants
exist. Pathological cases where only non-regular inductive
invariant exist do not, however, seem to occur frequently in
practice, c.f., [21], [38], [20], [22], [60], [57], [50].

Answering a membership query on a word w, i.e., checking
whether w ∈ T ∗(I), is the easy part: since T is length-
preserving, we can construct an FA recognising Post |w| =
{w′ | |w′| = |w| ∧ w′ ∈ T ∗(I)} and then check if
w ∈ Post |w|. In practice, Post |w| can be efficiently computed
and represented using BDDs and symbolic model checking.

For an equivalence query on a candidate FA Ah, we need
to check if Ah can be used as an inductive invariant for the
regular model checking problem (I, T ,B). More concretely,
we check the three conditions (1) I ⊆ Ah, (2) Ah ∩ B = ∅,
and (3) T (Ah) ⊆ Ah using Algorithm 2.

Algorithm 2: Answer equivalence query on candidate FA
Input: An FA Ah and an RMC problem (I, T ,B)

1 if I 6⊆ Ah then
2 Find a word w ∈ I \Ah;
3 return (false, w) to the learner;
4 else if Ah ∩B 6= ∅ then
5 Find a word w ∈ Ah ∩B;
6 if w ∈ T ∗(I) then Output {cex = w,

(I, T ,B) = false} and halt;
7 else return (false, w) to the learner;
8 else if T (Ah) 6⊆ Ah then
9 Find a pair of words (w,w′) ∈ T such that w ∈ Ah

but w′ /∈ Ah;
10 if w ∈ T ∗(I) then return (false, w′) to the learner;
11 else return (false, w) to the learner;
12 else Output {inv = Ah, (I, T ,B) = true} and halt;

If the condition (1) is violated, i.e., I 6⊆ Ah, there is a word
w ∈ I \ Ah. Since I ⊆ T ∗(I), the teacher can infer that w ∈
T ∗(I) \Ah and return w as a positive counterexample to the
learner. A counterexample is positive if it represents a word in
the target language that was missing in the candidate language.
The definition negative counterexamples is symmetric.

If the condition (2) is violated, i.e., Ah ∩ B 6= ∅, there
is a word w ∈ Ah ∩ B. The teacher checks if w ∈ T ∗(I)
by constructing Post |w| and checking if w ∈ Post |w|. If
w 6∈ T ∗(I), the teacher obtains that w ∈ Ah \ T ∗(I) and
returns false together with w as a negative counterexample to
the learner. Otherwise, the teacher infers that w ∈ T ∗(I) ∩B
and outputs (I, T ,B) = false with the word w as an evidence.

The case that the condition (3) is violated, i.e., T (Ah) 6⊆
Ah, is more involved. There exists a pair of words (w,w′) ∈ T
such that w ∈ Ah ∧ w′ /∈ Ah. The teacher will check if
w ∈ T ∗(I). If it is, then the teacher knows that w′ ∈ T ∗(I)∧
w′ /∈ Ah and hence returns false together with w′ as a positive
counterexample to the learner. If w /∈ T ∗(I), then the teacher
knows that w /∈ T ∗(I) ∧ w ∈ Ah and hence returns false
together with w as a negative counterexample to the learner.

If all conditions hold, the “strict teacher” shows its generos-
ity (Ah might not equal to T ∗(I), but it will still pass) and
concludes that (I, T ,B) = true with a proof using Ah as the
inductive invariant.

Theorem 1 (Correctness). If the algorithm from Fig. 1 termi-
nates, it gives correct answer to the RMC problem (I, T ,B).
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To see this, observe that the algorithm provides an inductive
invariant when it concludes (I, T ,B) = true and a word in
T ∗(I)∩B when it concludes (I, T ,B) = false. In addition, if
one of the L∗ learning algorithms1 from Section IV is used,
we can obtain an additional result about termination:

Theorem 2 (Termination). When T ∗(I) is regular, the algo-
rithm from Fig. 1 is guaranteed to terminate in at most k
iterations, where k is the size of the minimal DFA of T ∗(I).

Proof. Observe that in the algorithm, the counterexample ob-
tained by the learner in each iteration locates in the symmetric
difference of the candidate language and T ∗(I). Hence, when
T ∗(I) can be recognized by a DFA of k states, the algorithm
will not execute more than k iterations by Proposition 1.

Two remarks are in order. Firstly, the set T ∗(I) tends to
be regular in practice, e.g., see [21], [38], [20], [22], [60],
[57], [10], [11], [50], [49]. In fact, it is known that T ∗(I) is
regular for many subclasses of infinite-state systems that can
be modelled in regular model checking [60], [50], [40], [11],
[49] including pushdown systems, reversal-bounded counter
systems, two-dimensional VASS (Vector Addition Systems
with States), and other subclasses of counter systems. Sec-
ondly, even in the case when T ∗(I) is not regular, termination
may still happen due to the “generosity” of the teacher, which
will accept any inductive invariant as an answer.

Considerations on Implementation: The implementation
of the learning-based algorithm is very simple. Since it is
based on standard automata learning algorithms and uses only
basic automata/transducer operations, one can find existing
libraries for them. The implementation only need to take care
of how to answer queries. The core of our implementation
has only around 150 lines of code (excluding the parser of
the input models). We provide a few suggestions to make the
implementation more efficient. First, each time when an FA
recognising Postk is produced, we store the pair (k,Postk) in
a cache. It can be reused when a query on any word of length
k is posed. We can also check if Postk∩B = ∅. The algorithm
can immediately terminate and return (I, T ,B) = false if
Postk ∩ B 6= ∅. Second, for each language inclusion test, if
the inclusion does not hold, we suggest to return the shortest
counterexample. This heuristic helped to shorten the average
length of strings sent for membership queries and hence
reduced the cost of answering them. Recall that the algorithm
needs to build the FA of Postk to answer membership queries.
The shorter the average length of query strings is, the fewer
instances of Postk have to be built.

VI. EVALUATION

To evaluate our techniques, we have developed a prototype2

in Java and used the libalf library [18] as the default inference
engine. We used our prototype to check safety properties
for a range of parameterised systems, including cache coher-
ence protocols (German’s Protocol), self-stabilising protocols

1If NL∗ is used, the bound in Theorem 2 will increase to O(k2).
2Available at https://github.com/ericpony/safety-prover.

(Israeli-Jalfon’s Protocol and Herman’s Protocol), synchroni-
sation protocols (Lehmann-Rabin’s Dining Philosopher Proto-
col), secure multi-party computation protocol (David Chaums’
Dining Cryptographers Protocol), and mutual exclusion pro-
tocols (Szymanski’s Protocol, Burn’s Protocol, Dijkstra’s Pro-
tocol, Lamport’s Bakery Algorithm, and Resource-Allocator
Protocol). Most of the examples we consider are standard
benchmarks in the literature of regular model checking (c.f.
[4], [5], [20], [22], [57]). Among them, German’s Protocol
and Kanban are more difficult than the other examples for
fully automatic verification (c.f. [4], [5], [43]).

Based on these examples, we compare our learning method
with existing techniques such as SAT-based learning [54],
[55], [51], [52], extrapolating [16], [46], and abstract regular
model checking (ARMC) [20], [21]. The SAT-based learning
approach encodes automata as Boolean formulae and exploits
a SAT-solver to search for candidate automata representing
inductive invariants. It uses automata-based algorithms to
either verify the correctness of the candidate or obtain a
counterexample that can be further encoded as a Boolean
constraint. T(O)RMC [16], [46] extrapolates the limit of the
reachable configurations represented by an infinite sequence of
automata. The extrapolation is computed by first identifying
the increment between successive automata, and then over-
approximating the repetition of the increment by adding loops
to the automata. ARMC is an efficient technique that integrates
abstraction refinement into the fixed-point computation. It
begins with an existential abstraction obtained by merging
states in the automata/transducers. Each time a spurious coun-
terexample is found, the abstraction can be refined by splitting
some of the merged states. ARMC is among the most efficient
algorithms for regular model checking [38].

The comparison of those algorithms are reported in Table I,
running on a MinGW64 system with 3GHz Intel i7 processor,
2GB memory limit, and 60-second timeout. The experiments
show that the learning method is quite efficient: the results
of our prototype are comparable with those of the ARMC
algorithm3 on all examples but Kanban, for which the minimal
inductive invariant, if it is regular, has at least 400 states.
On the other hand, our algorithm is significantly faster than
ARMC in two cases, namely German’s Protocol and Dining
Cryptographers. ARMC comes with a bundle of options and
heuristics, but not all of them work for our benchmarks.
We have tested all the heuristics available from the tool and
adopted the ones4 that had the best performance in our experi-
ments. The performance of SAT-based learning is comparable
to the previous two approaches whenever inductive invariants
representable by automata with few states exist. However, as
its runtime grows exponentially with the sizes of candidate
automata, the SAT-based algorithm fails to solve four examples
that do not have small regular inductive invariants. T(O)RMC
seems to suffer from similar problems as it timeouts on all

3Available at http://www.fit.vutbr.cz/research/groups/verifit/tools/hades.
4The heuristics are structure preserving, backward computation, and back-

ward collapsing with all states being predicates. See [21] for explanations.
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The RMC problems RS SAT T(O)RMC ARMC
Name #label Sinit Tinit Strans Ttrans Sbad Tbad Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time
Bakery [32] 3 3 3 5 19 3 9 0.0s 6 18 0.5s 2 5 0.0s 6 11 0.0s
Burns [4] 12 3 3 10 125 3 36 0.2s 8 96 1.1s 2 10 0.1s 7 38 0.0s
Szymanski [59] 11 9 9 118 412 13 40 0.3s 43 473 1.6s 2 21 2.0s 51 102 0.1s
German [36] 581 3 3 17 9.5k 4 2112 4.8s 14 8134 t.o. – – t.o. – – 10s
Dijkstra [4] 42 1 1 13 827 3 126 0.1s 9 378 1.7s 2 24 6.1s 8 83 0.3s
Dijkstra, ring [28], [33] 12 3 3 13 199 3 36 1.4s 22 264 0.9s 2 14 t.o. – – 0.1s
Dining Crypto. [25] 14 10 30 17 70 12 70 0.1s 32 448 t.o. – – t.o. – – 7.2s
Coffee Can [52] 6 8 18 13 34 5 8 0.0s 3 18 0.2s 2 7 0.1s 6 13 0.0s
Herman, linear [39] 2 2 4 4 10 1 1 0.0s 2 4 0.2s 2 4 0.0s 2 4 0.0s
Herman, ring [39] 2 2 4 9 22 1 1 0.0s 2 4 0.4s 2 4 0.0s 2 4 0.0s
Israeli-Jalfon [41] 2 3 6 24 62 1 1 0.0s 4 8 0.1s 2 4 0.0s 4 8 0.0s
Lehmann-Rabin [47] 6 4 4 14 96 3 13 0.1s 8 48 0.5s 2 11 0.8s 19 105 0.0s
LR Dining Philo. [52] 4 4 4 3 10 3 4 0.0s 4 16 0.2s 2 6 0.1s 7 18 0.0s
Mux Array [33] 6 3 3 4 31 3 18 0.0s 5 30 0.4s 2 7 0.2s 4 14 0.0s
Res. Allocator [29] 3 3 3 7 25 4 9 0.0s 5 15 0.0s 1 3 0.0s 4 9 0.0s
Kanban [5], [43] 3 25 48 98 250 37 68 t.o. – – t.o. – – t.o. – – 3.5s
Water Jugs [64] 11 5 6 23 132 5 12 0.1s 24 264 t.o. – – t.o. – – 0.0s

TABLE I
COMPARING THE PERFORMANCE OF DIFFERENT RMC TECHNIQUES. #LABEL STANDS FOR THE SIZE OF ALPHABET; SX AND TX STAND FOR THE NUMBERS

OF STATES AND TRANSITIONS, RESPECTIVELY, IN THE AUTOMATA/TRANSDUCERS. RS IS THE RESULT OF OUR PROTOTYPE USING RIVEST AND
SCHAPIRE’S VERSION OF L∗ ; SAT, T(O)RMC, AND ARMC ARE THE RESULTS OF THE OTHER THREE TECHNIQUES.

examples that cannot be proved by the SAT-based approach.
Table II reports the results of the learning-based algorithm

geared with different automata learning algorithms imple-
mented in libalf. As the table shows, these algorithms have sim-
ilar performance on small examples; however, the algorithm
of Rivest and Schapire [58] and the algorithm of Kearns and
Varzirani [44] are significantly more efficient than the other
algorithms on some large examples such as Szymanski and
German. Table II shows that Kearns and Varzirani’s algorithm
can often find smaller inductive invariants (fewer states) than
the other L∗ variants, which explains the performance differ-
ence. For NL∗, our implementation pays an additional cost to
determinise the learned FA in order to answer the equivalence
queries; this cost is significant when a large invariant is needed.

Recall that our approach uses a “strict but generous teacher”.
Namely, the target language of the teacher is T ∗(I) for an
RMC problem (I, T ,B). We have tried the version where
a “flexible and generous teacher” is used, that is, the target
language of the teacher is the complement of (T−1)∗(B).
The performance, however, is worse than that of our current
version. This result may reflect the fact that the set T ∗(I) is
“more regular” (i.e., can be expressed by a DFA with fewer
states) than the set (T−1)∗(B) in practical cases.

VII. CONCLUSION

The encouraging experimental results suggest that the per-
formance of the L∗ algorithm for synthesising regular in-
ductive invariants is comparable to the most sophisticated
algorithm for regular model checking for proving safety. From
a theoretical viewpoint, learning-based approaches (including
ours and [54], [55], [38]) have a termination guarantee when
the set T ∗(I) is regular, which is not guaranteed by approaches
based on a fixed-point computation (e.g., the ARMC [21]). An
interesting research question is whether L∗ algorithm can be
effectively used for verifying other properties, e.g., liveness.

Acknowledgements: We thank anonymous referees for
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Research Council under grant 2014-5484.

REFERENCES

[1] P. A. Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.
[2] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer,

and J. Stenman. String constraints for verification. In CAV’14, pages
150–166.

[3] P. A. Abdulla, Y. Chen, L. Holík, R. Mayr, and T. Vojnar. When
simulation meets antichains. In TACAS’10, pages 158–174.

[4] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model
checking without transducers (on efficient verification of parameterized
systems). In TACAS’07, pages 721–736.

[5] P. A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In
VMCAI’13, pages 476–495.

[6] P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena.
Regular model checking for LTL(MSO). STTT, 14(2):223–241, 2012.

[7] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of
regular model checking. In CONCUR’04, pages 35–48.

[8] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[9] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. IPL, 22(6):307–309, 1986.

[10] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: acceleration
from theory to practice. STTT, 10(5):401–424, 2008.

[11] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration
in symbolic model checking. In ATVA’05, pages 474–488.

[12] N. Bertrand and P. Fournier. Parameterized verification of many identical
probabilistic timed processes. In FSTTCS’13, volume 24 of LIPIcs,
pages 501–513. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[13] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and
J. Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

[14] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Université de Liège, 1999.

[15] B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large
(extended abstract). In CAV’03, pages 223–235.

[16] B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking.
In TACAS’04, pages 561–575.

[17] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style
learning of NFA. In IJCAI’09, pages 1004–1009.

[18] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R.
Piegdon. libalf: The automata learning framework. In CAV’10, pages
360–364.

[19] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations
up to congruence. In POPL’13, pages 457–468.

[20] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract
regular tree model checking. ENTCS, 149(1):37–48, 2006.

[21] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In CAV’04, pages 372–386.

[22] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In CAV’00, pages 403–418.

82

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



RS L∗ L∗c KV NL∗

Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv

Bakery 0.0s 6 18 0.0s 6 18 0.1s 6 18 0.0s 6 18 0.1s 6 18
Burns 0.2s 8 96 0.5s 8 96 0.2s 8 96 0.2s 8 96 0.4s 6 72
Szymanski 0.3s 43 473 2.4s 51 561 1.2s 41 451 0.3s 41 451 1.4s 59 649
German 4.8s 14 8134 13s 15 8715 26s 15 8715 4.2s 14 8134 40s 15 8715
Dijkstra 0.1s 9 378 0.4s 9 378 0.1s 9 378 0.2s 9 378 0.2s 10 420
Dijkstra, ring 1.4s 22 264 2.7s 20 240 8.9s 22 264 1.5s 14 168 1.8s 20 240
Dining Crypto. 0.1s 32 448 0.2s 34 476 0.2s 38 532 0.1s 19 266 0.3s 36 504
Coffee Can 0.0s 3 18 0.0s 3 18 0.0s 4 24 0.0s 3 18 0.0s 4 24
Herman, linear 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4
Herman, ring 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4
Israeli-Jalfon 0.0s 4 8 0.0s 4 8 0.0s 4 8 0.0s 4 8 0.0s 4 8
Lehmann-Rabin 0.1s 8 48 0.2s 8 48 0.1s 8 48 0.1s 8 48 0.2s 8 48
LR D. Philo. 0.0s 4 16 0.2s 4 16 0.0s 5 20 0.0s 4 16 0.0s 8 32
Mux Array 0.0s 5 30 0.0s 5 30 0.0s 5 30 0.0s 5 30 0.0s 5 30
Res. Allocator 0.0s 5 15 0.0s 4 12 0.0s 5 15 0.0s 5 15 0.0s 5 15
Kanban >60s – – >60s – – >60s – – >60s – – >60s – –
Water Jugs 0.1s 24 264 0.5s 25 275 0.5s 25 275 0.1s 24 264 0.5s 25 275

TABLE II
COMPARING THE PERFORMANCE BASED ON DIFFERENT AUTOMATA LEARNING ALGORITHMS. THE COLUMNS L∗ , L∗c, RS, KV, AND NL∗ ARE THE
RESULTS OF THE ORIGINAL L∗ ALGORITHM BY ANGLUIN [8], A VARIANT OF L∗ THAT ADDS ALL SUFFIXES OF THE COUNTEREXAMPLE TO COLUMNS,

THE VERSION BY RIVEST AND SHAPIRE [58], THE VERSION BY KEARNS AND VAZIRANI [44], AND THE NL∗ ALGORITHM [17], RESPECTIVELY.

[23] A. Bouajjani and T. Touili. Widening techniques for regular tree model
checking. STTT, 14(2):145–165, 2012.

[24] M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, and
M. Tautschnig. Learning the language of error. In ATVA’15, pages
114–130.

[25] D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[26] Y. Chen, A. Farzan, E. M. Clarke, Y. Tsay, and B. Wang. Learning
minimal separating DFA’s for compositional verification. In TACAS’09,
pages 31–45.

[27] Y. Chen, C. Hsieh, O. Lengál, T. Lii, M. Tsai, B. Wang, and F. Wang.
PAC learning-based verification and model synthesis. In ICSE’16, pages
714–724.

[28] E. W. Dijkstra, R. Bird, M. Rogers, and O.-J. Dahl. Invariance and non-
determinacy [and discussion]. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
312(1522):491–499, 1984.

[29] A. F. Donaldson. Automatic techniques for detecting and exploiting
symmetry in model checking. PhD thesis, University of Glasgow, 2007.

[30] J. Esparza. Parameterized verification of crowds of anonymous pro-
cesses. Dependable Software Systems Engineering, 45:59–71, 2016.

[31] A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, and B. Wang. Extending
automated compositional verification to the full class of omega-regular
languages. In TACAS’08, pages 2–17.

[32] W. Fokkink. Distributed Algorithms. MIT Press, 2013.
[33] L. Fribourg and H. Olsén. Reachability sets of parameterized rings as

regular languages. ENTCS, 9:40, 1997.
[34] P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust

framework for learning invariants. In CAV’14, pages 69–87.
[35] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning universally

quantified invariants of linear data structures. In CAV’13, pages 813–
829.

[36] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. JACM, 39(3):675–735, 1992.

[37] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants
automatically. In IJCAR’06, pages 483–497.

[38] P. Habermehl and T. Vojnar. Regular model checking using inference
of regular languages. ENTCS, 138(3):21–36, 2005.

[39] T. Herman. Probabilistic self-stabilization. IPL, 35(2):63–67, 1990.
[40] O. H. Ibarra. Reversal-bounded multicounter machines and their decision

problems. J. ACM, 25(1):116–133, 1978.
[41] A. Israeli and M. Jalfon. Token management schemes and random walks

yield self-stabilizing mutual exclusion. In PODC’90, pages 119–131.
[42] B. Jonsson and M. Nilsson. Transitive closures of regular relations for

verifying infinite-state systems. In TACAS’00, pages 220–234.
[43] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in

parameterized concurrent programs. In CAV’10, pages 645–659.

[44] M. J. Kearns and U. V. Vazirani. An Introduction to Computational
Learning Theory. MIT press, 1994.

[45] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. TCS, 256(1-2):93–112,
2001.

[46] A. Legay. T(O)RMC: A tool for (ω)-regular model checking. In CAV’08,
pages 548–551.

[47] D. Lehmann and M. O. Rabin. On the advantages of free choice:
a symmetric and fully distributed solution to the dining philosophers
problem. In POPL’81, pages 133–138.

[48] O. Lengál, A. W. Lin, R. Majumdar, and P. Rümmer. Fair termination
for parameterized probabilistic concurrent systems. In TACAS’17.

[49] J. Leroux and G. Sutre. Flat counter automata almost everywhere! In
ATVA’05, pages 489–503.

[50] A. W. Lin. Accelerating tree-automatic relations. In FSTTCS’12, pages
313–324.

[51] A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry
patterns. In VMCAI’16, pages 455–475.

[52] A. W. Lin and P. Rümmer. Liveness of randomised parameterised
systems under arbitrary schedulers. In CAV’16, pages 112–133.

[53] N. A. Lynch, I. Saias, and R. Segala. Proving time bounds for
randomized distributed algorithms. In PODC’94, pages 314–323.

[54] D. Neider. Applications of Automata Learning in Verification and
Synthesis. PhD thesis, RWTH Aachen, 2014.

[55] D. Neider and N. Jansen. Regular model checking using solver
technologies and automata learning. In NFM, pages 16–31, 2013.

[56] D. Neider and U. Topcu. An automaton learning approach to solving
safety games over infinite graphs. In TACAS’16, pages 204–221.

[57] M. Nilsson. Regular Model Checking. PhD thesis, Uppsala Univ., 2005.
[58] R. L. Rivest and R. E. Schapire. Inference of finite automata using

homing sequences. Inf. Comput., 103(2):299–347, 1993.
[59] B. K. Szymanski. A simple solution to Lamport’s concurrent program-

ming problem with linear wait. In ICS’88, pages 621–626.
[60] A. W. To and L. Libkin. Algorithmic metatheorems for decidable LTL

model checking over infinite systems. In FoSSaCS’10, pages 221–236.
[61] A. Vardhan. Learning To Verify Systems. PhD thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign, 2006.
[62] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify

safety properties. In ICFME’04, pages 274–289.
[63] A. Vardhan and M. Viswanathan. LEVER: A tool for learning based

verification. In CAV’06, pages 471–474.
[64] Wikipedia. Liquid water pouring puzzles. https://en.wikipedia.org/

w/index.php?title=Liquid_water_pouring_puzzles&oldid=764748113,
2017. [Accessed: 24-February-2017].

[65] P. Wolper and B. Boigelot. Verifying systems with infinite but regular
state spaces. In CAV’98, pages 88–97.

83

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



Lasso Detection using Partial-State Caching
Rashmi Mudduluru∗, Pantazis Deligiannis∗, Ankush Desai†, Akash Lal∗, Shaz Qadeer∗

∗Microsoft Research, {t-rasmud, pdeligia, akashl, qadeer}@microsoft.com
†UC Berkeley, ankushdesai@gmail.com

Abstract—We study the problem of finding liveness violations
in real-world asynchronous and distributed systems. Unlike a
safety property, which asserts that certain bad states should never
occur during execution, a liveness property states that a program
should not remain in a bad state for an infinitely long period of
time. Checking for liveness violations is essential to ensure that
a system will always make progress in production.

The violation of a liveness property can be demonstrated by
a finite execution where the same system state repeats twice
(known as lasso). However, this requires the ability to capture
the state precisely, which is arguably impossible in real-world
systems. For this reason, previous approaches have instead relied
on demonstrating a long execution where the system remains
in a bad state. However, this hampers debugging because the
produced trace can be very long, making it hard to understand.

Our work aims to find liveness violations in real-world systems
while still producing lassos as a bug witness. Our technique relies
only on partially caching the system state, which is feasible to
achieve efficiently in practice. To make up for imprecision in
caching, we use retries: a potential lasso, where the same partial
state repeats twice, is replayed multiple times to gain certainty
that the execution is indeed stuck in a bad state.

We have implemented our technique in the P# programming
language and evaluated it on real production systems and several
challenging academic benchmarks.

Index Terms—Liveness checking, Distributed systems, Lasso
detection, Testing

I. INTRODUCTION

Concurrent programming is essential in modern software
development, especially as the data and computing require-
ments grow beyond what is possible on a single processor core.
Concurrency can be found either in the form of multi-threaded
programs for multi-core processors, or as asynchronous dis-
tributed programs for multiple interconnected machines. In ei-
ther case, writing correct concurrent programs is challenging.
Subtle interactions between concurrently-running computa-
tions, such as thread interleavings or message reorderings, can
lead to unexpected behaviors. Further, the non-deterministic
nature of concurrency, often not controlled by the programmer,
makes testing for such erroneous behaviors very difficult.

The expectations of correct behavior for a concurrent pro-
gram (or any program for that matter) comes in two flavors:
safety and liveness properties. Safety properties assert that
a program never enters a bad or undesired state. The most
natural form of a safety property is an assertion, a construct
that is provided by most programming languages. Liveness
properties, which are the focus of this paper, assert that the
program does not stay in a bad state for an indefinite amount
of time. (We are going to use the term hot state instead of bad
state when discussing liveness properties.) Liveness properties

are used to ensure that the program always makes progress.
While safety specifications can be asserted and tested, there
is no natural way to express liveness properties in programs,
making it important to develop tools that help catch liveness
violations.

As an example, consider the design of the Azure Storage
vNext system [5]. As a typical cloud-storage system, vNext is
a distributed program that stores user data reliably even under
machine or disk failures. At a high level, it comprises of two
main components: an extent node, which stores data on the
local disk, and an extent manager that manages a set of extent
nodes making sure that each piece of data lives on at least
three extent nodes. Because machines or disks can fail at any
time, it is possible that an extent node goes down. In such
a case, the extent manager must detect the failure and use
one (or both) of the other replicas to recreate another extent
node with that data. Thus, while it is possible that the system
enters a state where user data is not present on three nodes
(a hot state), it must always eventually recover provided there
are no more failures. A liveness violation for vNext is that the
system remains in a hot state for an indefinite amount of time,
even when there are no additional failures. Such kinds of bugs
are very hard to find using traditional methods of testing [5].
The goal of our work is to build tools that help find liveness
violations.

The model checking community has long studied this prob-
lem. The work concentrates on finding a lasso: a program
execution that visits the same program state (say, s) twice. A
lasso indicates the presence of an infinite execution because
the execution from s to s can be repeated infinitely often.
If, further, the lasso is hot, i.e., it is continuously in a hot
state as it goes from s to s (including the state s itself) then
it indicates a violation of the liveness property. A hot lasso
naturally provides the user exact information on the execution
segment that fails to make progress, according to the definition
of what constitutes a hot state. For example, for vNext, the
cycle in a potential violation would indicate the steps that the
system is taking when some replica has gone down, but they
fail to create a new replica.

There are several algorithms in this space that look for
a hot lasso.1 These algorithms are either exhaustive [3] or
randomized [11], however they require access to the complete
state of the program to know that the cycle in a lasso can be
repeated indefinitely. For a distributed program, for instance,

1More generally, the algorithms look for violations of properties written in
a temporal logic like LTL.
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the state would include the individual states of all concurrent
processes as well as all the messages on the network. It
may even have to include the state of the operating system
if the program uses system resources (e.g., disk). This is an
unrealistic task in a real-world setting, especially because it has
to be done at each step of the program’s execution. State-of-
the-art tools like SPIN [12] and ZING [1] thus work on models
of actual systems. The creation of the model is the user’s
responsibility. However, programmers are often reluctant to
write models or maintain them as the software evolves given
the time pressures of a fast-moving software industry.

A different approach of checking liveness is to directly exe-
cute the program (with some modifications to make executions
deterministic) instead of relying on a model of the program.
Without capturing the program state, these approaches are un-
able to find a lasso. Instead, they attempt to find a sufficiently
long execution with a hot suffix (i.e., all states in the suffix
are hot). Instances of this approach are implemented in the
MACEMC tool [13] for distributed programs and the CHESS
tool [15] for multi-threaded programs. We refer to this ap-
proach as the temperature method. (The system is additionally
tagged with a temperature property. The temperature goes up
by a unit when the system is in a hot state and it goes to zero
when it transitions to a non-hot state. When the temperature
exceeds a threshold, a violation is reported.) The temperature
method requires the user to set the temperature threshold.
Setting this threshold too low can result in false positives and
setting it too high will produce long and hard-to-understand
traces because there is no lasso or cycle that tells the user
where the program failed to make progress.

Our goal is to provide the user with a lasso without relying
on lengthy executions or the ability to cache the entire program
state. There are two key ingredients to our approach. First, we
use a partial-state caching mechanism that only captures a
small part of the program state. By default, we capture partial
details of each concurrently executing process and the types of
the messages currently in flight between the processes. (We do
provide convenient APIs so that users can optionally capture
additional state.) Second, we execute the program (not a
model) while taking over the program scheduling and message
delivery. In each execution, we use the partial-state cache to
find a repeating state. Because the caching is partial, we cannot
say for sure if we have found a lasso or not. We overcome
this limitation by taking the potential cycle and repeatedly re-
executing it. If we are able to successfully re-execute the cycle
(while continuing to stay in a hot state) for a large number of
iterations then we flag this as a liveness violation and show
the lasso (without subsequent re-executions) to the user.

We have implemented our approach and integrated it with
the P# suite [4], [17]. P# is an extension of the C# language
meant for developing asynchronous systems. P# comes with
tools for thorough systematic testing of programs written in
the language. P# is currently in use inside Microsoft for
developing production systems. Using a collection of chal-
lenging academic benchmarks as well as production systems,
we report on several interesting aspects of our approach and

its comparison against the temperature method:
• We present a case study (§V) to show the advantage of

inspecting a lasso, as compared to looking at a long trace.
• We evaluate and compare the algorithms on a set of

benchmarks (§VI). We find that our lasso detection is
more robust in terms of finding liveness violations; it has
higher number of true positives and fewer false positives.
The partial-state caching mechanism incurs an overhead
of 2X in the running time on average compared to the
temperature method which does not require any caching.

The rest of the paper is organized as follows. Section II sets
up the notation and Section III formally describes our liveness
checking algorithm. Section IV discusses our implementation
based on P#. Section V presents a case study on the utility of
having a lasso. Section VI presents our experimental results.
Section VII discusses related work.

II. NOTATION AND DEFINITIONS

We consider a program as consisting of concurrently exe-
cuting processes that communicate with each other via mes-
sage passing. We formally model a program as a transition
system. In particular, an asynchronous program P is a tuple
(S,Pid, T,Hot, s0) where:
• S is the set of states of P .
• Pid is the set of process identifiers in the system.
• T : Pid×S → S is the transition function of the program.
T is a partial function. If T (m, s) = s′, then the process
m can execute a step to take the program from state s to
s′. We also say in this case that (s, s′) is a transition of
P and m is the scheduled process of that transition.

• Hot: S → bool is a function that maps a state to a Boolean
indicating whether the state is hot.

• s0 is the initial program state.
For the sake of convenience (and without loss of generality)

we assume that for all states s1 and s2, if T (m1, s1) = s2 and
T (m2, s1) = s2 then m1 = m2. Thus, a transition is uniquely
identified by the source and target states. Let Scheduled be
a partial function that maps a pair of states (s1, s2) to the
unique process identifier that takes state s1 to s2. Formally, if
Scheduled(s1, s2) is defined then T (Scheduled(s1, s2), s1) =
s2. Let Enabled be a function that maps a state s to the set
of all processes enabled in that state. Formally, Enabled(s) =
{m | ∃s′.T (m, s) = s′}. An example depicting the transition
system of a program is shown in Figure 1. For instance,
Enabled(s5) = {p2, p3} and Scheduled(s1, s3) = p2.

An execution trace of P is a sequence of states
s0, s1, · · · , sn such that ∀i ∈ {0, 1, · · · , n − 1},∃m ∈ Pid :
T (m, si) = si+1. A lasso L is an execution trace s0, · · · , sn
such that for some i with 0 ≤ i < n, sn = si. In this case, the
execution trace s0, · · · , si−1 is called the stem of the lasso and
the sequence si, · · · , sn is the cycle of the lasso. The presence
of a lasso indicates an infinite execution because the cycle can
be repeated infinitely often. L is additionally a hot lasso if all
states in its cycles are hot. Formally, HotLasso(L) holds if
∀k : i ≤ k < n⇒ Hot(sk). Similarly, L is called a fair lasso
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Fig. 1. A transition system. Nodes are program states and edges are transitions
labelled with scheduled process name. The shaded nodes depict hot states.

if all processes that are enabled at some point in the cycle are
scheduled in the cycle as well.2 Formally, FairLasso(L) holds

if
n−1⋃
k=i

Enabled(sk) ⊆ {Scheduled(sk, sk+1)|i ≤ k ≤ n − 1}.
A liveness violation of a program is a lasso that is both hot
and fair.

Fairness is an important criteria while considering liveness
properties. For unbounded runs, it is unlikely that a real system
will starve an enabled process from executing. Programmers
expect fairness and design their progress guarantees under this
assumption. Thus, a hot lasso that is unfair will be a false
positive from the user’s perspective.

The example of Figure 1 has multiple lassos, for example
L1 = s0, s1, s3, s5, s3, L2 = s0, s1, s3, s5, s5, and L3 =
s0, s2, s4, s6, s6. All of these are hot lassos but only L1 is
fair. Lassos L2 and L3 are not fair because their cycles have
p2 enabled but it is never scheduled. For the purpose of this
paper, only L1 constitutes a liveness violation.

III. LIVENESS CHECKING ALGORITHMS

This section outlines the two algorithms used for exploring
the state space of a program in an attempt to find a liveness vi-
olation. We present the algorithm for the temperature method,
inspired by previous work [13], [15]. Though this algorithm
is not one of our contributions, we have implemented and
presented it here mainly for the purpose of comparison. We
then present our algorithm based on partial-state caching. A
key hurdle in these algorithms is that, unlike a typical model-
checking scenario, we cannot capture or store the entire state
of a program. Instead, we only have the ability to inspect
the current state, identify enabled processes and schedule an
enabled process to make the program take a step. We cannot
checkpoint the state, thus, we cannot identify a lasso by
detecting a state seen previously in the execution.

Our algorithms will be parameterized by a scheduler,
represented as a method GETNEXT that takes a state s as
input and returns a process m ∈ Enabled(s) that should
be scheduled next. This method may have its own internal

2This property is usually termed as strong fairness.

Algorithm 1 EXECPROGRAM

Input: Initial State s0
Input: Scheduler method GETNEXT
Input: Method M ∈ {TempMethod,PartialCaching},
Input: Maximum steps B: Int,
Input: Temperature threshold TT : Int
Input: Replay threshold RT : Int

1: s← s0
2: n← 0
3: Temp← 0
4: Trace← []
5: while Enabled(s) 6= ∅ ∧ n < B do
6: m← GETNEXT(s)
7: s′ ← T (m, s)
8: Trace← Trace + (m,Enabled(s),Hot(s),Hash(s))
9: s← s′

10: n← n+ 1
11: if M == TempMethod then
12: Temp← CHECKTEMP(s,Trace,Temp, TT )
13: else if M == PartialCaching then
14: s,Trace← CHECKLASSO(s,Trace, RT )
15: end if
16: end while

logic to decide which process to schedule next. One can use
different implementations of GETNEXT that will, for instance,
do a depth-first or a breadth-first exploration of the program
by keeping track of previous decisions made. A GETNEXT
implementation can also be randomized. It can, for example,
pick and return a random element of Enabled(s) to do a pure
random exploration.

Each of the two liveness detection methods repeatedly run
EXECPROGRAM (Algorithm 1) up to a user-specified bound
on the maximum number of executions to explore. Each run
of EXECPROGRAM generates a program execution, according
to the GETNEXT scheduler, and the execution is monitored
for possible liveness violation. The two methods differ in how
they perform the detection.

EXECPROGRAM takes as input the initial state of the
program s0, a scheduler GETNEXT, the method to use for
detecting violations, the maximum length of an execution B
(after which exploration is truncated), and two threshold values
TT and RT that we explain later.

The main loop of EXECPROGRAM (line 5) runs as long
as there are processes available to be scheduled or until the
maximum length of the execution is reached. Each iteration
of the loop executes the program for one step according to the
scheduler (line 7) and then calls the selected detection method
(lines 12 and 14).

Algorithm 2 describes the CHECKTEMP method. It simply
increases the temperature value (line 2) if the current state is
hot and checks if the threshold has been reached. If the current
state is not hot, then the temperature is reset (line 7). It is easy
to see that this method reports a liveness violation on a trace
if the last TT steps of the trace were in a hot state.
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Algorithm 2 CHECKTEMP(s,Trace,Temp, TT )
Input: Current state s
Input: Current trace Trace
Input: Current temperature Temp: Int
Input: Threshold TT : Int
Output: Updated temperature value

1: if Hot(s) then
2: Temp← Temp + 1
3: if Temp = TT then
4: REPORT-LIVENESS-BUG(Trace)
5: end if
6: else
7: Temp← 0
8: end if
9: return Temp

Algorithm 3 CHECKLASSO(s,Trace, RT )
Input: Current state s
Input: Current trace Trace
Input: Threshold value RT : Int
Output: New current state
Output: Updated trace

1: for all i: Hash(s) = hash(Trace[i]) do
2: C ← Trace[i..length(Trace)]
3: if Hot(C) ∧ Fair(C) then
4: return REPLAYCYCLE(s, C,Trace, RT )
5: end if
6: end for

Algorithm 4 REPLAYCYCLE(s, C,Trace, RT )
Input: Current state s
Input: Potential cycle C
Input: Current trace Trace
Input: Threshold RT : Int
Output: New current state
Output: Updated trace

1: Trace′ ← Trace
2: for j = 0 to RT × length(C)− 1 do
3: i← j mod length(C)
4: m← scheduled(C[i])
5: if m 6∈ Enabled(s) then
6: return (s,Trace)
7: end if
8: s′ ← T (m, s)
9: Trace← Trace + (m,Enabled(s),Hot(s),Hash(s))

10: s← s′

11: if Enabled(s) 6= enabled(C[i + 1 mod length(C)]) ∨
¬Hot(s) then

12: return (s,Trace)
13: end if
14: end for
15: REPORT-LIVENESS-BUG(Trace′)

The Trace variable captures a summary of the cur-
rent execution. It is a list of trace events. For a pro-
gram transition T (m, s1) = s2, we record the trace event
(m,Enabled(s1),Hot(s1),Hash(s1)) capturing the process m
that was scheduled and information about the source state
s1: the set of enabled machines in the state, if the state
is hot or not, and a hash of the state. The function Hash
computes a fingerprint of a state by hashing partial information
gleaned from the program state. The next section details the
information that we hash by default in our implementation,
but users also have access to convenient APIs for hashing
additional program state that is relevant to their own program.
For the purpose of our algorithm, we only assume that Hash
is indeed a function, i.e., identical states must be mapped to
the same value. But the more information that is hashed about
a state, the less likely it becomes that two different states are
mapped to the same value.

The temperature method uses Trace for reporting a viola-
tion. A user can use the list of scheduled processes to replay
the execution. Our implementation of the temperature method
optimizes Trace by only keeping the process names in the
trace events. The PartialCaching method, however, makes full
use of trace events.
The PartialCaching Algorithm. For a trace event e, let
scheduled(e) be its first element, enabled(e) be its second
element, hot(e) be its third element and hash(e) be its last
element. For a trace t (a list of trace events), let t[i] be its
ith trace event. Let length(t) be the length of the trace. Let
t[i..j] be a sub-trace consisting of trace events t[i], · · · , t[j−1].
We say that a trace t is hot (Hot(t)) if for each trace event
e ∈ t, hot(e) is true. We say that a trace t is fair (Fair(t)) if⋃
e∈t enabled(e) ⊆ {scheduled(e) | e ∈ t}.
The CHECKLASSO method (algorithm 3) works as follows.

For each new state s in the execution, it checks if Hash(s)
has been seen earlier in the trace (line 1). A hit in the trace
corresponds to a potential cycle, however, we cannot be sure
because the hashing was only partial. It first checks if the
potential cycle is hot and fair (line 3). If not, then it considers
some other cycle. If it finds a hot and fair (potential) cycle,
then to make sure, the method tries to replay the cycle.

The method REPLAYCYCLE(s, C,Trace, RT ) (algorithm 4)
takes over the scheduling of the execution and instead of
calling GETNEXT, it uses C to make scheduling decisions. It
attempts to replay C for RT number of times. If successful,
the input Trace is reported as a liveness violation, with C
marked as the hot and fair cycle of the lasso. The method
proceeds as follows. Line 2 is the replay loop (for RT number
of times). At line 4, the process to schedule is chosen from
C. If m is not currently enabled (line 5), then the replay fails.
Otherwise a step is executed by scheduling m (line 8). Next,
line 11 checks if the new state matches the corresponding
step (i+ 1 mod length(C)) of C. If not then the replay fails,
otherwise it keeps going.

Remarks. First, REPLAYCYCLE does not check that the state
hash matches with C during replay. We are only interested
in replaying the scheduling decisions in C while making
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sure that the same set of processes are enabled (to ensure
fairness). Second, when replay fails, we simply continue the
program execution (in algorithm 1) from where the replay
failed. This is because we cannot checkpoint state to rollback
the execution from where the replay had started. We can
potentially re-execute the program from the beginning to
simulate rollback, but it adds extra cost to the algorithm. Third,
in CHECKLASSO there may be many potential cycles on line
1. In our implementation, we go through these in a random
order. Only the first hot and fair (potential) cycle is replayed
and not the rest (line 4 executes a return) because the trace
gets extended by the time replay fails.
A comparison of the two methods. Note that the temperature
method does not have a fairness check. This is not possible
because it does not produce a cycle that can be checked.
To avoid false positives, previous work has relied instead on
the scheduler to generate executions without starvation. For
instance, MACEMC uses a randomized scheduler that picks
a process randomly from the set of enabled processes; this
makes it probabilistically unlikely that an enabled process
will be starved in a long execution. For example, in the
transition system of Figure 1, it is unlikely that a random
scheduler will generate the execution s0, s1, s3, s5, s5, s5, · · · .
The randomness will ensure that p2 is scheduled in state s5 at
some point; and likely the execution will have some alternation
between states s3 and s5. Thus, in our experiments we limit the
temperature method to use the random scheduler, whereas our
partial-state caching method can use any scheduler. Random
scheduling helps guard against unfairness, but it can also
reduce bug-finding capabilities as illustrated by the following
example.
A Dining Philosophers example. Consider a program with
multiple processes, playing the role of a philosopher or a fork,
arranged in a ring with alternating philosophers and forks.
Each philosopher tries to acquire the fork on her left followed
by the fork on her right. If she succeeds in getting both forks,
she (eats and) releases both forks and quits. If she does not
succeed in getting both the forks, she releases any fork with
her and tries over again. This program has an infinite fair
execution where each philosopher first gets the fork on their
left, then they release them all realizing that the fork on the
right is unavailable and so on.

The temperature method, with a randomized scheduler, is
unable to detect the liveness violation: the ability to generate
a particular trace decays roughly exponentially with the length
of the trace, thus the method is unable to generate long traces.
However, our partial caching method is able to find the viola-
tion, even while using a randomized scheduler. The reason is
that it only needs to find the first iteration of a cycle after which
replay will take over the scheduling. Even chances of hitting
the first iteration decays exponentially with the number of
philosophers. For example, for 2 to 5 philosophers, our partial-
state caching method reports a (correct) liveness violation in
17.3%, 4%, 0.4%, 0.03% of the executions, respectively. The
temperature method is not able to find a violation even for
two philosophers (we used TT = 50).

IV. IMPLEMENTATION

We have implemented our techniques in the P# language
[4], [17]. P# is designed for writing asynchronous programs.
A P# program is a collection of state machines that run
concurrently and communicate with each other by passing
messages. A P# state machine (or machine for short) has an
input queue that stores received messages and it can have
an arbitrary number of fields of any C# type, just like a
regular C# object. A machine can have multiple states in the
sense of a finite-state-machine. (To avoid ambiguity with the
multiple uses of the word “state”, we will refer to this as a
MachineState.) The messages are handled in a FIFO order.
The user defines, separately for each MachineState, how the
machine will handle a message of a particular type. It can
execute a handler or transition to another MachineState. A
handler can execute arbitrary (but sequential) C# code that
may create more machines, send messages to other machines,
block until it receives a specific message, or update the internal
fields of the machine.

A P# program can run inside a single process (using a
thread pool) or be deployed on a cluster of interconnected
machines. P# is being used internally inside Microsoft to
develop production services for Azure.

A liveness property in a P# program is specified with the
help of a monitor. A monitor is a state machine that can receive
but not send messages and whose MachineStates are optionally
annotated as hot.3 A monitor essentially observes the execution
of the program. A liveness violation occurs if the program has
a monitor in a hot state for an indefinite amount of time (for
fair executions).

The P# runtime has a bug-finding mode that serializes
the program execution on a single thread and systematically
explores different interleavings of the program. P# has several
scheduling strategies that can be used for exploration [8]. P#
recommends a portfolio mode where testing is done in parallel,
with each parallel instance using a different scheduler.

Our formalism in Section II assumed that the transition
system of the program is deterministic except for the choice
of which process to schedule next, i.e., given a program state
s and an enabled process m, the state resulting from the
execution of m was fixed (T (m, s)). A P# program, however,
can have other sources of non-determinism, such as generating
non-deterministic values. Our implementation is able to handle
this non-determinism in data as well by generating these values
randomly and capturing the generated value in the trace to
allow for replay.

By default, we compute the fingerprint of a program state
by hashing together the fingerprints of each machine. For a
machine, we only look at the information that is directly visi-
ble to the P# runtime: this includes the name of MachineState
that the machine is in currently and the sequence of message
types in its inbox. We do not take into account the internal
fields of the machine or payloads of the messages, each of

3P# also has the notion of cold and warm states but we do not discuss this
feature in this paper.
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Fig. 2. ReplicatingStorage liveness bug

which can be of an arbitrary C# type, thus, hard to capture
efficiently and automatically. P# offers an API by which a user
can provide a more precise hash of a machine or of a message.

V. CASE STUDY

This section compares the violations reported by the tem-
perature method and our partial-state caching method on
one benchmark. We find that a lasso expresses the liveness
violation very naturally, and offers information that would
otherwise be hard to deduce from a long trace.

It is important to note that even the MACEMC work [13]
acknowledged that a user must be given more information
than just a trace for identifying a liveness bug. MACEMC
finds and displays a critical transition of the trace: a step of
the program execution after which the program is doomed to
violate the liveness property. In practice, this transition is one
after which several random explorations fail to reach a non-hot
state. A critical transition need not always exist (an example
is the dining philosophers program), but it was present in the
benchmark that follows.

The ReplicatingStorage benchmark is a simplified version
of Azure Storage vNext (described in §I) that manifests a
known real bug of the system. The P# program consists of
a Node Manager (NM) that is responsible for handling the
failure of Storage Nodes (SN) by creating new replicas. The
SNs periodically send a SyncReport to the NM reporting a
summary of the data that they currently store. We model the
environment as a P# machine that randomly induces a failure
to help us test the system. The program has a bug that is
triggered when a SN sends a SyncReport to NM and then
fails; the NM detects the failure, but just before it starts the
repair, it gets the SyncReport. This causes the repair to not
happen and the system continues without enough replicas. The
fix is for NM to ignore SyncReport messages from nodes that
it believes have failed.

Figure 2 shows the sequence of events that trigger the
liveness bug. The Environment machine induces a node failure
by sending a FaultInject message to SN-1. At this point,
SN-1 simply enqueues this message. The Environment also

sends a NotifyFailure to NM, which results in the creation
of SN-4. Next, SN-1 sends a SyncReport to NM just before
it handles the pending FaultInject message. Handling Fault-
Inject causes the SN-1 machine to halt. When NM receives
the SyncReport from SN-1, it updates its internal structures
and (incorrectly) assumes that all replicas have the latest
data. Subsequently, upon receipt of a periodic RepairNodes
message (simulating a periodic callback), NM does not start
a repair action and does not send the latest data to SN-4. It
also ignores all the SyncReport messages that it receives from
SN-4. As a result the system is stuck in a hot state from which
it cannot recover.

In the scenario described above, the liveness monitor enters
a hot state when SN-1 halts and the system never recovers
after this. Therefore, the termination of SN-1 is the critical
transition of this bug. However, this transition does not convey
any useful information by itself: any liveness violation of this
spec must start with a node failure.

In contrast, the states and messages in the cycle detected by
our approach reflect the following information: NM repeatedly
receives a RepairNodes message, which it handles, but NM
does not send the latest data to any node and the SNs keep
generating and sending SyncReport messages to NM. This
information is more relevant to a user who knows that the
newly created SN-4 needs to receive the latest data from NM,
but it never does.

VI. EXPERIMENTS

We experimented with a number of challenging academic
benchmarks (which were authored by us), as well as pro-
duction systems (for which we were not involved in their
development). All benchmarks are written in P# 4 and are
summarized in Table I, which shows lines of code (LoC), total
number of machine types, total number of MachineStates and
total number of message types5.

The production systems include PoolServer and
Azure Storage vNext. For the former, we picked
two versions where the developers found interesting live-
ness violations. Proposers is a simplified version of
the Paxos protocol obtained from previous work [9].
Chord [18] is a protocol implementing a distributed key-
value store. ReplicatingStorage was described ear-
lier (§V). FailureDetector is a failure detection pro-
tocol. Process Scheduler, Leader Election, and
Sliding Window are P# versions of SPIN benchmarks [12].

All benchmarks have a liveness bug, except for Leader
Election and Sliding Window. A description of the
bugs can be found in our technical report [14]. The production
systems are proprietary; their liveness bugs were found using
P# for the first time. We performed all our experiments on
a 64-bit Windows Server machine with 64 GB RAM and 16
logical cores.

Table II reports results from our experiments. All bench-
marks were executed with maximum steps set to 500 (variable

4https://github.com/p-org/PSharp
5https://github.com/p-org/PSharpLab/tree/master/FMCAD17
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TABLE I
BENCHMARK CHARACTERISTICS

Benchmark LoC #Machines #States #Messages
Proposers 176 3 3 5
Chord 762 3 7 22
ReplicatingStorage 757 7 20 41
FailureDetector 436 4 10 19
Process Scheduler 641 7 7 27
Leader Election 340 3 4 9
Sliding Window 344 3 4 8
PoolServer - v1 12160 10 54 49
PoolServer - v2 27908 18 139 94
Azure Storage vNext 22967 6 15 27

B in Algorithm 1). The temperature threshold (TT ) was set
to 250. This value was chosen after initial experimentation
which revealed that smaller values led to many false positives.
The threshold on cycle replay (RT ) was set to 10. It is
interesting to note that our algorithm was robust with respect
to this value though it was set arbitrarily: there were no false
positives among the traces that we manually inspected; for the
remaining traces, we confirmed that once a cycle was replayed
for 10 iterations, it could be also replayed for at least 10K
iterations. If replay failed, it would almost always fail in the
first iteration of the cycle. Each benchmark was tested for
10K executions, with 1K executions performed in parallel with
10 parallel instances. As mentioned in Section III, we use a
random scheduler for the temperature method, whereas we ran
a portfolio of schedulers (suggested as default to P# users) for
the partial-state caching method.

Table II shows the total time taken by the two approaches
(in seconds); the percentage of executions that reported bugs
(along with false positive ratio, when present); and the average
length of reported traces. For PartialCaching, we report the
average length of the trace (LT ) along with the average
length of the cycle (LC). We also show the number of times
replay failed for potential cycles that were fair and hot (D).
For PoolServer-v2, we were surprised to not find any
bugs; when we checked with the developers, we found that
they were using a maximum step bound of 5000. The row
Poolserver-v2-5k uses this setting.

The results show that the extra information tracked by the
PartialCaching method incurs an overhead over the tempera-
ture method (3.5X maximum, 2X on average). The overhead
is mostly due to cycle detection in the trace, but also because
of the partial hash computation and failed replay attempts.
However, PartialCaching method has no false positives and
has consistently better bug-finding capabilities, except for
ReplicatingStorage.

In the case of Azure Storage vNext, the temperature
method reports nearly 88% of the executions to be buggy,
whereas our partial-state caching approach reports just 0.02%.
To investigate the stark difference in the number of bugs
reported by both approaches, we placed checks to see if the
known buggy code was reached in the executions. It turns
out that in nearly 82% of the executions, the bug was never
triggered. These were all false positives. The temperature

threshold was reached prematurely and the execution did not
get sufficient time to do the repair. We also note that this
is a lower bound on the number of false positives because
triggering the buggy code is a necessary but not a sufficient
condition for the liveness violation. The actual number of false
positives may be higher. Setting the temperature threshold to
450 still reports over 80% false positives.

PartialCaching is able to find a bug in Proposers and
Poolserver-v2-5k that is not found otherwise. The for-
mer is similar to the dining philosophers example (see §III); it
requires the proposer machines to continuously out-bid each
other in alternation. Thus, generating long traces is probabilis-
tically unlikely. For Poolserver-v2-5k, its because one
of the portfolio schedulers (based on priority-based scheduling
[2]) exposed the corner case, which the random scheduler is
unable to find. Additional experiments, which use just the
random scheduler or improved state hashing, can be found in
our technical report [14].
Discussion and Summary. The temperature method is easy to
implement. It has been shown to work well in past work [13],
and our experiments confirm this to some extent. However,
initial experience with the developers using P# indicated
two shortcomings. First, it required an understanding of the
temperature threshold; one must give the system enough time
to recover from a hot state. Like in the case of vNext, a low
value can result in false positives. Second, when a trace was
reported, developers had to spend time identifying a “loop”
in their logic to see why the system failed to make progress.
Our work on the partial-state caching algorithm was directly
inspired by these shortcomings, under the constraint that full-
state caching would not be possible in a real setting.

Our method finds a short cycle in most cases, usually
much shorter than the trace itself and points directly to why
the execution failed to make progress. Further, the technique
is more robust, with fewer false positives and higher true
positives. It is able to find bugs (e.g., Poolserver-v2-5k)
that would be missed otherwise, which is invaluable to the
user. We believe these advantages justify the relative modest
runtime overhead of the approach. It also has the added
advantage of supporting multiple schedulers, which we knew
from past reported experience with safety properties, that it
will be useful in exposing interesting behaviors [8].

VII. RELATED WORK

Formal methods for checking liveness properties on pro-
grams is a widely studied area. The properties themselves
are expressed in a temporal logic, most commonly in Linear
Temporal Logic (LTL). These are compiled to a Buchi au-
tomaton, which is complemented and then intersected (via a
cross-product construction) with the program. In the resulting
system, the problem is then to find a lasso where the cycle
contains an accepting state. The problem of limiting attention
to fair traces is then just a matter of encoding fairness in LTL.
The classical algorithm for finding such a lasso is the Nested
Depth First Search (NDFS) algorithm [3]. State-of-the-art
implementations of this algorithm, with various improvements
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TABLE II
MAX STEPS: 500, ITERS:10000 (LT : TRACE LENGTH; LC : CYCLE LENGTH; D: DISCARDED CYCLES)

Benchmark Time taken % of Buggy Schedules Trace length
Temperature PartialCaching Temperature PartialCaching Temperature PartialCaching (LT , LC ) D

Proposers 5.87 10.23 0 1.16 - 21.9, 13 237
Chord 5.95 6.20 6.02 6.03 280.2 36.4, 3.2 0
ReplicatingStorage 45.80 160.76 13.78 11.96 367.7 295.4, 72.3 238
FailureDetector 48.17 74.34 0.03 0.6 254 78.1, 8 10076
Process Scheduler 36.77 117.3 0.33 11.7 411.5 236.1, 12.4 94671
Leader Election 6.83 7.38 0 0 - - 60921
Sliding Window 35.95 125 0 0 - - 0
PoolServer-v1 11.6 24.53 1.5 2.57 250.4 287.6, 26.6 14442
PoolServer-v2 46.63 68.85 0 0 - - 0
PoolServer-v2-5k 28.75 64.11 0 0.03 - 624.2, 10.6 2
Azure Storage vNext 80.5 139.8 88.95 | 82.21 FP 0.02 309.6 235, 24 50

[7], [10], can be found in tools such as SPIN [12] and ZING [1].
However, this methodology requires the ability to cache the
entire state (or a fingerprint of it). Consequently, both SPIN and
ZING support their own input languages for writing models of
actual systems. This is not readily possible in our setting.

The P programming language [6], [16] was co-designed
with P#. It carries the same state-machine and message-passing
structure as P#. However, unlike P# which is an extension of
the C# language, P is its own programming language with its
own data types and type system, designed in a manner that a P
program can be compiled directly to ZING’s input language.
(A P program can interface with external C procedures for
deployment in production, but the programmer is required
to provide P models of any external procedure.) Thus, a P
program can be analyzed using ZING. We coded some of our
simpler benchmarks in P, where it was possible to capture
the entire program state. However, ZING was often unable
to find the bug in the program. This was because of two
main reasons. First, the encoding of fairness in the translation
to ZING introduced a lot of non-determinism in the model.
Second, NDFS insists on a DFS order to explore the state
space. Our benchmarks have infinite state spaces (or very
large, even when the execution depth is constrained [7]). We
found NDFS often getting lost in exploring sub-regions of
the state space that did not have bugs and not being able to
exhaustively cover the sub-region before it timed out.

Previous work on stateless techniques, which do not capture
the program state, is usually restricted to safety properties.
They advocate encoding liveness properties as safety assertions
that check for progress explicitly [19]. Our approach instead
automatically reports a lasso as a proof of “no progress”.
MACEMC [13] and CHESS [15] are stateless approaches that
directly look for liveness violations. They have already been
covered in the paper.
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Abstract—Model checking of systems formalized using prob-
abilistic models such as discrete time Markov chains (DTMCs)
and Markov decision processes (MDPs) can be reduced to com-
puting constrained reachability properties. Linear programming
methods to compute reachability probabilities for DTMCs and
MDPs do not scale to large models. Thus, model checking
tools often employ iterative methods to approximate reachability
probabilities. These approximations can be far from the actual
probabilities, leading to inaccurate model checking results. In this
article, we present a new algorithm and its implementation that
improves approximate results obtained by scalable techniques
like value iteration to compute exact reachability probabilities.

I. INTRODUCTION

Probabilistic models such as discrete time Markov chains
(DTMCs) and Markov decision processes (MDPs) are often
used to describe systems in many application areas such
as distributed systems [16], [35], hardware communication
protocols [17], reliability engineering in circuits [11], [22],
[32], [33], dynamic power management [10], [34], network-
ing [28], [29] and security [13]. Probabilistic transitions in
these models are used to capture random faults, uncertainty of
environment and explicit randomization used in algorithms.
The key verification tasks for such systems are often ac-
complished through Probabilistic Computation Tree Logic
(PCTL) model checking [36]. The logic PCTL extends the
temporal logic CTL with operators that provide the ability to
reason quantitatively. For example, given on∈ {≤, <,≥, >},
the formula Ponp[ψ] expresses the property that the measure of
computation paths satisfying ψ is onp. PCTL model checking
proceeds by recursively computing the set of states that
satisfy subformulas of a given formula. Each recursive step, in
turn, reduces to constrained quantitative reachability, wherein,
given a DTMC/MDP, a set of good states G and a target set of
states T , the goal is to compute the measure of the paths that
reach T while remaining in G. If the model is decorated with
costs or rewards, one may also be interested in computing the
expected cost/reward of reaching T . It is well known that the
constrained quantitative reachability problem for DTMCs and
MDPs can be solved in polynomial time by reducing to linear
programming [8], [36].

Despite its low asymptotic complexity, linear programming,
unfortunately, doesn’t scale well to large models and is rarely
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was partially supported by NSF CCF-1422798; Rohit Chadha was partially
supported by NSF CNS-1314338 and NSF CNS-1553548; A. Prasad Sistla
was partially supported by CNS-1314485, CCF-1319754 and CCF-1564296;
and Mahesh Viswanathan was partially supported by NSF CNS-1329991.

used in practice to solve the quantitative reachability problem.
Instead, probabilistic model checkers [14], [15], [21], [24],
[25], [30], typically compute approximations to the exact
reachability probabilities through an iterative process. The
results computed by these tools can be incorrect, primarily
due to two sources of imprecision. The first is the use of finite
precision arithmetic and floating point numbers to carry out
calculations. The second is the use of approximate techniques
like value iteration, where the exact reachability probabilities
may only be approached in the limit. It is common practice
for model checking tools to terminate value iteration in a
finite number of steps, based on several different criteria, such
as, when the change in the computed reachability probability
between successive iterations is “small”. This approximation
step may lead to unsound results, for example, in systems
where high magnitude changes in value iteration are pre-
ceded by periods of stability that cause iteration to terminate
prematurely. Inaccuracies in model checking can get further
compounded by the presence of nested probability operators
in PCTL formulas when the sets of good states G and target
states T are not correctly computed in the recursive step (see
Example 3 on in Section III).

Contributions

In this article, we present a new algorithm and its imple-
mentation that sharpens approximate solutions computed by
value iteration, to obtain the exact constrained reachability
probability, allowing one to obtain accurate and reliable model
checking results. The starting point of our approach is the
observation that when transition probabilities in the model
are rational numbers, the exact solution is also a rational
number of polynomially many bits. The second ingredient in
our technique is an algorithm due to Kwek and Mehlhorn [26],
which, given a “close enough” approximation to a rational
number, finds the rational number efficiently. Our algorithm
works roughly as follows. We use value iteration to compute
an approximate solution and then apply the Kwek-Mehlhorn
algorithm to find a close candidate rational solution. Since
the approximate solution we start with is of unknown quality,
the candidate rational solution obtained may not be the exact
answer. Therefore, we check if the candidate is the unique
solution to the linear program that describes the system. This
allows one to confirm the correctness of the candidate rational
solution. If it is not correct, the process is repeated, starting
with an approximate solution of improved precision. Precise
details of the algorithm are given in Section IV.
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We have implemented this approach as an extension of
the PRISM model checker, called RATIONALSEARCH. Our
tool computes exact constrained reachability probabilities and
exact expected rewards for model checking DTMCs and MDPs
against PCTL specifications. Evaluation of our implementation
against a large set of examples from the PRISM benchmark
suite [6] and case studies [7] shows that our technique can be
applied to a wide array of examples. In many cases, our tool
is orders of magnitude faster than the exact model checking
engines implemented in state-of-the-art tools like PRISM [30]
and STORM [15].

Related Work

The work closest in spirit to ours is [19], which presents an
approach to obtain exact solutions for reachability properties
for MDPs and discounted MDPs. The basic idea there is to
interpret the scheduler obtained for an approximate solution,
as a basis for the linear program corresponding to the verifi-
cation question. By examining the optimality of the solution
associated with this basis, the exact solution can be obtained
by improving the scheduler using the Simplex algorithm. This
is significantly different from our approach. In particular, for
DTMCs (where there is no scheduler), the approach of [19]
reduces to solving a linear program, which is known to be not
scalable. Since the implementation from [19] is not available,
we could not experimentally compare with this approach.

To overcome the convergence problems with value iteration,
techniques like interval iteration [9], [20], [38], which utilize
two simultaneous value iteration procedures converging to the
exact probabilities values from above and below, have been
proposed. This allows one to bound the error produced by ap-
proximation techniques. Additionally, several tools [15], [30]
implement exact quantitative model checking as an extension
of parametric model checking, which synthesizes symbolic al-
gebraic expressions over parameters of the model, representing
quantitative properties of a system. These expressions can be
evaluated under a concrete instantiation of the parameters to
produce exact solutions.

II. BACKGROUND

A common technique in the analysis of systems is to
model them as state transitions systems where states describe
information about the system at a point in time and transitions
describe how the system evolves from one state to another.
When this evolution is governed by random phenomena,
such state transition systems can then be enriched to capture
probabilistic behavior. The resulting model is known as a
DTMC, in which every state is mapped to a distribution over
the successor states. MDPs generalize DTMCs, in that, the
distribution over the successor states is non-deterministically
chosen. We next formalize DTMCs and MDPs.

Discrete time Markov chains (DTMCs)

A DTMC is a tuple M = (Z,∆,C, L) where Z is a set
of states, ∆ : Z → Dist(Z) is the probabilistic transition
function that maps every state to a probability distribution

over Z, C : Z × Z 7→ Q≥0 is a cost (or reward) structure
and L : Z → 2AP is a labeling function that maps states
to subsets of AP, the set of atomic propositions. We will
restrict our attention to DTMCs with a finite number of
states. For each z ∈ Z, ∆(z) defines a discrete probability
distribution over Z, that is, ∆(z)(z′) ≥ 0 for all z′ ∈ Z, and∑
z′∈Z ∆(z)(z′) = 1. We will henceforth denote ∆(z)(z′)

by ∆(z, z′). A path ρ of M is a sequence of states z0 →
z1 → · · · such that ∆(zi, zi+1) > 0. We write ρ(i) to
denote the ith state zi in ρ. We denote the set of all infinite
paths of M by Paths(M) and the set of all infinite paths
of M starting from state z by Pathsz(M). For a finite path
ρfin = z0 → · · · → zm we associate a probability measure
prob(ρfin) =

∏m−1
i=0 ∆(zi, zi+1). The cylinder set of ρfin is

Cyl(ρfin) = {ρ ∈ Paths(M) | ρfin is a prefix of ρ} and its
associated probability measure is prob(Cyl(ρfin)) = prob(ρfin),
which can be extended to a unique probability measure over
the smallest σ-algebra containing all cylinder sets. The cost
associated with ρfin is cost(ρfin) =

∑m−1
i=0 C(zi, zi+1). Let

F ⊆ Z. For a path ρ ∈ Paths(M), the cost of reaching
F , denoted cost(F )(ρ), is the cost of the shortest prefix of
ρ that reaches F , and is ∞ if no such prefix exists. The
expected cost incurred for reaching F starting from z is given
by E[costz(F )] =

∑
ρ∈Pathsz(M)

prob(ρ) · cost(F )(ρ).

Example 1: Consider an embedded control system [27]
comprised of an input processor, a main processor, an output
processor and a bus. In each cycle of the system, the input
processor collects data from a set of n sensors S1, S2, . . . , Sn.
The main processor polls the input processor and passes
instructions to the output processor controlling a set of m
actuators A1, A2, . . . Am. Communication between processors
occurs over the bus. The system is designed to tolerate failures
in a limited number of components. If the input processor
reports that the number of sensor failures exceeds some
threshold MAX FAILURES, then the main processor shuts
the system down. Otherwise, it activates the actuators, which
again, are prone to failure. When the probabilities, with which
each of these components fail, are known, one can model
the system’s reliability using a DTMC. In Figure 1, we give
a DTMC that models a single cycle of such a system with
n = 2 sensors and m = 1 actuator. For simplicity, we assume
that each sensor fails with probability Es and each actuator
fails with probability Ea. States of the model are labeled with
es1, ..., e

s
n ∈ {0, 1} and ea1 , ..., e

a
m ∈ {0, 1}, where esi = 1

denotes the failure of sensor Si and eai = 1 denotes the failure
of actuator Ai. In Figure 1, we omit labels if they are not
relevant in a particular state.

Markov decision processes (MDPs)

An MDP is a tuple M = (Z,Act,∆,C, L) where Z is a
finite set of states, Act is a set of actions, ∆ : Z × Act ↪→
Dist(Z) is the probabilistic transition function that maps pairs
of states and actions to probability distributions over Z, C :
Z × Act × Z → Q≥0 is a cost (or reward) structure and
L : Z → 2AP is a labeling function. The set enabled(z) =
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Fig. 1. Markov chain for a simple embedded control system with two sensors
and one actuator tolerating a single sensor fault.

{α ∈ Act |∆(z, α) is defined} of actions enabled from each
state z is assumed to be non-empty for every z ∈ Z. An MDP,
therefore, differs from a DTMC, in that, at each state z, there
is a choice among several possible distributions. The choice
of which distribution to trigger is resolved by a scheduler (or
an attacker). Informally, an MDP M evolves as follows. It
starts from some state z0 ∈ Z. After i execution steps, if M
is in state z, the scheduler chooses an action α ∈ enabled(z),
which then defines a unique probability distribution µ given
by ∆(z, α). The process then moves to state z′ in step (i +
1) with probability ∆(z, α)(z′). We will write ∆(z, α, z′) to
denote ∆(z, α)(z′) when α ∈ enabled(z). A path ρ of an MDP
M is a sequence z0

α1−→z1 α2−→· · · such that for each i ≥ 0,
αi+1 ∈ enabled(zi) and ∆(zi, αi+1, zi+1) > 0.

Formally, a scheduler is a function S : Z+ → Act such
that for every finite sequence τ=z0z1 . . . zk ∈ Z+, we have
S(τ) ∈ enabled(zk). A path z0

α1−→z1 α2−→· · · is a S-path if
S(z0z1 . . . zi) = αi+1 for all i ≥ 0. We will write Paths(M)
for the set of infinite paths, Pathsz(M) for the set of infinite
paths starting from z, PathsS(M) for the set of infinite S-
paths, and PathsSz (M) for the set of infinite S-paths starting
from z. The set of all schedulers will be denoted by S.
A scheduler S ∈ S for MDP M induces a (potentially
infinite) DTMC MS such that Paths(MS) = PathsS(M).
The definitions for the measure and cost associated with paths
can then be naturally lifted from DTMCs. Interested readers
should refer to standard texts such as [8], [37] for more details.

Probabilistic computation tree logic (PCTL)

Properties of DTMCs and MDPs can be expressed in the
logic PCTL, which extends the temporal logic CTL with the
ability to reason quantitatively. Let a ∈ AP be an atomic
proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1], c ∈ Q≥0 and k ∈ N.
Below, we begin by defining PCTL for DTMCs and then give
the extension to MDPs.

Definition 1: The syntax of PCTL is
φ ::= true a ¬φ φ ∧ φ Ponp[ψ] Eonc[φ]

where
ψ ::= Xφ φUφ

In Definition 1, φ is a state formula used to describe
properties of states and ψ are path formulas used to model
properties of paths. We now formalize the semantics of PCTL.

Definition 2: Let M = (Z,∆,C, L) be a DTMC, φ, φ1, φ2
be state formulas and ψ be a path formula. The satisfaction
relation |= for PCTL state formulae is defined inductively as

z |= true for all z ∈ Z
z |= a ⇔ a ∈ L(z)
z |= ¬φ ⇔ z 6|= φ
z |= φ1 ∧ φ2 ⇔ z |= φ1 and z |= φ2
z |= Ponp[ψ] ⇔ pz(ψ) on p
z |= Eonc[φ] ⇔ ez(φ) on c

where pz(ψ) = prob({ρ ∈ Pathsz(M) | ρ |= ψ}), ez(φ) =
E[costz(Zφ)] with Zφ = {z′ ∈ Z |z′ |= φ}, and the satisfaction
relation for paths and path formulae is defined inductively as

ρ |= Xφ ⇔ ρ(1) |= φ
ρ |= φ1Uφ2 ⇔ ∃i≥0 : (ρ(i) |= φ2 & ∀j < i : ρ(j) |= φ1)

When the underlying model M is an MDP, the semantics
of PCTL formulae stay the same, except for the semantics of
Ponp[ψ] and Eonc[φ], which now require a quantification over
all schedulers. Let pSz (ψ) = prob({ρ ∈ PathsSz (M)|ρ |= ψ}).
One can analogously define eSz (φ) for a scheduler S.

Definition 3: Let M be an MDP, φ be a state formula and
ψ be a path formula. The satisfaction relation |= for PCTL
state formulae is defined identically to Definition 2, with the
exception of the following cases.

z |= Ponp[ψ] ⇔ ∀S ∈ S, pSz (ψ) on p
z |= Eonc[φ] ⇔ ∀S ∈ S, eSz (φ) on c

For a path formula ψ (resp. state formula φ), we write
P=?[ψ] (resp. E=?[φ]) to represent the solution vector V, given
by V(z) = pz(ψ) (resp. ez(φ)) for all z ∈ Z. Strictly speaking,
P=?[·] and E=?[·] are not part of PCTL syntax. However, we
henceforth extend the PCTL syntax to allow P=?[·] and E=?[·]
as the outermost operator.

Example 2: Consider the DTMC modeling an embedded
control system from Example 1. One can describe many
important properties of this model using PCTL:

1) The probability of success.
P=? [ true U “Sucess” ]

2) The probability that there are no sensor failures.
P=? [ true U (es1 + ...+ esn = 0) ]

3) The probability that actuator A1 does not fail given that
sensor S1 fails with probability on1/2.
P=? [ Pon 1

2
[true U (es1=1)] U P≤0[true U (ea1=1)] ]

PCTL model checking

Similar to the model checking algorithm for CTL, the
PCTL model checking algorithm recursively computes the set
of states satisfying a state sub-formula. We will begin by
restricting our attention to DTMCs.

Let φ, φ′ be state formulas. To compute P=?[φ U φ′], one
recursively computes the set of states Zφ and Zφ′ satisfying
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φ and φ′ respectively. These can be used to derive, for every
z∈Z, the quantity pz(φ U φ′) representing the probability of
reaching the set Zφ′ while remaining in the set Zφ, starting
from the state z.

Now, pz(φ U φ′) is the unique solution to the following
linear program:

pz(φ U φ′)=





0 if z ∈ Prob0

1 if z ∈ Prob1∑
z′∈Z

∆(z, z′) · pz′(φ U φ′) otherwise
(1)

where Prob0,Prob1 can be determined via a pre-computation
step that analyzes the underlying graph of the DTMC. For
computing Ponp[φ U φ′], one computes P=?[φ U φ′] and
compares pz(z U z′) on p for every z ∈ Z. The computation
for ¬φ, φ ∧ φ′, E=?[φ] and Ponc[Xφ] is similar.

When the underlying model is an MDP, the computation
for Ponp[φ U φ′] reduces to solving the following linear
optimization problem when on∈ {<,≤}

min
∑

z∈Z
pz(φ U φ′) subject to

pz(φ U φ′) = 0 if z ∈ Prob0

pz(φ U φ′) = 1 if z ∈ Prob1

pz(φ U φ′) ≥
∑

z′∈Z
∆(z, α, z′) · pz′(φ U φ′)

for each α ∈ enabled(z) otherwise

(2)

When on∈ {>,≥}, the objective changes to maximization and
the direction the last inequality is reversed.

Value iteration

One can equivalently express the system of equations de-
scribed in (1) and (2) as (3) and (4) for DTMCs and MDPs
respectively (for some appropriate matrix A and vector b),

x̄ = Ax̄+ b (3)

x̄(z) = max{∆(z, α, z′) · x̄ |α∈enabled(z)} (4)

An alternate approach to solving the above set of equations is
value iteration, which iteratively computes the solution vector
as the limit of the sequence {x̄i}i≥0 given by x̄i+1 = Ax̄i+ b̄
starting with x̄0(z) = 1 if z ∈ Prob1 and x̄0(z) = 0 otherwise,
for the case of DTMCs. The iterative formulation for MDPs
is also similar. Value iteration techniques remain the popular
choice for industrial tools that analyze PCTL properties, be-
cause, when equipped with a suitable stopping criterion, value
iteration beats state-of-the-art linear programming techniques,
despite their theoretically better asymptotic complexity. State-
of-the-art quantitative model checkers further enhance the
performance of value iteration by performing arithmetic oper-
ations using Multi-terminal binary decision diagrams (MTB-
DDs) [18], [23]. MTBDDs generalize BDDs [12] by allowing
terminal values to be different from 0 or 1. Similar to the role
of BDDs in symbolic model checking [31], MTBDD based
model checkers leverage the performance benefit due to the
succinct representations of the data structures involved.

III. APPROXIMATE MODEL CHECKING

As discussed above, solving quantitative properties of
DTMCs and MDPs by a reduction to linear programming does
not scale well enough to make it a viable solution technique
in practice. As a result, techniques to approximate solutions
using floating point arithmetic, such as value iteration, have
been widely adopted. In addition to errors introduced by
overflows in floating point numbers, several other sources
of imprecision can arise in quantitative model checkers that
employ approximate solution techniques.

a) Value iteration and convergence: Value iteration, dis-
cussed above, computes a sequence of vectors {vi}i≥0 that
converge to the solution vector V for a PCTL formula. In many
cases, the sequence does not converge in a finite number of
steps, and therefore model checkers terminate the sequence
when successive vectors vk and vk+1 become “close enough”.
The choice of stopping criterion is based largely on heuristics.
The PRISM model checker, for example, implements two cri-
teria (i) absolute criterion, and (ii) relative criterion. Under the
absolute criterion, value iteration terminates if ‖vk+1 − vk‖<ε
for some ε > 0. Under the relative criterion, termination occurs
when ‖vk+1−vk‖

‖vk‖ < ε. Both of these convergence criteria can
result in solutions that are very far from the actual answers. In
[20], the authors give a DTMC and a PCTL property whose
solution is 1

2 , yet PRISM reports 9.77×10−4 for the absolute
criterion and 0.198 for the relative criterion.

b) Nested reachability and PCTL: State-of-the-art quan-
titative model checking tools employing floating point arith-
metic often fail to produce accurate solutions to properties of
the form Ponp(ψ) when the probability of satisfying ψ is very
close to p. First observed in [39], we shall also demonstrate
this phenomenon using the DTMC from Example 1. For the
sake of illustration, let Es = 1

2 . Clearly, from the initial state,
the probability of reaching a state where sensor 1 fails is
exactly 1

2 and hence the formula P< 1
2

[ true U (es1=1) ]
evaluates to false for the initial state. However, PRISM returns
true. Errors such as these can be compounded in PCTL
formulas containing nested operators, wherein the recursive
step of the model checking algorithm returns an incorrect set
of states. This can lead to substantial logical errors in model
analysis where the reported probabilities are very far from the
actual ones.

Example 3: Let us instantiate the DTMC from Example 1
with n = 14 sensors, m = 1 actuator, MAX FAILURES=1
and with Es = Ea = 1

2 . Recall the third PCTL property of the
embedded control system given in Example 2:

P=? [ Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)] ].

When on is ≤, the PRISM model checker returns the value
“0.7096993582589287” for the initial state. Using our tool
RATIONALSEARCH, one can verify that the probability is
actually 212895/229376, or “0.9281485421316964”. Further,
when on is <, PRISM again returns “0.7096993582589287”.
This time, the actual solution, is 0, and our tool concurs
with this. This is because, PRISM incorrectly computes the
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set of states satisfying Pon 1
2
[true U (es1=1)]. This error in

the recursive step results in an incorrect formulation of the
constraints in the outermost constrained reachability problem.

IV. EXACT MODEL CHECKING

As demonstrated in the previous section, approximate solu-
tion techniques can lead to unreliable results and to incorrect
analysis of systems. To rectify this serious limitation, several
approaches that attempt to give exact (or high-precision)
solutions to the PCTL model checking problem have been
proposed. One such technique, interval iteration [9], [20]
carries out two simultaneous value iterations converging to
the solution from above and below, allowing one to bound
the error in the approximate solution. This approach is again
vulnerable to floating point errors and it doesn’t directly
give exact answers. Another approach for computing exact
answers is parametric model checking. In this approach, one
synthesizes symbolic algebraic expressions representing the
quantitative properties of the model, by treating the parameters
in the underlying model (constants, transition probabilities and
rewards) symbolically. These symbolic expressions evaluate to
the exact arithmetic values when instantiated with the concrete
values in the model. However, generating these expressions, in
general, is an expensive task. See our experiential evaluation
in Section V for a comparison with this technique.

Example 4: Again consider the DTMC modeling an embed-
ded control system with the parameters given in Example 3,
where it was demonstrated that approximate model checking
techniques can lead to incorrect logical analysis of the system.
To guarantee the correctness of one’s analysis, exact solution
techniques must be employed. Unfortunately, the exact model
checking engines of PRISM and STORM do not scale well
enough to analyze this example, which contains about 4.8
million states and about 44 million transitions. Under our test
setup (see Section V), both tools reached a 30 minute timeout
when trying to analyze the properties from Example 3. On
the other hand, our tool RATIONALSEARCH found the exact
answer to both the formulae in under 1 minute.

The Kwek-Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classi-
cal binary search algorithm can be used to locate the smallest
element larger than a given value. Kwek and Mehlhorn [26]
extend this methodology to efficiently locate the rational
number with the smallest size in a given interval. Here we
present a novel application of this technique where approxi-
mate answers to quantitative model checking problems can be
used to efficiently generate exact solutions.

Consider an interval I = [αβ ,
γ
δ ] with rational end-points.

It was established [26] that for any interval I = [αβ ,
γ
δ ],

there exists a unique rational amin(I)/bmin(I) such that for
all rational numbers a

b ∈ I , amin(I) ≤ a and bmin(I) ≤ b.
Further, this minimal fraction amin(I)/bmin(I) can be found
using Algorithm 1 from [26].

Let QM = {p/q | p, q ∈ {1, ...,M}} ∩ [0, 1]. For µ ∈ N, if
a
b ∈ QM is contained in the interval [ µ

2M2 ,
µ+1
2M2 ] of length 1

2M2

Algorithm 1 Compute the minimal rational in [αβ ,
γ
δ ]

function FINDFRACTION(α, β, γ, δ):
if
⌊
α
β

⌋
=
⌊
γ
δ

⌋
and α

β
6∈ N then

b, a ← FINDFRACTION(δ, γ mod δ, β, α mod β)
return

⌊
α
β

⌋
b+ a, b

else
return

⌈
α
β

⌉
, 1

end if
end function

then a
b is the unique element of QM in [ µ

2M2 ,
µ+1
2M2 ]. It turns

out that a
b must also be the minimal element of [ µ

2M2 ,
µ+1
2M2 ],

meaning it can be found using the algorithm from Algorithm 1
in time O(logM).

Rational search

In this section, we explain our approach for exact quan-
titative model checking of PCTL formulas. The key insight
we exploit is that value iteration typically converges very fast
and produces a precise enough answer. Using this precise
approximation, we can then effectively construct a small
interval for which the Kwek-Mehlhorn algorithm can find the
exact answer. In the following, we formalize this procedure.

We begin the presentation of our exact model checking
algorithm by first describing how a given approximate solution
vector corresponding to a set of equations, like those in (1)
and (2), can be refined to get the exact vector. This process
is formalized in Algorithm 2, which takes as input the model
M, a maximum precision P and a state-indexed vector V†

that approximates V (defined after Definition 2).

Algorithm 2 Sharpen
function SHARPEN(M, P , V†):

for all p ∈ {1, ..., P} do
for all z ∈ Z do

α, β, γ, δ ← BOUNDS(p, V†(z))
V?(z) ← bV†(z)c+ FINDFRACTION(α, β, γ, δ)

end for
if FIXPOINT(M, V?) then

return V?

end if
end for
return null

end function

For a given precision p and state z, BOUNDS(p,V†(z))
returns α, β, γ, δ such that α is the first p decimal digits
of the fractional part of V†(z), β = 10p, γ = α + 1 and
δ = β. Observe that α/β is the rational representation of
the first p digits of the fractional part of V†(z). From this
approximation, we identify a sharpened solution vector V?

using the FINDFRACTION procedure from Algorithm 1. The
procedure FIXPOINT then tests if V? is the correct solution
by checking if it satisfies (3) or (4), whichever is appropriate.
The uniqueness of the solutions to the these equation systems
(which follows from those of (1) and (2)) ensures that the
fixpoint check is only satisfied by the desired solution vector.
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If the input vector V† is not precise enough, then SHAPREN
returns “null”.

The guarantees of Algorithm 2 are formalized as follows.
Let Vb satisfying V(z) − Vb(z) ≤ 10−b for all z ∈ Z be an
approximate solution vector of precision b1. Then, Lemma 1
establishes that starting from a close enough approximation,
Algorithm 2 finds the actual solution vector.

Lemma 1: Let M be an MDP, ψ be a PCTL path formula
and V be the solution vector for P=?[ψ]. Let b, P ∈ N be
such that P ≥ b and Vb is an approximate solution vector
of precision b. If V(z) ∈ Qb

√
10b/2c for every z ∈ Z, then

SHARPEN(M, P,Vb) = V.

Proof (Sketch): Fix a state z and assume
V(z) ∈ QM for M=b

√
10b/2c. If P≥b then

SHARPEN(M, P,Vb) searches for V(z) in I = [α/β, γ/δ] for
α, β, γ, δ = BOUNDS(b,Vb(z)). Now, V(z) ∈ I since Vb(z)
satisfies V(z) − Vb(z) ≤ 10−b. Further, |I| = 10−b ≤ 1

2M2 .
Due to Kwek et. al. [26], we have that an interval of
size 1

2M2 contains at most 1 element of QM . Clearly,
FINDFRACTION(α, β, γ, δ) returns V(z) which is the unique
“minimal” element in I ∩QM . �

Building on the SHARPEN procedure, Algorithm 3 computes
the values in P=?[φ1Uφ2] for state formulas of the form
Ponp[φ1Uφ2] . It augments the value iteration phase from the
standard PCTL model checking algorithm.

Algorithm 3 Rational Search
function RATIONALSEARCH(M, φ, ε0):

Vinit ← INIT(M, φ)
ε ← ε0

while true do
V† ← VALUEITERATION(M, φ, V init, ε)
V? ← SHARPEN(M, dlog( 1

ε
)e, V†)

if V? 6= null then
return V?

end if
Vinit ← V†

ε ← ε/10
end while

end function

Algorithm 3 begins by running value iteration up to a given
precision ε (where ε is used in the convergence criterion —
absolute or relative — described in Section III) to determine
an approximate solution vector V†. Alternatively, value
iteration could be replaced by an interval iteration algorithm
and then ε would then represent a bound on the maximum
error in the approximate solution vector. Once V† is computed,
Algorithm 2 attempts to sharpen the approximate answer to
an exact one. If it succeeds, the whole process terminates.
Otherwise, V† is further refined by re-invoking value iteration
with an increased ε precision and the sharpening process is

1Notice that we require Vb(z) to be a lower bound for V(z), instead of
|V(z) − Vb(z)| ≤ 10−b. Such an approximation can indeed be obtained
from, say, value iteration.

repeated. When successive approximations in value iteration
are computed using arbitrary precision arithmetic, Theorem 1
establishes the correctness of Algorithm 3.

Theorem 1: Let M be a MDP, ψ be a PCTL path formula
and V be the solution vector for P=?[ψ] and ε0 ∈ Q>0.
Then, RATIONALSEARCH(M,Ponp[ψ], ε0) terminates and re-
turns the exact solution vector V.

Proof (Sketch): It is easy to see that there is a b > 0
such that, for every state z, V(z) ∈ QN for N = b

√
10b/2c.

Now, since value iteration converges in the limit, we have
that the first b digits of V†(z) match that of V(z) for each
state z ∈ Z, eventually. Also, in every iteration of the loop in
Algorithm 3, SHARPEN is invoked with an incremented value
of P and eventually P ≥ b. �

While both Lemma 1 and Theorem 1 are stated for formulae
of the kind P=?[ψ], they can be easily re-factored to reason
about formulas of the form E=?[φ].

Example 5: Our experiments show that Algorithm 3 can
make non-trivial improvements to solution quality. Consider
the standard example of tossing N biased coins independently,
where each coin yields heads with probability 1/3 and tails
with probability 2/3. Analyzing the DTMC model to com-
pute the probability of the event that 11 coins land heads,
PRISM’s floating-point model checker returned the decimal
“0.000005645029269476758”. Our tool was able to correctly
determine the exact probability to be 1/177,147 by starting
with the first 12 digits of this approximate answer. This is
remarkable given that the period of this fraction (and hence its
most succinct decimal representation) is almost 20,000 digits
long. Moreover, the algorithm is able to simultaneously infer
the reachability probabilities for all of the roughly 200,000
states of the model during a single fixpoint check. This
illustrates another advantage of our technique; the algorithm
is agnostic of the number of initial states in the system. The
exact model checking engine of PRISM, on the other hand,
currently only supports systems with a single initial state.

V. RESULTS

We have implemented Algorithm 3 in our tool RATIO-
NALSEARCH as an extension of the PRISM model checker
(version 4.3.1). RATIONALSEARCH is available for download
at [5]. PRISM is comprised of four solution engines, three
of which (MTBDD, HYBRID, SPARSE) are based on sym-
bolic methods using compact data structures like MTBDDs.
The fourth engine (EXPLICIT) manipulates sparse matrices,
vectors and bit-sets directly. RATIONALSEARCH implements
Algorithm 3 on top of all four engines. It intercepts PRISM’s
routine for solving constrained reachability probabilities and
rewards, sharpening the probabilities every time it is invoked.

The EXPLICIT engine of PRISM is implemented in Java.
To support this engine, our tool uses the libraries JScience [4]
and Apfloat [1] to construct the transition matrix using rational
entries, perform matrix-vector multiplications for the fixpoint
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1 2 3 4 5 6 7 8 9 10 11

Model RATIONALSEARCH PRISM STORM

EXPLICIT MTBDD HYBRID

Name Parameter States Time Overhead Time Overhead Time Overhead Time Time

(s) (%) (s) (%) (s) (%) (s) (s)

Biased Coins 11 177,147 23.1 336 0.125 179 0.178 225 1449.7 3.2

Dice 6 4,826,809 OOM N/A 1.8 2.1 6.5 12 TO 63

Din. Cryptographers 8 187,457 18.9 197 0.278 70 0.364 105 356.2 2.4

Din. Philosophers 3 956 0.41 165 1.9 4.8 0.133 98 3.128 0.65

ECS 14 4,815,782 OOM N/A 2.4 23 11.6 79 TO TO

Fair Exchange 400 321,600 14.6 423 2.0 44 2.2 51 TO 1.1

Firewire 11,000 428,364 122.2 225 15.1 0.2 19.5 21 232.3 29.5

Leader Election 4 12,302 1.8 226 5.0 30 20.4 25 80 0.042

Virus Infection 3 809 0.5 165 2.8 52 0.17 93 0.98 0.032

Fig. 2. Experimental Results:. Columns 1-3 describe the benchmark examples. Columns 4-11 report the performance metrics for the various exact solution
engines. Running times are reported in seconds, averaging over 5 measurements. For the RATIONALSEARCH engines [EXPLICIT, MTBDD, HYBRID], we
additionally report overhead percentages which are calculated by comparing the running times of PRISM’s approximate engines with the corresponding
extensions in RATIONALSEARCH. We use absolute convergence criterion (ε = 10−12) for the three engines in RATIONALSEARCH and the corresponding
approx. engines in PRISM. A TO in columns 8, 10 and 11 represents a timeout (set to be 30 minutes). OOM indicates an out of memory exception.

check in Algorithm 3, and implement the Kwek-Mehlhorn
algorithm (Algorithm 1). PRISM implements the remaining
three engines using an extension of the CUDD library [2].
The off-the-shelf version of CUDD only supports floating
point numbers at the terminals. RATIONALSEARCH enhances
CUDD by allowing terminals to hold either floating points
or arbitrary precision rational numbers provided by the GNU
MP library [3]. Our extension allows the data type at the
node to be easily interchanged and the full suite of MTBDD
operations can be performed regardless of the data type. RA-
TIONALSEARCH constructs the transition matrix as a rational
MTBDD and uses Algorithm 2 to generate candidate solution
vectors over rationals starting from approximate solution vec-
tors represented as floating point MTBDDs given by PRISM’s
value iteration procedure.

Evaluation: We evaluated our tool against all of the
examples involving quantitative reachability and rewards from
the PRISM benchmark suite and case studies [6], [7] and
compared the results with the exact parametric engines im-
plemented in PRISM and STORM. Our tests were carried
out on an Intel core i7 dual core processor @2.2GHz with
4Gb RAM running macOS 10.12.4. A summary of the perfor-
mance on quantitative PCTL properties is given in Figure 2.
The model checking times reported in the table include the
time required to build the transition matrix using rational
numbers. The reported times are an average of five runs for
each engine/tool. We observed that, among the engines based
on symbolic techniques, the SPARSE engine of PRISM was
being consistently outperformed by the MTBDD and HYBRID
engines. We, therefore, do not report its performance statistics.

Analysis of Results: The objective of our experimental
evaluation is two-fold. First, we would like to compare our
implementation against state-of-the-art tools for exact quanti-
tative model checking (see Columns 4,6,8,10,11). The second
objective is to analyze the performance overhead that our
technique adds to approximate model checking techniques (see
Columns 5,7,9). The overhead measures the additional time
incurred by RATIONALSEARCH when compared to PRISM’s
engines that perform only value iteration using inexact floating
point arithmetic.

Each implementation EXPLICIT, MTBDD and HYBRID of
RATIONALSEARCH significantly outperforms PRISM’s exact
engine; in many cases, by several orders of magnitude. We
also found at least one class of examples (Biased Coins) where
PRISM’s exact engine gave incorrect probabilities.

The comparison with STORM is more competitive. On most
examples with a large number of states (ECS, Biased Coins,
Dice), the running times achieve by RATIONALSEARCH are
much lower than those from STORM. On smaller examples,
the times were more comparable, with RATIONALSEARCH
running slightly faster on the majority of examples.

On several examples with large state spaces, the EXPLICIT
engine fails due to an out of memory exception. This can be
attributed to the fact that the implementation stores two copies
of the transition matrix in memory. On all the examples where
EXPLICIT fails, the symbolic engines (MTBDD and HYBRID)
find the solution quickly.

For the symbolic engines MTBDD and HYBRID, we found
that RATIONALSEARCH can infer exact solutions from ap-
proximate ones, while typically not adding more than dou-
ble overhead to approximate engines that are known to run
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extremely fast. The EXPLICIT engine incurs a much higher
overhead. This difference is due to the fact that MTBDD’s
perform symmetry reductions, storing a single copy of each
possible terminal value. This allows our implementation to run
the Kwek-Mehlhorn algorithm a single time for all states shar-
ing the same approximate value. This luxury is not afforded
by the EXPLICIT engine, with carries out the Kwek-Mehlhorn
procedure for every state in the model. For nested PCTL prop-
erties (such as ECS), the SHARPEN procedure must compute
multiple fixpoints, adding to the overhead time. We would
note, however, that for this example RATIONALSEARCH is
the only tool that found a solution without hitting a timeout.

VI. CONCLUSION

Techniques for exact model checking allow one to avoid
logical errors in system analysis that can arise due to ap-
proximation techniques. We presented an algorithm and tool,
RATIONALSEARCH, that computes the exact probabilities de-
scribed by PCTL formulas for DTMCs and MDPs. Our tool
works by sharpening approximate results obtained through
value iteration, allowing it to benefit from the performance
enhancements gained through approximation techniques. Our
experimental evaluation concurs with this hypothesis, and
shows that our approach often performs significantly better
than existing exact quantitative model checking tools while
also scaling to large model sizes. For future work, we plan
to combine our algorithm with more precise approximation
techniques such as interval iteration. We believe there are also
performance enhancements that can be achieved by a tighter
integration with the Kwek-Mehlhorn algorithm, wherein com-
putations from previous iterations can be reused.
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Abstract—We present a new SMT-based, probabilis-
tic, syntax-guided method to discover numerical induc-
tive invariants. The core idea is to initialize frequency
distributions from the program’s source code, then
repeatedly sample lemmas from those distributions,
and terminate when the conjunction of learned lemmas
becomes a safe invariant. The sampling process gets
further optimized by priority distributions fine-tuned
after each positive and negative sample. The stochastic
nature of this approach admits simple, asynchronous
parallelization. We implemented and evaluated this
approach in a tool called FreqHorn which shows com-
petitive performance on well-known linear and some
non-linear programs.

I. Introduction

Automated formal verification of programs handling
unbounded loops is reduced to finding safe inductive
invariants that over-approximate the sets of reachable
states, but precise enough to prove unreachability of the
error state. Successful solutions to this problem include
Counterexample-Guided Abstraction Refinement [1] and
Property Directed Reachability (PDR) [2], [3], [4], but
they are not guaranteed to deliver appropriate invariants.

We aim at learning inductive invariants in an
“enumerate-and-check” manner [5], [6]. While this ap-
proach in general meets a lot of skepticism, there are
particular synthesis tasks which can be efficiently solved
using tailored heuristics. Our intuition behind applying
this synthesis paradigm to discover invariants is that an
invariant can often be caught on the surface, i.e., it to
some degree imitates the syntactical constructions which
appear in the source code.

Source code can give hints for guessing a candidate to be
checked for invariance. Any information of occurrences of
variables, constants, arithmetic and comparison operators,
and their applications can potentially guide the search
of invariants. The research question we address in this
paper is whether a probability distribution constructed by
processing the source code could help sampling successful
candidates. This reduces the number of invariance checks
and decreases the total verification time.

We contribute a framework for learning invariants using
sampling from probability distributions obtained after
collecting multiple facts about the given source code.
Before sampling, we fix a number of features which could
belong to each invariant. We then split the code in clauses,
normalize each clause, and check how many of the pre-
determined features belong to it. The statistics collected

from all normalized clauses define a number of frequency
distributions.
The main workhorse in our framework is a repetitive

process that samples different pieces of a candidate invari-
ant from the frequency distributions and then assembles
them together. Each assembled candidate has a certain
feature with a probability specified in the corresponding
distribution. So it is likely that our sampled candidates
are in some sense representative. Finally, the candidate is
checked using an off-the-shelf SMT solver. If it is proven to
be an actual invariant, our algorithm stores it and proceeds
to discovering other invariants. The search continues until
all invariants that are needed to verify safety are discov-
ered, or until the search space is exhausted.
Our second contribution is an algorithm that combines

sampling from frequency distributions and sampling from
priority distributions created on the fly and adjusted
after each positive and negative sample. That is, once a
candidate is checked, some “likely unrelated” candidates
get higher priorities for being sampled in the coming itera-
tions. We show how this strategy can be made aggressive,
i.e., the completeness of the search space exploration is
traded off for widening of candidate diversity.
The approach has been implemented in a tool called

FreqHorn which naturally admits parallelization. Freq-
Horn uses an SMT solver to check each sample for invari-
ance. The learning strategy with priority distributions is
shown to be extremely effective in practice, despite for
some pathological situations it affects the convergence. As
expected, our tool is competitive to the closely related
machine-learning-based tools for invariants learning, and
in some cases it is more effective than PDR-based tools.
The rest of the paper is structured as follows. Sect. II

briefly discusses the fundamentals of our verification prob-
lem. Then, in Sect. III, we introduce the framework to
learn numerical invariants, describe its optimizations and
drawbacks, and in Sect. IV, we describe our parallel
implementation, evaluation, and comparison with other
tools. Sect. V has an overview of the related work, and
Sect. VI concludes the paper.

II. Background

A. Programs and their inductive invariants

We use vector notation to denote sequences (e.g., of
variables or constants). We assume the first-order formulas
𝜙p𝑥⃗q P Expr in the paper. For simplicity, we write 𝜙
when the arguments are clear from the context. For an
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implication between 𝜙,𝜓 P Expr , we write 𝜙 ùñ 𝜓; 𝜙 is
said to be stronger than 𝜓, and 𝜓 – weaker than 𝜙. If 𝜙 is
satisfiable, we write 𝜙 ­ùñ K (and 𝜙 ùñ K otherwise).
Formula 𝜓 is called a tautology if  𝜓 ùñ K.

Definition 1. A program P is a tuple xVar , Init ,Try,
where Var

def
“ V YV 1 is a set of input and output vari-

ables; Init P Expr encodes the initial states over V ; and
Tr P Expr encodes the transition relation over Var.

A state is a valuation to all variables in V . For every
input variable 𝑥 P V , there is a corresponding output
variable 𝑥1 P V 1 (i.e., the value of 𝑥 in the next state).

Definition 2. Let 𝑃 “ xV YV 1, Init ,Try; a formula Inv
over V is an inductive invariant if the following conditions
(respectively called initiation and consecution) hold:

InitpV q ùñ InvpV q (1)

InvpV q ^ TrpV ,V 1q ùñ InvpV 1q (2)

Example 1. Consider Fig. 1 showing program Bradley

named after its appearance in [2]. It has counter x that
gets repeatedly added to variable y. Examples of inductive
invariants include 𝑥 ě 0, 𝑥 ě 0^𝑦 ě 0, 𝑥 ě 0^𝑥`𝑦 ě 0,
and 𝑥 ě 0^ 𝑦 ´ 𝑥 ě 0.

Lemma 1. Given program 𝑃 , if Inv1 and Inv2 are induc-
tive invariants for 𝑃 , then Inv1^ Inv2 is also an inductive
invariant.

Lemma 1 does not work in the reverse direction: if a
conjunction of formulas is an inductive invariant then each
conjunct in isolation could not be an inductive invariant.
For example, 𝑥 ě 0 ^ 𝑦 ě 0 is an inductive invariant for
Bradley, but 𝑦 ě 0 is not an inductive invariant.

Lemma 2. Given program 𝑃 “ xVar , Init ,Try, let
Inv1 be an inductive invariant for 𝑃 , program 𝑃1 be
xVar , Init ,Tr ^ Inv1y, and Inv2 be an inductive invariant
for 𝑃1; then Inv1 ^ Inv2 is an inductive invariant for 𝑃 .

Lemma 2 enables incremental invariant discovery. For
example, for Bradley, one could find an inductive in-
variant 𝑥 ě 0 first and then conjoin it to the transition
relation. It remains to find an inductive invariant satisfying
the strengthened transition relation, e.g., 𝑦 ě 0. Finally,
conjunction 𝑥 ě 0^ 𝑦 ě 0 is an invariant for Bradley.

Definition 3. A verification task is a pair x𝑃,Bady, where
𝑃 “ xV YV 1, Init ,Try is a program, and Bad is a formula
encoding the error states over V .

A verification task has a solution if the set of error states
is not reachable. We call the program safe in this case.
Safety is decided by discovering a safe inductive invariant,
a formula that covers the initial state, is closed under the
transition relation, and does not cover the error state.

int x = y = 0;

while (*) {

x = x + 1;

y = y + x;

}

assert(y >= 0);

Figure 1: Possibly infinite loop over algebraic integers (cf. [2]).

Definition 4. Let 𝑃 “ xV Y V 1, Init ,Try and x𝑃,Bady
be a verification task; an inductive invariant Inv for 𝑃 is
called safe if:

InvpV q ^ BadpV q ùñ K (3)

Examples of safe inductive invariants for Bradley in-
clude 𝑥 ě 0^ 𝑦 ě 0 and 𝑥 ě 0^ 𝑦 ´ 𝑥 ě 0.

B. Sampling from probability distributions

Definition 5. A probability distribution on a set 𝐴 is a
function 𝑝 : 𝐴 Ñ R, such that @𝑎 P 𝐴 . 0 ď 𝑝p𝑎q ď 1 and
ř

𝑎P𝐴

𝑝p𝑎q “ 1.

In this paper, we consider a process which, given a
set of formulas and a probability distribution, chooses at
each iteration an element from the set with a probability
determined by the distribution.

Example 2. Given four formulas over 𝑥 and 𝑦, a proba-
bility distribution 𝑝 Bradley could be defined as follows:

𝑥 ě 0 ÞÑ 4{10

𝑦 ě 0 ÞÑ 3{10

𝑥` 𝑦 ě 0 ÞÑ 2{10

𝑦 ´ 𝑥 ě 0 ÞÑ 1{10

In order to prove program Bradley safe, it could be
sufficient to sample from distribution 𝑝 Bradley two times
and to check invariance incrementally for each sample.
Assuming that formula 𝑥 ě 0 was sampled at the first round
(with probability 0.4), it is enough to sample either 𝑦 ě 0 or
𝑦´𝑥 ě 0 (with probability 0.3` 0.1). Thus, the probability
of discovering a safe inductive invariant in two steps equals
0.4 ¨ p0.3` 0.1q “ 0.16.

Consider now a scenario that rejects all samples that
were already checked for invariance (e.g., by nudging
the distribution accordingly). It is easy to see that the
probability of discovering a safe inductive invariant (in two
steps) increases.
In the next section, we discuss a practical way of

creating both, the sets of samples, and their probability
distributions.

III. Learning Numerical Invariants

A. Grammar and probabilistic production rules

Fig. 2 shows a grammar for generating the candidate
inductive invariants (also referred to as the sampling
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𝑐 ::“ 𝑐1
ˇ

ˇ 𝑐2
ˇ

ˇ . . .
ˇ

ˇ 𝑐ℓ

𝑘 ::“ 𝑘1
ˇ

ˇ 𝑘2
ˇ

ˇ . . .
ˇ

ˇ 𝑘𝑚

𝑥 ::“ 𝑥1
ˇ

ˇ 𝑥2
ˇ

ˇ . . .
ˇ

ˇ 𝑥𝑛

𝑙𝑖𝑛𝑐𝑜𝑚 ::“ 𝑘 ¨ 𝑥` 𝑘 ¨ 𝑥` . . .` 𝑘 ¨ 𝑥

𝑖𝑛𝑒𝑞 ::“ 𝑙𝑖𝑛𝑐𝑜𝑚 ą 𝑐
ˇ

ˇ 𝑙𝑖𝑛𝑐𝑜𝑚 ě 𝑐

𝑐𝑎𝑛𝑑 ::“ 𝑖𝑛𝑒𝑞 _ 𝑖𝑛𝑒𝑞 _ . . ._ 𝑖𝑛𝑒𝑞

Figure 2: Sampling grammar.

grammar). The formulas are generated using probabilistic
production rules. In contrast to standard non-deterministic
production rules, each choice is in line with a particular
probability distribution, making the samples more pre-
dictable.

The sampling works in a top-to-bottom manner. Given
a probability distribution 𝑝_ for the arities of the 𝑜𝑟-
operator, we sample a value 𝑛 from 𝑝_ and reserve 𝑛
slots for operands of _ (linear inequalities). Then, for each
1 ď 𝑖 ď 𝑛, we sample a non-empty subset 𝑥⃗ Ď V of
variables from a given probability distribution 𝑝`. Then,
given a sequence of probability distributions t𝑝𝑘𝑗u for
scalar coefficients for each variable 𝑥𝑗 P V , we sample
a value 𝑘𝑗 P 𝐾 Ď Rzt0u. Summing products of each 𝑘𝑗
with 𝑥𝑗 , we get a linear combination (denoted t𝑥𝑗 , 𝑘𝑗u).
Lastly, for each inequality, we sample a binary comparison
operator (either ą or ě) and a constant 𝑐 P 𝐶 Ď R from
given probability distributions 𝑝𝑜𝑝 and 𝑝𝑐, respectively.

Each conjunction-free sample is individually checked for
invariance. Following Lemma 2, each successful sample is
conjoined to the transition relation, and thus it will be
used while checking invariance of samples in the future.
This lets us discover conjunctive invariants without having
the conjunction operator in the sampling grammar.

Note that the sampling grammar does not contain
the comparison operators other than ą and ě. The ex-
pressiveness of formulas is achieved by providing large
enough sets of 𝐾 and 𝐶 for numerical coefficients and
constants: if an element is in a set, its additive inverse
is also in the set. Thus, instead of generating formula
𝑘1 ¨𝑥1` . . .`𝑘𝑛 ¨𝑥𝑛 ă 𝑐, we generate an equivalent formula
p´𝑘1q ¨ 𝑥1 ` . . . ` p´𝑘𝑛q ¨ 𝑥𝑛 ą ´𝑐 (see more details in
Sect. III-B).

In practice, there could be dependencies among ingredi-
ents of a sample. For instance, the number of disjuncts in
a sample could affect the variables, coefficients, constants,
and the comparison operators appearing in each disjunct.
Because our sampling is hierarchical, the dependencies
propagate top-to-bottom. To formally address this, we
allow the production rules operate over conditional prob-
ability distributions.

B. Value ranges and frequency distributions

The sampling grammar imposes the fixed structure
on the candidate invariants. The key to success while
assembling each candidate is to fix the sets of numerical
constants 𝐾 and 𝐶. Our contribution is the technique
that 1) automatically constructs these sets and 2) supplies
each production rule in the grammar with the probability
distribution. We achieve both targets via exploring the
Init , Tr , and Bad formulas, included in the verification
task, and calculating the frequencies of appearances of
particular constants.
The algorithm of frequency calculations is informally

described below. It starts with converting the Init , Tr , and
Bad formulas to the Conjunctive Normal Form, splitting
them into clauses (i.e., disjunctions of linear inequalities)
and inserting the clauses to two sets, denoted respectively
AV and AVYV 1 . Set AV contains elements which have
appearances of input variables V only (i.e., all elements
obtained from Init or Bad and possibly some elements
from Tr). Set AVYV 1 contains elements which have ap-
pearances of input and output variables V and V 1 at the
same time (e.g., 𝑥1 “ 𝑥` 2 which can be originated from
Tr).

Then, for each clause a P AV , an application of ‰, “,
ă, or ď is replaced by application(s) of ą or ě:

𝐴 ă 𝐵
´𝐴 ą ´𝐵

𝐴 ď 𝐵
´𝐴 ě ´𝐵

𝐴 “ 𝐵
𝐴 ě 𝐵 ^´𝐴 ě ´𝐵

𝐴 ‰ 𝐵
𝐴 ą 𝐵 _´𝐴 ą ´𝐵

Note that in case a “ p𝐴 “ 𝐵q the resulting formula is
conjunction a` ^ a´, and thus a is replaced by a` and
a´, i.e., AV Ð AV ztau Y ta`, a´u. After this rewriting,
we assume that each clause a P AV matches the sampling
grammar. Thus, it is straightforward to determine the
arity of the _-operator (and include them to set 𝑁),
numerical coefficients (and include them to set 𝐾), and
constants (and include them to set 𝐶).
Additionally, we collect constants which appear in

clauses AVYV 1 and include them to 𝐾. The last trick is
to include products 𝑐 ¨ 𝑘 to 𝐾, for any 𝑐 P 𝐶 and 𝑘 P 𝐾;
and products 𝑐1 ¨ 𝑐2 to 𝐶, for any 𝑐1, 𝑐2 P 𝐶.

Definition 6. The set of formulas specified by the gram-
mar in Fig. 2, in which the sets of arities of the _-operator
𝑁 , numerical coefficients 𝐾, and constants 𝐶 are obtained
from AV and AVYV 1 is called an appearance-guided search
space.

Finally, we are ready to calculate various statistics, in
particular:

‚ how often 𝑎 P AV has arity 𝑖 P 𝑁 ,
‚ how often each combination of variables 𝑥⃗ Ď 𝑉
appears among the inequalities,

‚ how often a variable 𝑥 P V has a coefficient 𝑘 P 𝐾,
‚ how often a constant 𝑐 P 𝐶 appears among the
inequalities,
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Algorithm 1: Sampling inductive invariants.

Input: 𝑃 “ xV YV 1, Init ,Try: program;
x𝑃,Bady: verification task

Output: learnedLemmas: set of Expr

1 AV ,AVYV 1 Ð normalizep𝑃 q;
2 𝐶,𝐾,𝑁 Ð getRangespAV ,AVYV 1 q;
3 t𝑝˚u Ð getFrequenciespAV ,AVYV 1 q;
4 learnedLemmas Ð ∅;

5 while pBadpV q ^
Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq do

6 Cand Ð K;
7 𝑛Ð samplep𝑝_q;
8 for p𝑖 P r1, 𝑛sq do
9 𝑥⃗𝑖 Ð samplep𝑝` | 𝑛q;

10 𝑘⃗𝑖 Ð samplep𝑝𝑘 | 𝑛, 𝑥⃗q;
11 for p𝑖 P r1, 𝑛sq do

12 𝑐𝑖 Ð samplep𝑝𝑐 | 𝑖, 𝑛, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

13 op𝑖 Ð samplep𝑝𝑜𝑝 | 𝑖, 𝑛, 𝑐𝑖, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

14 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

15 if p CandpV q ùñ Kq then continue;

16 if pInitpV q ^  CandpV q ­ùñ Kq then continue;

17 if pCandpV q ^ TrpV ,V 1q ^  CandpV 1q ^
Ź

ℓPlearnedLemmas

ℓpV q ­ùñ Kq then continue;

18 learnedLemmas Ð learnedLemmas Y Cand ;

‚ how often an operator 𝑜𝑝 P tą,ěu appears among the
inequalities.

These statistics are used to construct frequency distri-
butions, respectively: 𝑝_, 𝑝`, 𝑝𝑘0 , . . . , 𝑝𝑘𝑛 , 𝑝𝑐, and 𝑝𝑜𝑝,
and to guide the sampling process. To enlarge the search
space, an artificial 𝜖-frequency representing appearances
that never happened in the actual code (e.g., by connecting
a variable and a constant that never appear together)
could be introduced. The value of 𝜖-frequency could be
chosen heuristically based on values of other frequencies,
as long as it stays sufficiently small and positive.

C. Core algorithm

Alg. 1 shows the routines of the sampler, the invariance
checker, and their interaction. As a preprocessing step
(lines 1-3), the algorithm normalizes formulas, collects sets
𝑁 , 𝐾, and 𝐶, and calculates frequencies as described in
Sect. III-B.

The sampler generates a formula (line 14) from the
appearance-guided search space using the frequency dis-
tributions. In a naive scenario, the sampler deals with
distributions 𝑝_, 𝑝`, 𝑝𝑘0 ,. . . , 𝑝𝑘𝑛 , 𝑝𝑐, and 𝑝𝑜𝑝 directly.
However, in order to make the sampling more predictable,
the algorithm creates conditional distributions and sam-
ples from them (lines 9-13), in particular:

‚ how often each combination of variables 𝑥⃗ Ď 𝑉
appears among inequalities which are contained in a
clause of the given arity 𝑛,

‚ how often a constant 𝑐 P 𝐶 appears in 𝑖𝑛𝑒𝑞, given 𝑖𝑛𝑒𝑞
is the 𝑖-th inequality among 𝑛 inequalities tineq𝑗u and

each ineq𝑗 is over particular t𝑥⃗𝑗 , 𝑘⃗𝑗u,
‚ etc . . .

As mentioned in Sect. III-A, the choice of conditional
distributions is justified by the order of sampling of each
ingredient of a candidate Cand . Thus, any change in this
order may affect the conditional distributions used for
sampling. At the same time, any conditions for the distri-
butions could be made optional (depending on the problem
in hand). Evidently, this does not affect soundness of the
entire approach, but affects the speed of convergence.

If the sampled Cand is a tautology (performed by an
SMT solver, line 15), then it is known to be an inductive
invariant, but it does not make any progress towards com-
pleting the verification; thus Cand should be withdrawn.
It would also make sense to withdraw all unsatisfiable
candidates, but by construction, the number of products
𝑘𝑖 ¨ 𝑥𝑖 in each disjunct is always positive, which makes
Cand always satisfiable.

The checker decides a number of local SMT queries per
each Cand . A negative result – i.e., whenever Cand is a
tautology or the initiation or the consecution check fails
(line 16 or 17, respectively) – is called an invariance failure.
Otherwise, the result is positive and is called a learned
lemma. Each new learned lemma is book-kept (line 18)
for the safety check (line 5), and also for the consecution
checks (line 17) of candidates coming in the next iterations
(recall Lemma 2). The sampler and the checker alternate
until a safe inductive invariant is found.

Theorem 1. If a safe inductive invariant can be expressed
by a conjunction of formulas within the appearance-guided
search space; then the probability that Alg. 1 eventually
discovers it tends to 1.

D. Prioritizing the search space

The success of techniques based on syntax-guided syn-
thesis (SyGuS) depends on how effectively the search
space is pruned after a positive or negative sample is
examined. To avoid repeatedly appearing learned lemmas
and invariance failures in the future, we introduce a pool
of all samples and refer to it whenever a new candidate is
sampled. Furthermore, we employ a lightweight analysis
to identify and block some closely related candidates
from being sampled and prioritize some likely unrelated
candidates to being sampled and checked for invariance.

Definition 7. The priorMap
x𝑥⃗,⃗𝑘y function maps linear

combinations t𝑥⃗𝑖, 𝑘⃗𝑖u to joint probability distributions for
op𝑖 and 𝑐𝑖 (called priority distributions).

One natural goal of priorMap
x𝑥⃗,⃗𝑘y is to set to zero

probabilities of sampling the candidates which are 1)
already checked, 2) stronger than failures, and 3) weaker
than learned lemmas. Consequently, the probabilities of
other candidates should be increased, and we achieve it
by exploiting the ordering of constants and comparison
operators in the sampling grammar. Alg. 2 shows a version
of Alg. 1, augmented with prioritizing capabilities (the
pseudocode inherited from Alg. 1 is decoloured).
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Algorithm 2: Sampling inductive invariants from pri-
ority distributions.

Input: 𝑃 “ xV YV 1, Init ,Try: program;
x𝑃,Bady: verification task

Output: learnedLemmas: set of Expr
1 AV ,AVYV 1

Ð normalizep𝑃 q;

2 𝐶,𝐾,𝑁 Ð getRangespAV ,AVYV 1
q;

3 t𝑝˚u Ð getFrequenciespAV ,AVYV 1
q;

4 learnedLemmas Ð ∅;
5 while pBadpV q ^

Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq do

6 Cand Ð K;
7 𝑛 Ð samplep𝑝_q;
8 for p𝑖 P r1, 𝑛sq do
9 𝑥⃗𝑖 Ð samplep𝑝` | 𝑛q;

10 𝑘⃗𝑖 Ð samplep𝑝𝑘 | 𝑛, 𝑥⃗q;

11 if ppriorMap
x𝑥⃗,𝑘⃗y

“ ∅q then
12 priorMap

x𝑥⃗,𝑘⃗y
Ð uniform

x𝑥⃗,𝑘⃗y
;

13 for p𝑖 P r1, 𝑛sq do

14 𝑐𝑖 Ð samplep𝑝𝑐 | 𝑖, 𝑛, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

15 op𝑖 Ð samplep𝑝𝑜𝑝 | 𝑖, 𝑛, 𝑐𝑖, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

16 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

17 else if ppriorMap
x𝑥⃗,𝑘⃗y

“ undefinedq then continue;

18 else
19 for p𝑖 P r1, 𝑛sq do

20 𝑐𝑖, op𝑖 Ð sampleppriorMap
x𝑥⃗,𝑘⃗y

pt𝑥⃗𝑖, 𝑘⃗𝑖uqq;
21 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

22 if p CandpV q ùñ Kq then

23 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yqq;

24 continue;

25 if pInitpV q ^  CandpV q ­ùñ Kq then

26 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yqq;

27 continue;

28 if pCandpV q^TrpV ,V 1q ^ CandpV 1q ^
Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq then

29 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yqq;

30 continue;

31 learnedLemmas Ð learnedLemmas Y Cand;

32 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yqq;

For each sequence of linear combinations x𝑥⃗, 𝑘⃗y
def
“

 

t𝑥⃗𝑖, 𝑘⃗𝑖u
(

, that has been sampled for the first time: 1)
priorMap

x𝑥⃗,⃗𝑘y gets assigned a sequence of uniform joint

distributions for each 𝑥⃗𝑖 and 𝑘⃗𝑖 (line 12), and 2) the
remaining ingredients for assembling Cand are sampled
from the frequency distributions (lines 13-16, as in Alg. 1).
Before proceeding to the next iteration, each positive
or negative result nudges distributions at priorMap

x𝑥⃗,⃗𝑘y

(line 23, 26 29, or 32).
For each x𝑥⃗, 𝑘⃗y, that has been sampled not for the

first time, there exists a sequence of non-uniform distri-
butions at priorMap

x𝑥⃗,⃗𝑘y. Further, the sampler produces
candidates from that distribution instead of the frequency
distributions (lines 19-21), and again, distributions at
priorMap

x𝑥⃗,⃗𝑘y get nudged after each positive and negative
result.

Once for some x𝑥⃗, 𝑘⃗y the search is exhausted then the
distributions at priorMap

x𝑥⃗,⃗𝑘y are said to be undefined

(line 17), and the sampler proceeds to exploring another
sequence of linear combinations. In the rest of the sub-
section, we clarify how distributions at priorMap

x𝑥⃗,⃗𝑘y get
nudged and how it might make them undefined.

Definition 8. Given x𝑥⃗, 𝑘⃗y and ineq1 _ . . ._ ineq𝑛, such

that each ineq 𝑖 is over a linear combination t𝑥⃗𝑖, 𝑘⃗𝑖u, oper-
ator op𝑖, and constant 𝑐𝑖, we write:

‚ prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq – to produce a joint probability

distribution for each 1 ď 𝑖 ď 𝑛 to sample op1𝑖 and 𝑐
1
𝑖

and to produce ineq 1𝑖 “ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐
1
𝑖, op

1
𝑖q,

such that if ineq 𝑖 ùñ ineq 1𝑖 then the probability of
sampling op1𝑖 and 𝑐1𝑖 is set to zero, and otherwise it
increases with the growth of 𝑐1𝑖;

‚ prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yq – to produce a joint probability

distribution for each 1 ď 𝑖 ď 𝑛 to sample op1𝑖 and 𝑐
1
𝑖

and to produce ineq 1𝑖 “ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐
1
𝑖, op

1
𝑖q,

such that if ineq 1𝑖 ùñ ineq 𝑖 then the probability
of sampling op1𝑖 and 𝑐1𝑖 is set to zero, and otherwise
it decreases with the growth of 𝑐1𝑖 (symmetrically to

prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq).

Example 3. Let 𝐶 “ t´5, 0, 5u, and ineq1 _ ineq2 =
𝑥 ą ´5 _ 𝑥 ` 𝑦 ě 5 be a learned lemma for some
program 𝑃 . Then, any disjunction 𝑖𝑛𝑒𝑞11 _ 𝑖𝑛𝑒𝑞12 where
𝑖𝑛𝑒𝑞11 P t𝑥 ě ´5, 𝑥 ą ´5u, and 𝑖𝑛𝑒𝑞

1
2 P t𝑥`𝑦 ě ´5, 𝑥`𝑦 ą

´5, 𝑥 ` 𝑦 ě 0, 𝑥 ` 𝑦 ą 0, 𝑥 ` 𝑦 ě 5u is weaker or equal
to ineq1 _ ineq2, and checking its invariance would not

affect our verification process. The prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq

function outputs two probability distributions 𝑝𝑥 and 𝑝𝑥`𝑦
to sample a new comparison operator and a new constant
for 𝑥 and 𝑥` 𝑦, respectively:

𝑥 ą 5 ÞÑ 4{10 𝑥` 𝑦 ą 5 ÞÑ 1

𝑥 ě 5 ÞÑ 3{10 𝑥` 𝑦 ě 5 ÞÑ 0

𝑥 ą 0 ÞÑ 2{10 𝑥` 𝑦 ą 0 ÞÑ 0

𝑥 ě 0 ÞÑ 1{10 𝑥` 𝑦 ě 0 ÞÑ 0

𝑥 ą ´5 ÞÑ 0 𝑥` 𝑦 ą ´5 ÞÑ 0

𝑥 ě ´5 ÞÑ 0 𝑥` 𝑦 ě ´5 ÞÑ 0

Distributions priorMap
x𝑥⃗,⃗𝑘y block the sampler from pro-

ducing more formulas than needed, i.e., not only the ones
which are strictly weaker (or stronger) that the learned
lemmas (or invariance failures). Thus there is a risk to
miss some invariants and to meet divergence. However,
the intention of our synthesis procedure is to encourage
exploring a wide range of unrelated samples. While having
the risk to miss a “next door” invariant, we aggressively
increase probabilities of “far away” candidates to being
sampled. Our experiments confirm that such aggressive-
pruning strategy in many cases accelerates the invariant
discovery (see Sect. IV-B).
Note that in Alg. 2, we prioritize the search space after

a tautology in a similar fashion to how we proceed after
a learned lemma (but as in Alg. 1, we do not add it
to learnedLemmas). This trick helps blocking some more
tautologies from being sampled.
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Example 4. Let 𝐶 “ t´5, 0, 5u, and ineq3 _ ineq4 =
𝑥 ě 5 _ 𝑥 ` 𝑦 ą 5 be an invariance failure for 𝑃 . The

prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yq function outputs two probability

distributions 𝑝1𝑥 and 𝑝1𝑥`𝑦:

𝑥 ą 5 ÞÑ 0 𝑥` 𝑦 ą 5 ÞÑ 0

𝑥 ě 5 ÞÑ 0 𝑥` 𝑦 ě 5 ÞÑ 1{15

𝑥 ą 0 ÞÑ 1{10 𝑥` 𝑦 ą 0 ÞÑ 2{15

𝑥 ě 0 ÞÑ 2{10 𝑥` 𝑦 ě 0 ÞÑ 3{15

𝑥 ą ´5 ÞÑ 3{10 𝑥` 𝑦 ą ´5 ÞÑ 4{15

𝑥 ě ´5 ÞÑ 4{10 𝑥` 𝑦 ě ´5 ÞÑ 5{15

Definition 9. Given two probability distributions 𝑝, 𝑝1

on set 𝐴, a probability distribution 𝑝𝑚p𝑝, 𝑝
1q on 𝐴 is

defined as follows. Let 𝑠
def
“

ř

𝑎P𝐴

𝑚𝑖𝑛p𝑝p𝑎q, 𝑝1p𝑎qq, then

@𝑎 P 𝐴 . 𝑝𝑚p𝑝, 𝑝
1qp𝑎q

def
“

𝑚𝑖𝑛p𝑝p𝑎q,𝑝1p𝑎qq
𝑠 .

We write updateppriorMap
x𝑥⃗,⃗𝑘y, t𝑝𝑖uq to produce a dis-

tribution 𝑝𝑚ppriorMap
x𝑥⃗,⃗𝑘ypt𝑥⃗𝑖, 𝑘⃗𝑖uq, 𝑝𝑖q for each 𝑖 and to

store all of them in priorMap
x𝑥⃗,⃗𝑘y.

Example 5. Given 𝑝𝑥 and 𝑝𝑥`𝑦, 𝑝
1
𝑥 and 𝑝1𝑥`𝑦 obtained

in Examples 3-4 respectively, two distributions 𝑝𝑚p𝑝𝑥, 𝑝
1
𝑥q

and 𝑝𝑚p𝑝𝑥`𝑦, 𝑝
1
𝑥`𝑦q are as follows. Note that the latter

is undefined since all formulas are mapped to 0, and the
condition of Def. 5 is violated.

𝑥 ą 5 ÞÑ 0 𝑥` 𝑦 ą 5 ÞÑ undefined

𝑥 ě 5 ÞÑ 0 𝑥` 𝑦 ě 5 ÞÑ undefined

𝑥 ą 0 ÞÑ 1{2 𝑥` 𝑦 ą 0 ÞÑ undefined

𝑥 ě 0 ÞÑ 1{2 𝑥` 𝑦 ě 0 ÞÑ undefined

𝑥 ą ´5 ÞÑ 0 𝑥` 𝑦 ą ´5 ÞÑ undefined

𝑥 ě ´5 ÞÑ 0 𝑥` 𝑦 ě ´5 ÞÑ undefined

This way, since one of the two distributions at
priorMap

x𝑥⃗,⃗𝑘y is undefined, the entire x𝑥⃗, 𝑘⃗y is withdrawn
by the algorithm and is not going to be considered in the
next iterations.

E. Invariants over non-linear arithmetic

Our approach has a limited support for learning nu-
merical invariants for programs with non-linear arithmetic
computations. It naturally extends the idea of collecting
and exploiting features of the program source code. In
addition to populating sets𝑁 ,𝐾, and 𝐶 from Init , Tr , and
Bad (described in Sect. III-B), our algorithm populates set
𝑊 by applications of either 1) the modulo operator, 2) the
division operator, or 3) the multiplication operator, the list
of arguments of which contains more than one variable.

The grammar in Fig. 3 enhances the sampling grammar
with elements of 𝑊 , which are treated as fresh variables.
That is, the sampler may end up with candidates having

. . .

𝑥 ::“𝑥1
ˇ

ˇ . . .
ˇ

ˇ 𝑥𝑛
ˇ

ˇ 𝑥𝑖 div 𝑘𝑖
ˇ

ˇ 𝑥𝑖 mod 𝑘𝑗
ˇ

ˇ 𝑥𝑖 ¨ 𝑥𝑗
ˇ

ˇ 𝑥𝑖 div 𝑥𝑗
ˇ

ˇ 𝑥𝑖 mod 𝑥𝑗

. . .

Figure 3: Non-linear sampling grammar (see Fig. 2 for the omis-
sions).

int x = y = 0;

int z = *;

while (*) {

x = x + z;

y = y + 1;

}

assert(x == y * z);

Figure 4: Program with non-linear computations.

elements of 𝑊 , possibly multiplied by numeric constants
and appeared in linear combinations.

Example 6. For program shown in Fig. 4, Bad “ p𝑥 “
𝑦 ¨ 𝑧q, thus 𝑊 “ t𝑦 ¨ 𝑧u. This lets our sampler generate
candidates such as ´1¨𝑥`𝑦 ¨𝑧 ě 0 and 𝑥`´1 ¨ 𝑦 ¨ 𝑧 ě 0
which would pass the invariance check by a theory solver
over non-linear arithmetic.

F. Further extensions

Extending frequencies with redundant clauses.
Before populating the set of clauses AV from Init , Tr ,
and Bad , these formulas could be enhanced by conjoining
with some redundant clauses. A straightforward approach
would consider pairs of conjuncts of Init (respectively, Tr ,
and Bad), infer a new clause and conjoin it back to Init .
For instance, if Init “ p𝑥 “ 0q ^ p𝑦 “ 0q then it implies
𝑥 “ 𝑦; and thus we can rewrite Init to be p𝑥 “ 0q ^ p𝑦 “
0q^ p𝑥 “ 𝑦q. After the frequency distributions are created
and used for sampling, the probability of getting formulas
´1 ¨ 𝑥 ` 𝑦 ě 0 and 𝑥 ` ´1 ¨ 𝑦 ě 0 increases. In practice,
there could be many possible ways of inferring redundant
clauses, and we leave the investigation of which way is the
best for the future work.
More aggressive pruning. Besides of aggressive pri-

ority distributions, other tricks could be applied to shrink
the search space. From a set of learned lemmas tineq1 _
. . ._ ineq𝑛, ineq1, . . . , ineq𝑛´1u, it follows that formula
 ineq𝑛 is not an inductive invariant. Thus, it could
be withdrawn by the algorithm and not considered for
sampling. Furthermore, the sets 𝐶 and 𝐾 might allow
equivalent formulas (e.g., 𝑥 ą 1 and 2¨𝑥 ą 2). The priority
distributions could be nudged to block those as well.
Compensating aggressive pruning. One could intro-

duce a “reincarnating” function, which turns distributions
at priorMap

x𝑥⃗,⃗𝑘y back to uniform
x𝑥⃗,⃗𝑘y once they become

undefined, or once each next lemma is learned.
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IV. Implementation and Evaluation

We implemented the proposed approach in a tool Freq-
Horn1. It takes as input a verification task in a form of
linear constrained Horn clauses. Despite we described the
algorithm in a setting of single-loop programs, FreqHorn
also supports multiple (possibly, nested) loops, but the risk
of divergence due to the search space pruning in this case
is higher.

A. Parallel architecture

FreqHorn is designed to benefit from asynchronous
parallelism. The master process takes care of the prepro-
cessing, sampling, learning, and prioritizing steps. It is
equipped with an incremental SMT solver, called safe-
Solver which holds the conjunction of all learned lemmas
till the end of the entire verification.

The most expensive computation at the FreqHorn
workflow happens to be the invariance checking. Each sam-
pled Cand requires a number of isolated SMT checks, per-
formed by worker processes. Thus each worker is equipped
with its own SMT solver, called invSolver, which exam-
ines if Cand is an inductive invariant. In particular, inv-
Solver gets reset before each tautology check, initiation
check, and consecution check. After all checks are done, a
worker communicates its positive or negative result back to
the master, and the worker becomes available for another
candidate.

When the verification starts, 𝑛 workers are available.
The master samples 𝑛 candidates in a row and sends
one sample per worker. Since each sample requires un-
predictable worker’s time, the communication between
the master and workers is asynchronous. After a learned
lemma is received, the master re-checks safety. If the safety
check failed (or an invariance failure is received), the
master creates / nudges the priority distributions, samples
a new candidate and sends it to the available worker. If
the safety check succeeded, the verification is done.

B. Evaluation

Benchmarks. We evaluated FreqHorn on a set of
76 loopy programs, taken from various sources including
SVCOMP2, literature (e.g., [2], [7]) and crafted programs.
The set contains 16 benchmarks over non-linear arithmetic
(i.e., with ¨, div, and mod operators).

Experimental setup. We used m4.xlarge instances on
Amazon Web Services, which have Intel Xeon E5-2676 v3
processors (“base clock rate of 2.4 GHz and can go as
high as 3.0 GHz with Intel Turbo Boost”) and 16GiB of
RAM. All solvers were instantiated with Z3 [8]. Due to the
stochastic nature of our learning, the FreqHorn timings
are the means of 10 independent runs. We used a timeout
of 10 mins for all runs.

1The source code and benchmarks are available at https://github.
com/grigoryfedyukovich/aeval/tree/rnd-parallel-master-slave.

2Software Verification Competition, http://sv-comp.sosy-lab.org/

10´2 10´1 100 101 102 103

10´2

10´1

100

101

102

103

Learning from frequency and priority distributions

L
e
a
rn

in
g
fr
o
m

fr
e
q
u
e
n
c
y
d
is
tr
ib
u
ti
o
n
s

Figure 5: Effect of the search space pruning / prioritizing.
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Figure 6: Comparison with 𝜇Z (red); ICE-DT (green); MCMC
(blue).

Comparing FreqHorn’s learning strategies. Fig. 5
shows a scatter plot comparing the average running times
of FreqHorn with /without prioritizing the search space.
Each point in the plot represents a pair of learning runs
for the same benchmark: Alg. 2 (x-axis) and Alg. 1 (y-
axis). Priority distributions accelerated the synthesis in 48
cases, and we witnessed a speedup up to 28%. As expected,
there were six benchmarks, for which priority distributions
helped finding an invariant (i.e., Alg. 1 diverged), but there
were two another benchmarks, for which the search space
was pruned too aggressively (i.e., Alg. 2 diverged).

Comparing with other tools. Fig. 6 shows a scatter
plot comparing the timings of Alg. 2 and 𝜇Z v.4.5.0 [4],
ICE-DT [7], and MCMC [9] invariant synthesizers. With
four workers, FreqHorn outperformed 𝜇Z for 37 bench-
marks (including 32 for which 𝜇Z crashed or reached
timeout), ICE-DT for 53 (respectively, 30), and MCMC
for 67 (respectively, 49).

Compared to 𝜇Z, FreqHorn solved all non-linear tasks
and the tasks requiring large disjunctive invariants. In-
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terestingly, FreqHorn was able to deliver a compact
conjunctive representation of them. Compared to its clos-
est competitor, MCMC (see Sect. V for more details),
FreqHorn exhibited more consistent performance. We
compared benchmarks for which both tools succeeded by
their coefficients of variation (i.e., the ratio of the standard
deviation to mean of the benchmark time): FreqHorn
gets 0.60, and MCMC gets 0.92. Finally, FreqHorn for
most benchmarks outperformed ICE-DT. This could be
possibly explained by the reliance of the latter on the
actual program executions, which are hard to get for non-
deterministic programs.

V. Related work

Our enumerative approach can be considered as data-
driven since it treats frequencies of various features
in the source code as data. Among other enumerative-
learning techniques, MCMC [9] employs Metropolis Hast-
ings MCMC sampler to produce candidates for the whole
invariant. Similarly to our approach, it obtains some
statistics from the code (namely, constants), but as can
be seen from Sect. IV-B, it is not enough to guarantee
consistent results. In [10], [11], [7], the data is obtained
by executing programs. Then, the learning of invariants
proceeds by analyzing the program traces and does not
take into account the source code.
There is a large body of inductive and non-enumerative

SMT-based techniques for invariant synthesis, and due to
lack of space we list only a few here. IC3 / PDR [12], [2],
[3], [4] and abductive inference [13] depend crucially on the
background theory of verification conditions which should
admit interpolation and / or quantifier elimination. Those
approaches were shown effective for propositional logic,
linear arithmetic, and arrays. Our tool, in contrast, can
discover non-linear invariants since it reduces the synthesis
task to only quantifier-free queries and does not require
interpolation.
Some prior work considered non-enumerative invariant

inference from the source code. In Formula Slicing [14],
a variant of Houdini [15], candidate invariants are cho-
sen from the Init formulas (not from Tr or Bad , as
in our case). In Niagara [16], [17] candidate invariants
are obtained from the previous versions of the program.
Despite those techniques proceed in the “guess-and-check”
manner, for each new guess they just weaken the formula
from the previous guess. In contrast, we permit much
wider search space.

Syntax-guided approaches to synthesis [6] in general
proceed by exploring the pre-determined (and adjusted
for a particular problem) grammar. Recently, the “Divide-
and-Conquer” [18] methodology, in which the problem is
being solved in small pieces, has been successfully applied
to SyGuS. Our approach has a similar underlying idea –
to learn each lemma individually and conjoin it to the
invariant – but the implementation via frequency and
priority distributions is entirely new.

VI. Conclusion

We addressed the challenge of inductive invariant syn-
thesis. Motivated by the observation that invariants can
often be learned from the “easy-to-get” ingredients, we
proposed to guide the learning process by frequency dis-
tributions, collected after a lightweight syntactic analysis
of the source code, and to further prune / prioritize the
search space. We built FreqHorn, the first tool that
constructs the grammars for candidate invariants and
distributions completely automatically, enables parallel
verification of well-known programs over linear arithmetic,
and to a limited extent supports non-linear arithmetic. In
the future, we plan to investigate how deeper statistics
about the code can help discovering more complicated
inductive invariants.

References

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV,
vol. 1855 of LNCS, pp. 154–169, Springer, 2000.

[2] A. R. Bradley, “Understanding IC3,” in SAT, vol. 7317 of LNCS,
pp. 1–14, Springer, 2012.

[3] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient im-
plementation of property directed reachability,” in FMCAD,
pp. 125–134, IEEE, 2011.

[4] K. Hoder and N. Bjørner, “Generalized property directed reach-
ability,” in SAT, vol. 7317, pp. 157–171, Springer, 2012.

[5] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A.
Saraswat, “Combinatorial sketching for finite programs,” in
ASPLOS, pp. 404–415, ACM, 2006.

[6] R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin,
M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in
FMCAD, pp. 1–17, IEEE, 2013.

[7] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning in-
variants using decision trees and implication counterexamples,”
in POPL, pp. 499–512, ACM, 2016.

[8] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in TACAS, vol. 4963 of LNCS, pp. 337–340, Springer, 2008.

[9] R. Sharma and A. Aiken, “From invariant checking to invariant
inference using randomized search,” in CAV, vol. 8559 of LNCS,
pp. 88–105, Springer, 2014.

[10] S. Gulwani and N. Jojic, “Program verification as probabilistic
inference,” in POPL, pp. 277–289, ACM, 2007.
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Abstract—Binary decision diagrams are fundamental data
structures in discrete mathematics, electrical engineering and
computer science. Many different variations of binary decision
diagrams exist, in particular variations that employ different
reduction rules. For some applications, such as on-the-fly state
space exploration, multiple reduction rules are beneficial to
minimize the size of the involved graphs. We propose tagged
binary decision diagrams, an edge-based approach that allows to
use two reduction rules simultaneously. Experimental evaluations
demonstrate that on-the-fly state space exploration is an order
of magnitude faster using tagged binary decision diagrams
compared to traditional binary decision diagrams.

I. INTRODUCTION

Binary decision diagrams are fundamental data structures
which emerged in the ’80s as a means to efficiently represent
Boolean functions. They now find applications in many
areas including logic synthesis, model checking, verification,
automated reasoning, reachability analysis, and combinatorics.
Section 7.1.4 in Knuth’s encyclopedia [17] and a recent survey
paper by Minato [24] provide an accessible history of the
research activities into binary decision diagrams.

Many variations of binary decision diagrams have been
proposed. They differ, e.g., in the type of leaves, decomposition
rules, and reduction rules. The existence of these variants
motivates dedicated application areas. Original binary decision
diagrams (BDDs) are, e.g., applied in model checking and
logic synthesis [9], [8], [21], multi-terminal binary decision
diagrams (MTBDDs) are, e.g., used to compute properties
of probabilistic models [2], [14], [3] and zero-suppressed
binary decision diagrams (ZBDDs) are exploited to compactly
represent subsets and sparse matrices [23].

For some applications, it could be beneficial to combine
characteristics of different binary decision diagram types. In
this paper, we consider on-the-fly state space exploration such
as conducted in [5], [16]. The efficiency of on-the-fly state
space exploration relies on a compact representation of the
involved Boolean functions, which initially include a large
number of Boolean variables set to 0 (suitably represented by
ZBDDs) but, over time, are extended by partial assignments
to variables which become redundant (suitably represented by
BDDs). Thus far, no solution combines the reduction rules from
both BDDs and ZBDDs at the same time. Existing methods
use either original BDDs or ZBDDs only and thus do not
exploit the full potential of these reduction rules.

In the literature, different decomposition rules have been
combined using a node-based approach, where nodes store
the information about the applied decomposition rule [13].
However, combining BDDs and ZBDDs using this method
would not be efficient, as it limits node sharing. Hence,
we propose tagged binary decision diagrams (TBDDs), an
edge-based approach that allows the simultaneous use of two
reduction rules. To distinguish which rule is used to remove
nodes, we introduce tags on every edge in the graph. We adapt
several algorithms to handle both reduction rules and this leads
to a more compact representation. We evaluate the proposed
TBDDs for on-the-fly state space exploration and observe that
they improve upon BDDs by an order of magnitude.

The rest of this paper is structured as follows. We cover
the preliminaries in Section II. Section III motivates the new
binary decision diagram type by reviewing on-the-fly symbolic
state space exploration – an application where reduction rules
from both BDDs and ZBDDs are beneficial. We describe the
concepts of TBDDs in Section IV. In Section V, we present
several algorithms that construct and manipulate TBDDs and
discuss how they are used in the considered application. The
benefits of TBDDs are illustrated and evaluated in Section VI.
Finally, we reflect upon the obtained results in Section VII.

II. PRELIMINARIES

This paper proposes a type of binary decision diagrams
that exploits characteristics of both traditional binary decision
diagrams and zero-suppressed binary decision diagrams. We
briefly review both types in the following.

A. Binary Decision Diagrams

A binary decision diagram [7] is a rooted directed acyclic
graph. There are only two distinct leaves labeled with 0 and 1.
Each internal node v is labeled with var(v) and has two
outgoing edges to successors denoted by low(v) (the low
successor) and high(v) (the high successor). The edge leading
to the root is called a top edge. A binary decision diagram is
called ordered if each variable is encountered at most once
on each path from the root to a leaf and the variables are
encountered in the same order on all such paths. The size of a
binary decision diagram is defined by the number of its nodes.

If binary decision diagrams are used to represent Boolean
functions, then labels in nodes are Boolean variables and the
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leaves 0 and 1 represent the Boolean constants. The Boolean
function represented by the graph with root v is recursively
determined using the decomposition rule which is based on
Shannon’s expansion theorem [27], i.e.,

f(v) = var(v) · f(low(v)) + var(v) · f(high(v)).

Consequently, Boolean functions f(low(v)) and f(high(v))
coincide with f(v)|var(v)=0 and f(v)|var(v)=1, respectively.

The efficiency of binary decision diagrams is achieved
by minimizing the structure. This is done by employing
several reduction rules. The primary rule is that a binary
decision diagram may not contain isomorphic subgraphs, i.e.,
equivalent nodes with the same var(v), low(v) and high(v).
Traditional BDDs obey an additional rule, which removes so-
called redundant nodes, i.e., nodes where low(v) = high(v) [7].
With ZBDDs, this rule is substituted by one where a node
v is called redundant iff high(v) = 0. In both approaches, a
decision diagram is reduced if it contains neither equivalent
nodes nor redundant nodes. Both reduced BDDs and reduced
ZBDDs are a canonical representation of Boolean functions
and combinatorial sets.

Example 1. Fig. 1 shows three binary decision diagrams
representing the Boolean function f(x1, x2, x3) = x1x2. We
use dashed lines for low edges and solid lines for high edges.
TBDDs are proposed in Section IV.

x1

x2

0 1

(a) BDD

x2

x3

0 1

(b) ZBDD

x2

0 1

x1

⊥ ⊥

(c) TBDD

Fig. 1: Different binary decision diagrams representing the
same Boolean function.

B. Complemented Edges

Modern binary decision diagram packages often use com-
plemented edges [6], [25] as an additional mechanism to
minimize the graph size. A complemented edge modifies the
interpretation of the subgraph to which it points. In this section,
we write ¬v to denote that edge pointing to v is complemented,
i.e., marked with a complement bit.

Complemented edges on BDDs are interpreted as follows.
A complemented edge to 0 is interpreted as 1 (or vice-versa),
and a complemented edge to an internal node is interpreted by
toggling the complement bit on both successors, i.e.,

f(¬v) := var(v) · f(¬ low(v)) + var(v) · f(¬high(v)).

It follows that f(¬v) (complemented edge) is equal to f(v)
(negation) for BDDs and therefore that computing the negation
of a formula is free with BDDs.

With ZBDDs, complemented edges cannot be used such
that they coincide with negation. Nevertheless, complemented
edges can be used to increase node sharing. Since forwarding
the complement bit to the high successor counteracts the
“zero-suppressing” property of ZBDDs, the complement bit
is only forwarded to the low successor:

f(¬v) := var(v) · f(¬ low(v)) + var(v) · f(high(v))

Complemented edges allow multiple representations of the
same function by toggling the complement bit on the incoming
edge and both successors (for BDDs), or on the incoming edge
and the low successor (for ZBDDs). A well-known method to
ensure a canonical representation is to forbid the complement
bit on the low successor, which works well for both BDDs
and ZBDDs [6], [23].

C. Generalizing Reduction Rules

The reduction rules of BDDs and ZBDDs target two patterns
of nodes that are removed. For BDDs these are nodes with
equivalent successors, whereas for ZBDDs these are nodes
whose high successors are 0. In general, given a graph in
which no variable is skipped, the reduction rule removes all
nodes that match a given pattern. Given the successors of a node
v as a pair (low(v),high(v)), we can identify the following
simple reduction patterns involving only one node:

(1) (2) (3) (4) (5)
(k, k)⇒k (k, 0)⇒k (k, 1)⇒k (0, k)⇒k (1, k)⇒k

Pattern 1 is the rule for BDDs, while pattern 2 is the rule for
ZBDDs. If we also allow patterns involving negation, we get
12 patterns [22]. This can be generalized further for patterns
that involve multiple nodes, such as representations of x = x′.
However, this is beyond the scope of this paper.

III. MOTIVATION

BDDs and ZBDDs offer compact representations for Boolean
functions. As they use different reduction rules, their size
significantly depends on the kind of Boolean functions they
represent. BDDs are particularly suited for functions where
adjacent input assignments have the same outcome, whereas
ZBDDs are more compact for functions that often evaluate to 1
when many variables are set to 0. This motivates dedicated
application areas for either type. BDDs are heavily applied,
e.g., in symbolic model checking, while ZBDDs find particular
application, e.g., to represent sparse matrices and subsets.

However, applications exist where characteristics from BDDs
and ZBDDs could both be beneficial. This section reviews
such an application. Afterwards, we illustrate how using char-
acteristics from both types could advance the state-of-the-art.
This provides the main motivation for the novel binary decision
diagram type proposed in Section IV which combines reduction
rules of BDDs and ZBDDs.
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A. On-the-fly State Space Exploration

Binary decision diagrams are an important data structure in
symbolic model checking, which creates models of complex
systems to verify that they function according to certain
properties or a given specification. Systems are modeled as a
set of states S and a transition relation T ⊆ S×S. We encode
these sets using their characteristic functions S and T (such
that S = { s | S(s) } and T = { (s, s′) | T(s, s′) }), which
we represent by binary decision diagrams. Since algorithms
on binary decision diagrams effectively operate on sets of
states rather than individual states, they have successfully been
applied to verify systems with a large number of states [9],
[8], [28] (infeasible for explicit-state model checking).

A central role in model checking algorithms, such as
verifying properties expressed in the modal µ-calculus [18],
[4], LTL [10] or CTL [8], [19] is state space exploration. Here,
all reachable states in (a part of) the state space are determined
starting from a given set of initial states. This is typically
conducted by computing the successor states according to the
transition relation until a fixed point has been reached.

The model checking toolset LTSMIN [5], [16], [20] offers
a framework where transition relations are updated on-the-fly
as the model is explored. Initially, LTSMIN does not have
knowledge of the transitions in the system. The transition
system is explored by learning new transitions via a language-
independent interface called PINS,which connects various input
languages to model checking algorithms [16]. In PINS, the
states of a system are represented by vectors of integers.

B. Utilizing Characteristics from BDDs and ZBDDs

One of the challenges in on-the-fly state space exploration is
that the number of bits required to encode the state space is not
known in advance. As LTSMIN uses integers as the fundamental
data type, these integers are encoded with, e.g., 16 or 32 bits
per integer. However, state variables often hold only few values
in the reachable state space, so most bits are always set to 0.
Hence, ZBDDs can more effectively represent the state space,
as nodes for variables set to 0 are then eliminated [15]. On the
other hand, the set of reachable states often includes adjacent
states, where some variable x can be either True or False. Such
sets are effectively represented with traditional BDDs. Hence,
both the reduction rules of ZBDDs and traditional BDDs would
significantly reduce the size of the binary decision diagrams.

Example 2. In Fig. 2 we consider one integer variable of a
possibly much larger system, encoded using 8 bits. In this
example, we have discovered that the variable may hold
values {0, 2, 4, 6}. Using ZBDDs would allow for a compact
representation for variables x0, x1, x2, x3, x4, x7 (since these
variables would have their high edge to 0). In contrast, using
BDDs would allow for a compact representation for variables
x5, x6 (since these variables would have identical successors).
Hence, both the reduction rules of ZBDDs and ordinary BDDs
would significantly reduce the size of the representation.

x0 x1 x2 x3 x4 x5 x6 x7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

1

1

0

1

0

1

A B C
Fig. 2: The BDD representing the four states would have nodes
with the high edge to 0 for the variables in regions “A” and
“C” and with identical successors in region “B”.

IV. TAGGED BINARY DECISION DIAGRAMS

This section introduces a novel binary decision diagram
type which addresses the drawback discussed in the previous
section. The general idea is that nodes are removed according
to two different reduction rules. To distinguish which rule
has been applied between two adjacent nodes in the graph, a
variable label is used as a tag on every edge (note that edge
tags have also been used for other purposes, e.g., in [25]).
Missing variables before the tag are removed according to the
first rule, while variables missing starting from the tag are
removed according to the second rule. Both reduction rules are
maximally applied. Overall, this combines the benefits from
both decision diagram types and thus leads to a more compact
representation. In the following, the concepts are described
first. Afterwards, the prototype implementation is described in
Section V, while their efficiency is experimentally evaluated
in Section VI.

A. Definition

A tagged binary decision diagram (TBDD) is a rooted
directed acyclic graph. There are two leaves that are labeled
with 0 and 1. Each internal node v is labeled with var(v)
and has two outgoing edges to successors denoted by low(v)
(the low successor) and high(v) (the high successor). Like
ordinary binary decision diagrams, variables are encountered
along each directed path according to a fixed variable ordering
and equivalent nodes are forbidden. In addition, edges are
labeled with a tag, which can be a variable label or ⊥. Edges
to internal nodes are always labeled with a variable label, while
edges to leaves may also be labeled with ⊥. The variable used
as a variable label must always be after the variable of the
source node and before or equal to the variable of the target
node, if the target node is not a leaf.

TBDDs admit two reduction rules that forbid certain nodes.
Examples of these rules are given in Section II-C. In the
remainder of this paper, we use the reduction rule of BDDs as
the first rule and the reduction rule of ZBDDs as the second
rule. Both rules are maximally applied. The tag determines
how missing nodes are treated. Informally, the tag xtag means
that all skipped variables before xtag were removed due to the
first rule and that all skipped variables starting from xtag were
removed due to the second rule. The tag ⊥ on an edge to a
leaf means that all remaining variables were removed due to
the first reduction rule.
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Example 3. Fig. 3a shows a fragment of a TBDD with
the variable ordering xi < xj ≤ xk. Nodes with variable
xm such that xi < xm < xj were removed by the first
reduction rule, while nodes with variable xn such that
xj ≤ xn < xk were removed by the second reduction rule.
Fig. 3b shows a concrete TBDD where the first reduction
rule is those of BDDs and the second reduction rule is
those of ZBDDs. For the variables {x0, . . . , x8}, this TBDD
represents x1x2x3x4x6x7x8 ∨ x1x2x3x5x6 ∨ x1x2x3x5x6x8.
This expression is obtained by looking at each path from the
root to leaf 1 and assigning False to all variables that are
skipped and equal to or greater than the tag.

xi

xk

...

... xj

... ...

(a)

x3

x4 x6

0 1

x1

x4 x5

x6⊥ x8
⊥

(b)

Fig. 3: Examples of tagged binary decision diagrams.

To interpret a BDD as a Boolean function, the variable
domain is not explicitly needed, while for ZBDDs and for
TBDDs the represented Boolean function depends on the
variable domain. In the following, for a given edge and variable
domain Dom the notations Dom1 and Dom2 are used, where
Dom1 denotes the variables in Dom before the tag and Dom2

denotes the variables in Dom starting from the tag and before
the variable of the target node if it is not a leaf. If the tag is ⊥,
then Dom1 = Dom and Dom2 = ∅. For the two reduction rules,
we can deduce interpretation functions Interp1 and Interp2.
These functions map a set of variables and a Boolean formula
to the Boolean formula of the interpretation. An edge to a node
or leaf v is interpreted as Interp1(Dom1, Interp2(Dom2, f(v))).

The interpretation function of the reduction rule of BDDs
is simply Interp(Dom, f) := f , while the interpretation
function of the reduction rule of ZBDDs is Interp(Dom, f) :=∧
x∈Dom x ∧ f . An edge to a node or leaf v in a TBDD using

these two rules is interpreted as
∧
x∈Dom2

x∧f(v). Furthermore,
edges to the leaf 0 can only have tag ⊥. Finally, we introduce
complemented edges similarly as for ZBDDs. This means that
we cannot use complemented edges to compute negation, but
at least we can sometimes reuse nodes.

B. Reduction Rules During Construction

The two reduction rules are maximally applied. However, a
special case occurs when nodes that are eliminated by the two
rules alternate. In this case, either every last node matching
the second rule or every first node matching the first rule must
be kept. In the following, we maximally apply the second rule

(rule of ZBDDs) and thus some nodes of the first rule (rule of
BDDs) are kept to denote these alternating sequences.

Example 4. The binary decision diagram in Fig. 4 has two
nodes that have the high edge to 0 and a node with identical
successors. Applying the reduction rules removes all nodes with
the high edge to 0. The remaining node cannot be eliminated,
because it would no longer be possible to distinguish which
rule was used to eliminate which node.

x1

x2

x3

01

⇒
x2

1

x1

x3x3

Fig. 4: A TBDD where not all nodes can be eliminated.

Binary decision diagrams are reduced from bottom to top
during their construction. Whenever a node is constructed that
matches one of the reduction rules, the rule is applied, in the
case of the rule of BDDs by simply returning the original
low (or high) successor, and in case of the rule of ZBDDs by
returning the low successor with an updated tag. However, if
we deduce that the low successor already has skipped variables
according to the rule of BDDs, then we keep an extra node.

Fig. 5 illustrates the respective reduction rules for TBDDs.
The bottom-up reduction is started with a graph in which no
variable is skipped. All edges are initially labeled with the
same variable as the node that they point to, or ⊥ if they point
to a leaf node. Rules 1 and 2a are applied in the most cases.
For the special case where nodes that match both reduction
rules alternate, rule 2b ensures that an extra node is created.
As we maximally apply the rule of ZBDDs, rule 2b creates a
node that matches the rule of BDDs; if we would maximally
apply the rule of BDDs, then rule 2b would be modified to
accomplish this.

C. Canonical Representation

TBDDs are, like BDDs and ZBDDs, a canonical repre-
sentation of Boolean functions, under the condition that the
reduction rules are maximally applied. In general, this removes
all nodes of the two chosen patterns, except exactly those
nodes that are required when rule applications alternate (as
discussed above). In the considered case (combining BDDs and
ZBDDs), the canonicity can be simply derived by observing
the bijection between BDDs, ZBDDs, and TBDDs, i.e., every
reduced TBDD matches with a unique reduced BDD (ZBDD)
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Rule 1 Rule 2a Rule 2b

xi

F

T T
⇒

F

T xi

F
0

⊥next(xi) ⇒
F

xi xi

F
0

⊥T 6= next(xi) ⇒
next(xi)

F

T T

xi

Fig. 5: The reduction rules of a TBDD for bottom-up reduction. Here T stands for any tag and F for any reduced TBDD;
next(x) is the next variable in the variable domain, or ⊥ if x is the last variable.

with a deterministic conversion procedure, and vice versa. The
conversion procedure can be defined as a two step procedure
such that the first step is a creation of a graph in which no
variable is skipped. Therefore, since BDDs (and ZBDDs) are
a canonical representation, so are TBDDs.

V. IMPLEMENTATION

Algorithms on TBDDs are not trivial, since they have to
deal with various special cases introduced by the two reduction
rules. This section first describes the representation of nodes
and edges of TBDDs followed by the algorithm FoaNode
that constructs TBDDs for a given function by finding or
adding nodes. Afterwards, the algorithms ite and exists are
described which provide basic operations on TBDDs. Finally,
we briefly discuss a more specialized algorithm that is used
for the on-the-fly state space exploration.

A. Representation of Nodes and Edges

We implemented TBDDs in the parallel decision diagram
package Sylvan [11], [12]. As Sylvan allocates 16 bytes per
node (for performance), we design the internal structure of a
TBDD node to fit these constraints. In binary decision diagram
implementations, nodes are stored in a unique table. This
ensures that no equivalent nodes are created. We use 32 bits to
store the index of a node in the unique table. This is sufficient
to store up to 232 nodes, i.e., 96 gigabytes of nodes, excluding
overhead costs. For the variable labels and the tags on the edges,
we allocate 20 bits. This allows up to 1,048,576 variables; we
reserve the highest value to encode ⊥.

In our implementation, we use a 64-bit integer to encode a
tagged edge to a TBDD node. The lowest 32 bits represent
the location of the node in the table, and the highest bit stores
the complement bit [6]. The TBDD 0 is reserved for the leaf
0 (False), with the complemented edge to 0 for True. The 31
remaining bits provide space to store the 20-bit tag. A TBDD
node in memory stores the variable label (20 bits), the low edge
index (32 bits), the high edge index (32 bits), the low edge
tag (20 bits), the high edge tag (20 bits) and the complement
bit of the high edge (1 bit, the first bit below) as follows:

h tag high idx var l tag low idx

B. Constructing TBDD Nodes

The core function to obtain nodes is FoaNode (find or add
a node), which applies the reduction rules presented in Fig. 5
and creates a new node if necessary. This function is given the
variable xi and tagged edges L (low) and H (high), as well
as the next variable x′i (which can be ⊥) which is necessary
to apply the reduction rules of Fig. 5. The function’s result is
a tagged edge to a TBDD node. The FoaNode algorithm is
shown as Alg. 1. It first applies Rule 1 (line 2). If there is a
complement on the low edge, we apply the rule that forbids
complemented edges on the low edge (line 3). We then apply
Rules 2a and 2b (lines 4–6) by comparing the tag on the low
edge to the next domain variable. If they are the same, Rule 2a
is applied by returning an edge to the given node with the
tag according to Rule 2a (line 5). Otherwise, an extra node is
created (line 6) and returned with the appropriate tag (line 8).
If no reduction rule can be applied, a TBDD node is created
via the unique table (line 7) and returned with the appropriate
tag (line 8). Note that find-or-insert is provided by the
unique table and it does not create a new TBDD node if the
requested node already exists.

1 def FoaNode(xi, L, H , x′i):
2 if L = H : return L
3 if comp(L) : return ¬FoaNode(xi, ¬L, H , x′i)
4 if H = 0 :
5 if tag(L) = x′i : return settag(L, xi)
6 else: node ← find-or-insert({x′i, L, L})
7 else: node ← find-or-insert({xi, L,H})
8 return settag(node, xi)

Algorithm 1: The FoaNode method that constructs a TBDD
node and applies the reduction rules.

C. Basic Operations

This section describes several basic TBDD operations. All
operations use an operation cache to store subresults, like
virtually all binary decision diagram operations. We assume
that the reader is familiar with this technique and omit it here.
We also assume that the involved TBDDs are interpreted in
the same variable domain as the result. This variable domain
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1 def cofactors(F , xi, x′i):
2 if F = 0 : return 0, 0
3 elif xi < tag(F ) : return F, F
4 elif F = 1 : return F, 0
5 elif xi < var(F ) :
6 F0 ← low(F )
7 if F0 /∈{0,1} ∧ var(F0)=x

′
i ∧ low(F0)=high(F0) :

8 F0 ← low(F0)
9 return F0, 0

10 else: return low(F ), high(F )

Algorithm 2: Fragment used by TBDD algorithms to compute
the cofactors F0 and F1, given a domain variable xi ≤ var(F )
and the next domain variable x′i (or ⊥ if xi is the last).

1 def ite(F , G, H):
2 if F = 1 : return G
3 if F = 0 : return H
4 if G = H : return G
5 t ← min(tag(F), tag(G), tag(H))
6 if tag(F) = tag(G) = tag(H) :
7 v ← min(var(F), var(G), var(H))
8 else: v ← t
9 F0, F1 ← cofactors (F , v, next(v))

10 G0, G1 ← cofactors (G, v, next(v))
11 H0, H1 ← cofactors (H , v, next(v))
12 r ← FoaNode(v, ite(F0, G0, H0), ite(F1, G1,

H1), next(v))
13 if t 6= v : r ← FoaNode(t, r, 0, v)
14 return r

Algorithm 3: The implementation of the algorithm ite.

is given as an additional parameter in the operations, but we
omit it here in the interest of clarity and brevity.

Many binary decision diagram operations first find a pivot
variable, typically the topmost variable of the root nodes of
the parameters, then recursively compute the subresults of the
operation on the cofactors of the parameters obtained by setting
the pivot variable to False or True, and finally compute the
result by creating a node with FoaNode.

Computing the cofactors is straightforward and summarized
in Alg. 2. Note that this is not a “generic cofactor” operation;
just a helper method for the recursion step. This method returns
F |xi=0 and F |xi=1 for a given TBDD F with top variable
xi and also compensates for the application of Rule 2b. We
use low and high to obtain the low and high successor of
F , where low also applies any complement on F to the low
edge. After checking whether F is an edge to 0 (line 2), we
check whether Rule 1 was applied (line 3). If not, we check if
Rule 2 was applied to leaf 1 (line 4). If not, then we check if
Rule 2 was applied to the node (line 5) and if so, we check if
the node is a redundant node inserted by Rule 2b (line 7) and
return the appropriate result (lines 6–9). Finally, at line 10 it
is established that no reduction rule was used and we return
the successors of the TBDD.

1 def exists(F , ~x):
2 if F = 0 ∨ (F = 1 ∧ tag(F ) = ⊥) : return F
3 if ~x = ∅ : return F
4 while var(~x) < tag(F ) :
5 ~x ← ~x \ {var(~x)}
6 if ~x = ∅ : return F
7 v ← min(var(F), var(~x))
8 F0, F1 ← cofactors (F , v, next(v))
9 ~x′ ← ~x \ {v}

10 if v < var(F ) : res ← exists(F0, ~x′)
11 elif v = var(~x) : res ← or(exists(F0, ~x′),

exists(F1, ~x′))
12 else: res ← FoaNode(v, exists(F0, ~x′),

exists(F1, ~x′), next(v))
13 if tag(F ) < v : res ← FoaNode(tag(F ), res, 0, v)
14 return res

Algorithm 4: The implementation of the algorithm exists.

See Alg. 3 for the implementation of the well-known
if-then-else operation. Given three TBDDs representing
f , g and h, this algorithm computes “if f then g else h”. We
use tag and var to obtain the tag of an edge and the variable
of the root node. The algorithm first tries to apply the trivial
cases (lines 2–4). We compute the topmost tag (line 5) and then
we determine the pivot variable v. Variables that are in Dom1

of all three parameters are in Dom1 of the result. Variables that
are in Dom2 of all three parameters are in Dom2 of the result.
We perform recursion on the first variable that is not in Dom1

of all parameters or in Dom2 of all parameters. This variable
is equal to the lowest variable if all tags are the same, or the
lowest tag if this is not the case. The cofactors are computed
at lines 9–11 and the recursion is performed at line 12, where
also the result is computed. If there are variables in Dom2 of
the result (which is true if t 6= v) then we use FoaNode in
a special way to compute the result. This ensures the correct
application of Rule 2b when the result has variables in Dom1.

We also implement existential quantification as in Alg. 4.
This operation existentially quantifies all given variables ~x
from the input TBDD F . We check for the trivial cases at
lines 2–3. We then skip all variables in ~x that are in Dom1 of F
(lines 4–6). Variables that are in Dom2 and before var(~x) will
be in Dom2 of the result. As the pivot variable we select the
first variable of F and ~x (line 7). We obtain the cofactors and
if the chosen pivot variable is in ~x we remove it in ~x′ that we
use for the recursion (lines 8–9). Now there are three cases. If
the pivot variable is in Dom2, then we just compute the result
based recursively on F0, as F1 is 0 (line 10). Otherwise, the
pivot variable is the variable of the TBDD node. Now either it
is also in ~x and we perform recursion as usual and compute
the disjunction of the two results, which is how existential
quantification is computed (line 11), or it is not in ~x and we
perform recursion as usual and compute the node of the result
(line 12). Finally, we update Dom2 of the result as discussed
above (line 13) and return the result (line 14).
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As is clear from the above discussions, we must consider
for all variables whether they are in Dom1 or Dom2 of the
parameters. This makes these algorithms more complex, but
overall improves the efficiency by exploiting the reductions.

D. Computing Successors
Besides “typical” decision diagram operations, we addi-

tionally implemented an operation dedicated for the LTSMIN
application motivated in Section III, namely relnext which
applies a transition relation to a set in order to compute the
successors (combined with variable renaming). An additional
challenge is that LTSMIN partitions the transitions into different
transition groups. This has the advantage that each transition
group only affects a part of the state vector. As a consequence,
the relnext operation cannot assume that both parameters
are defined on the same variable domain; rather, it handles
various special cases introduced by the difference in the variable
domains. In the interest of space, we cannot treat relnext
here but refer the interested reader to the publicly available
source code (see next section).

VI. EXPERIMENTAL EVALUATION

This section evaluates the ideas proposed in this paper.
The evaluation is performed based on the BEEM database
of models [26]. In Sec. VI-A, we study the impact of different
reduction rules on the size of the graphs at each iteration in state
space exploration. In Sec. VI-B, we evaluate the performance of
state space exploration using either BDDs or TBDDs. We use
LTSMIN to perform on-the-fly state space exploration, using
the FORCE algorithm for selecting a variable reordering [1]
and using the standard breadth-first-search strategy to explore
the state space. All experimental data and the scripts required to
reproduce them are available online via http://fmv.jku.at/tbdd.

A. Impact of Reduction Rules
We modify LTSMIN to write the BDDs of the explored

states and of all transition relations to disk at every iteration of
the on-the-fly state space exploration. We compute the number
of nodes required for the explored states and the number of
nodes required for all transition relations, when removing no
redundant nodes, when removing nodes according to the five
rules from Sec. II-C (without using complemented edges) and
when using the proposed TBDD type.

Since computing these sizes costs a lot of time, we only
perform this analysis on a subset of the full benchmark set. Our
hypothesis in Sec. III was that, as the state space exploration
progresses, the contribution from the (k, k) ⇒ k rule would
increase. We found that this is not the case for the models
that we checked. See the top row of Fig. 6 for a representative
model (at.1). The top lines in the graphs represent rules 3
and 5 and the case where no rule is applied. They appear to
have no significant effect. The bottom lines represent rule 2
(ZBDD, dots) and the TBDD representation (long dashes).
These rules have the most significant effect. The middle lines
represent rule 1 (BDD, dashes) and rule 4 (dots and dashes)
Rules 1 and 4 have a greater impact for the transition relation
than for the set of explored states.

B. On-the-fly State Space Exploration

We look at the performance of on-the-fly state space
exploration on the BEEM benchmark database, using either
standard BDDs (16 bits per state variable) or TBDDs. We
set the timeout for the experiments to 1200 seconds, i.e., 20
minutes. The experiments are run on a 48-core AMD Opteron
machine. We set the number of cores to either 1 or 48, so we
can also measure the effect of the parallelism of Sylvan.

For 219 models, no experiment timed out. For these models,
the results are summarized by the following table, where the
time is the sum of all models, and the number of nodes is the
size of the BDD that represents the set of visited states.

BDD TBDD

Time 1 core 24504 sec. 6453 sec.
Time 48 cores 14672 sec. 1075 sec.
#Nodes in the visited set 59,503,837 5,922,973

See further Fig. 6 for a comparison of the time and the
number of nodes for the models, using just 1 worker. We
see that TBDDs are approximately an order of magnitude
faster and smaller. Finally, the highest parallel speedup we
obtain when using TBDDs was 32.4× (with 48 cores) for the
model rushhour.3.

VII. CONCLUSIONS

BDDs and ZBDDs offer compact representations of Boolean
functions which is crucial for many applications. Due to the
different reduction rules, their effectiveness strongly depends
on the type of functions. The proposed TBDDs simultaneously
apply reduction rules of both types which in general results in
smaller graphs for a broader set of applications.

We studied the benefits of TBDDs for on-the-fly state space
exploration using the BEEM database of models. We obtained a
significant improvement compared to ordinary BDDs, although
our analysis showed that the contribution of the reduction
rule of BDDs was less than expected. Our implementation of
TBDDs also resulted in a similarly high parallel scalability as
has been obtained for BDDs in the past.

We expect that improvements and tuning of the TBDD
operations may result in a better performance, especially
considering that these operations are complex and therefore
give various opportunities to be optimized. Furthermore, we
believe that looking at other benchmark models and application
areas would be insightful. Tagged binary decision diagrams
can also be applied using other reduction rules, like those
mentioned in this paper, or rules involving multiple nodes, or
simply by exchanging the order of the rules that we applied here.
Furthermore, implementation of other operations like dynamic
variable reordering may be challenging, as the interaction
between the reduction rules of TBDDs and the popular sifting
algorithm is probably complex. These are several ideas that
may inspire future research on TBDDs.
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Fig. 6: Results of experimental evaluation. The first row shows the evolution of graph sizes of the set of explored states (left)
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[26] Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN.
pp. 263–267. Springer-Verlag, Berlin, Heidelberg (2007)

[27] Shannon, C.E.: A Symbolic Analysis of Relay and Switching Circuits.
Transactions of the American Institute of Electrical Engineers 57(12),
713–723 (12 1938)

[28] Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. Zero-
Suppressed BDDs: for CTL Symbolic Model Checking of Petri Nets. In:
FMCAD. pp. 435–449 (1996)

115

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



First Order Temporal Logic Monitoring with BDDs
Klaus Havelund

Jet Propulsion Laboratory,
California Inst. of Technology, USA

Doron Peled
Department of Computer Science

Bar Ilan University, Israel

Dogan Ulus
Verimag/Université Grenoble-Alpes

Grenoble, France

Abstract—Runtime verification is aimed at analyzing execu-
tion traces stemming from a running program or system. The
traditional purpose is to detect the lack of conformance with
respect to a formal specification. Numerous efforts in the field
have focused on monitoring so-called parametric specifications,
where events carry data, and formulas can refer to such. Since
a monitor for such specifications has to store observed data, the
challenge is to have an efficient representation and manipulation
of Boolean operators, quantification, and lookup of data. The
fundamental problem is that the actual values of the data are
not necessarily bounded or provided in advance. In this work
we explore the use of Binary Decision Diagrams (BDDs) for
representing observed data. Our experiments show a substantial
improvement in performance compared to related work.

I. INTRODUCTION

Runtime verification (RV) allows checking whether a tem-
poral property holds during the execution of a system. The
system execution can be considered as emitting an execu-
tion trace, a sequence of events, which is then consumed
and checked by a monitor. A monitor performs for each
received event some incremental computation that is aimed
at detecting and warning as soon as the temporal property is
violated. The field of model checking has mostly focused on
propositional logics [18]. Very early RV systems, were also
based on specifications given in some form of propositional
temporal logic. A propositional temporal logic formula can
for example be translated into a finite automaton, where the
incremental computation updates the automaton state based
on the recent input reporting information captured from the
monitored system. However, the state of the art in RV has
for some time focused on monitoring so-called parametric
specifications, where events carry data, and formulas can refer
to such. Since such a monitor has to store observed data,
the challenge is efficient representation; manipulation such as
negation, conjunction, disjunction, quantification, and lookup.
The field has not settled on a single best solution. As is usually
the case, there are compromises to be made with respect to
the efficiency of algorithms and expressiveness of logics.

Temporal logics usually come in two variants: future and
past (or mixtures). As future temporal properties depend on an
infinite input, one may only provide partial information about
whether the property holds; namely, if it is already violated,
already achieved, or undecided yet [18]. The focus of this

The research performed by the first author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The research performed by
the second author was partially funded by Israeli Science Foundation grant
2239/15: “Runtime Measuring and Checking of Cyber Physical Systems”.

work is past temporal properties, which are also classified as
the safety temporal properties [2], [19], and are properties
for which we are capable of detecting a violation based on
the monitored current prefix of the execution, as soon as it
occurs [18]. As an example, consider a predicate open( f ),
indicating that a file f is being opened, and a predicate
close( f ) indicating that f is being closed. We can formulate
that a file cannot be closed unless it was opened before with
the following first order past time temporal logic formula:

∀ f (close( f )−→ Popen( f ))

Here P is the “sometimes in the past” temporal operator. This
property must be checked for every monitored event. Already
in this very simple example we see that we need to store all the
names of files that were previously opened so we can compare
to the files that are being closed. A more refined specification
would be the following, requiring that a file can be closed only
if it was opened before, and has not been closed since. Here,
we use the temporal operators 	 (“at previous step”) and S
(“since”):

∀ f (close( f )−→	(¬close( f )S open( f )))

One problem we need to solve is the unboundedness caused
by negation. For example, assume that we have only observed
so far one close event close(“ab”). The subformula close( f )
is therefore satisfied for the value f = “ab”. The subformula
¬close( f ) is satisfied by all values from the domain of f
except for “ab”. This set contains those values that we have
not seen yet in the input within a close event. We need a
representation of finite and infinite sets of values, upon which
applying complementation is efficient.

We present a first order past time temporal logic, named
QTL (Quantified Temporal Logic), and an implementation,
named DEJAVU based on a BDD (Binary Decision Diagram)
representation of sets of assignments of values to the free
variables of subformulas. Instead of storing the values assigned
to variables, we enumerate input values as soon as we see them
and use Boolean encodings of this enumeration. We use BDDs
to represent sets of such enumerations. For example, if the
runtime verifier sees the input events open(“a”), open(“b”),
open(“c”), it will encode them as 000, 001 and 010 (say, we
use 3 bits b0, b1 and b2 to represent each enumeration, with b0
being the most significant bit). A BDD that represents the set
of values {“a”,“c”} would be equivalent to a Boolean function
(¬b0 ∧¬b2) that returns 1 for 000 and 010 (the value of b1
can be arbitrary). This approach has the following benefits:
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• It is highly compact. With k bits we can represent 2k val-
ues. The BDD can grow up to a maximal number of 2k+1
nodes; but BDDs usually compact the representation very
well [9]. In fact, we are expected to pay very little for
keeping surplus bits, as the BDD will compact away most
of their effect. Thus, we can start with an overestimated
number of bits k such that it is unlikely to see more than
2k different values for the domain they represent. We can
also incrementally extend the BDD with additional bits.

• Complementation (negation) is efficient, by just switching
the 0 and 1 leaves of the BDD. Moreover, even though at
any point we may have not seen the entire set of values
that will show up during the execution, we can safely (and
efficiently) perform complementation: values that have
not appeared yet in the execution are being accounted
for and their enumerations are reserved already in the
BDD before these values appear.

• Our representation of sets of assignments as BDDs al-
lows a very simple algorithm that naturally extends the
dynamic programming monitoring algorithm for proposi-
tional past time temporal logic shown in [14].

We first define the semantics of a predicate linear temporal
logic property for an assignment of values to its free variables
after a given execution prefix. Then we redefine it as a
function that returns the set of assignments satisfying the
property at that prefix. There, we use the union and intersection
set operators. For the final algorithm, we replace union and
intersection by BDD disjunction and conjunction operators,
respectively. We only have to keep values to represent the
current and previous state in the execution. The remaining
part of the paper is organized as follows. Section II discusses
related work. Section III presents the syntax and semantics
of the QTL temporal logic. Section IV presents the BDD-
based algorithm for monitoring a trace against a QTL for-
mula. Section V outlines the implementation, and Section VI
presents an evaluation of the implementation. Finally, Section
VII concludes the paper.

II. RELATED WORK

There are several systems that allow monitoring temporal
properties with data. The system closest to our presentation,
in monitoring first order temporal logic is the MONPOLY sys-
tem [7]. As in the current work, it monitors first order temporal
properties. In fact, it is also has the additional capabilities
of asserting and checking properties that involve arithmetic
relations among the data elements, progress of time, and a
limited capability of reasoning about the future. The main
difference between our system and MONPOLY is in the way
in which data are represented and manipulated. MONPOLY
exists in two versions. The first one models unbounded sets
of values using regular expressions (see, e.g., [16] for a
simple representation of sets of values). This version allows
unrestricted complementation of sets of data values. Another
version of MONPOLY is based on representing finite sets of as-
signments. This is based on using algebraic database operators.
For example, intersecting between two sets of assignments that

are possibly over non identical sets of variables is done using
the join operator. In that implementation complementation
is restricted, to account for finite sets. Our system is based
on representing sets of enumerations of data values as BDD
functions, and does not restrict negation.

An important volume of work on data centric runtime
verification is the set of systems based on trace slicing. These
include TRACEMATCHES [1], MOP [20], and QEA [21]. Trace
slicing is based on the idea of mapping variable bindings to
propositional automata relevant for those particular bindings.
This results in very efficient monitoring algorithms, although
with limitations w.r.t. expressiveness. QEA is an attempt to
increase the expressiveness of the trace slicing approach. It is
based on automata, as is the ORHCIDS system [11].

Other systems include BEEPBEEP [12] and TRACECON-
TRACT [5], which are based on future time temporal logic
using formula rewriting. Very different kinds of specifica-
tion formalisms can be found in systems such as EAGLE
[4], RULER [6], LOGFIRE [13] and LOLA [3]. The sys-
tem MMT [10] represents assignments as constraints solved
with an SMT solver. An encoding of BDD functions over
enumerations of values appears in [22] in the context of
datalog programs. However, that work does not deal with
unbounded domains.

III. SYNTAX AND SEMANTICS

We define here the syntax and semantics for the QTL logic.
Assume a finite set of domains D1,D2, . . .. Assume further
for now that the domains are infinite, e.g., they can be the
integers or strings. (In Section IV it is explained how to deal
with finite domains.) Let V be a finite set of variables, with
typical instances x, y, z. In an assignment, each variable x can
be assigned a value from its associated domain domain(x),
where multiple variables (or all of them) can be related to the
same domain. For example [x→ 5,y→ “abc”] is an assignment
of the values 5 and “abc” to the variables x and y, respectively.
Let T a set of predicate names with typical instances p, q,
r. Each predicate name p is associated with some domain
domain(p). (Notice that domain is used both with a predicate
name and with a variable.) A predicate is constructed from a
predicate name and a variable or a constant of the same type.
Thus, if the predicate name p and the variable x are associated
with the domain of strings, we have predicates like p(“gaga”),
p(“baba”) and p(x). Similarly, if q and y are associated with
the domain of integers, then we can have the predicates q(3)
and q(y). We refer to predicates over constants as ground
predicates. A state is a finite set of ground predicates, where
each predicate name may appear at most once. An execution
σ= s1s2 . . . (observed at any time) is a finite sequence of states.
For example, if T = {p,q,r}, then {p(“xyzzy”),q(3)} is a
possible state. Although during monitoring we always at any
point in time only have observed a finite trace so far, the trace
can grow unbounded, as the system being monitored keeps
executing. In a monitoring context such as this, however, we
will never observe an infinite trace.
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Syntax. The formulas of the core QTL logic are defined by
the following grammar, where a is a constant in domain(p).
(For simplicity of the presentation, we define here the logic
with unary predicates, but this is not due to any principle
limitation, and, in fact, our implementation supports predicates
with multiple arguments, including zero arguments, which
correspond to propositions.)

ϕ ::= true | false | p(a) | p(x) | (ϕ∨ϕ) | (ϕ∧ϕ) |
¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ | ∀x ϕ

At a given state the formula p(“a”) means that p(“a”)
happened, more formally, that p(“a”) is among the ground
predicates of the state. Consider now the formula p(x), for
a variable x ∈ V . We interpret it such that x is assigned any
value “a” where p(“a”) appears in the current state. Thus,
for interpreting p(x)∧ q(y) in a state that has the predicates
p(“a”) and q(3), we have the assignment [x 7→ “a”,y 7→ 3]. The
formula (ϕ1 S ϕ2) (reads ϕ1 since ϕ2) means that ϕ2 occurred
in the past (including now) and since then (beyond that state)
ϕ1 has been true. This is the past dual of the common future
time until modality [19]. The property 	 ϕ means that ϕ is
true in the previous state. This is the past dual of the common
future time next modality. We can also define the following
additional temporal operators: P ϕ = (trueS ϕ) (“previously”),
and Hϕ =¬P¬ϕ (“always in the past”). The operator [ϕ1,ϕ2),
borrowed from [17], has the same meaning as (¬ϕ2 S ϕ1), but
reads more naturally as an interval.

In the following we present the semantics of QTL, formu-
lated in two alternative ways. First using predicates on variable
assignments, and subsequently using sets of such assignments.
In Section IV the algorithm is introduced which encodes such
sets of assignments as BDDs.

Semantics. Let γ be an assignment to the variables that
appear free in a formula ϕ. Then (γ,σ, i) |= ϕ if ϕ holds
for the prefix s1s2 . . .si of the trace σ with the assignment γ.
This is a standard definition, agreeing, e.g., with [7]. Note
that by using past operators, the semantics is not affected
by states s j for j > i. Let vars(ϕ) be the set of free (i.e.,
unquantified) variables of a subformula ϕ. We denote by
γ|vars(ϕ) the restriction (projection) of an assignment γ to the
free variables appearing in ϕ. Let ε be an empty assignment.
In any of the following cases, (γ,σ, i) |= ϕ is defined when γ
is an assignment over vars(ϕ), and i≥ 1.
• (ε,σ, i) |= true.
• (ε,σ, i) |= p(a) if p(a) ∈ σ[i].
• ([v 7→ a],σ, i) |= p(v) if p(a) ∈ σ[i].
• (γ,σ, i) |= (ϕ∧ψ) if (γ|vars(ϕ),σ, i) |= ϕ and
(γ|vars(ψ),σ, i) |= ψ.

• (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
• (γ,σ, i) |= (ϕ S ψ) if for some 1≤ j≤ i, (γ|vars(ψ),σ, j) |=

ψ and for all j < k ≤ i, (γ|vars(ϕ),σ,k) |= ϕ.
• (γ,σ, i) |=	ϕ if i> 1 and (γ,σ, i−1) |= ϕ.
• (γ,σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that1

(γ [x 7→ a],σ, i) |= ϕ.

1γ [x 7→ a] is the overriding of γ with the binding [x 7→ a].

The definition of the since operator S can be simplified in
a standard way such that it refers only to the positions i and
i−1 in the sequence σ. This is based on the fact that according
to the semantics of since, (ϕS ψ) = (ψ ∨ (ϕ ∧	(ϕS ψ))).
This will serve in the implementation to work with only
two versions of the sets of assignments, for the current and
previous state:

• (γ,σ, i) |= (ϕS ψ) if (γ|vars(ψ),σ, i) |= ψ or i > 1,
(γ|vars(ϕ),σ, i) |= ϕ, and (γ,σ, i−1) |= (ϕS ψ).

The rest of the operators are defined as syntactic sugar using
the operators defined in the above semantic definitions: false=
¬true, ∀x ϕ = ¬∃x¬ϕ, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ).

Set Semantics. We now refine the semantics of the logic.
Under the new definition, I[ϕ,σ, i] is a function that returns a
set of assignments such that γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ. This
redefinition will later lead to a simple implementation using
BDDs, where each set of assignments will be represented as
a BDD, and the Boolean operators will correspond directly to
Boolean operators on BDDs.

In order to deal with subformulas with different sets of free
variables (hence, different domains for assignments), we apply
a projection and an extension operator to assignments over a
subset of the variables. Let Γ be a set of assignments over the
variables W , and U ⊆W . Then hide(Γ,U) (for “projecting out”
or “hiding” the variables U) is the largest set of assignments
over W \U , each agreeing with some assignment of Γ on all the
variables in W \U . Let U∩W = /0, then ext(Γ,U) is the largest
set of assignments over W ∪U , where each such assignment
agrees with some assignment in Γ on the values assigned to the
variables W . This means that we extend Γ by adding arbitrary
values to the variables in U from their domains. We have that
hide(ext(Γ,U),U) = Γ. We define the union and intersection
operators on sets of assignments, even if they are defined over
non identical sets of variables. In this case, the assignments
are extended over the union of the variables. Thus, if Γ is a
set of assignments over W and Γ′ is a set of assignments over
W ′, then Γ

⋃
Γ′ is defined as ext(Γ,W ′ \W )∪ ext(Γ′,W \W ′)

and Γ
⋂

Γ′ is ext(Γ,W ′ \W )∩ext(Γ′,W \W ′). Hence, both are
defined over the set of variables W ∪W ′.

We denote by Avars(ϕ) the set of all possible assignments of
values to the variables that appear free in ϕ. Thus, I[ϕ,σ, i]⊆
Avars(ϕ). To simplify definitions, we add a dummy position 0
for sequence σ (which starts with s1), where every formula is
interpreted as an empty set. Observe that the value /0 and {ε},
behave as the Boolean constants 0 and 1, respectively. The set
semantics is defined as follows, where i≥ 1.

• I[ϕ,σ,0] = /0.
• I[true,σ, i] = {ε}.
• I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
• I[p(v),σ, i] = {[v 7→ a]|p(a) ∈ σ[i]}.
• I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

• I[¬ϕ,σ, i] = Avars(ϕ) \ I[ϕ,σ, i].
• I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

• I[	ϕ,σ, i] = I[ϕ,σ, i−1].
• I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],{x}).
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As before, the interpretation for the rest of the operators can
be obtained from the above using the connections between
the operators. For example, I[Pϕ,σ, i] = I[(trueS ϕ),σ, i]. The
correspondence between this set based semantics and the
previous semantics, namely that γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ
can be proved by a simple structural induction on the size of
the formulas.

IV. AN EFFICIENT ALGORITHM USING BDDS

Representation of sets of assignments as BDDs

Our last refinement is to represent sets of assignments using
Ordered Binary Decision Diagrams (OBDDs, although we
write simply BDDs) [8]. A BDD is a compact representation
for a Boolean tree representing a Boolean function. Because of
compaction, however, the BDD forms a directed acyclic graph
rather than a tree. Each internal node is marked with a Boolean
variable. The left edge from a node represents that this variable
has the Boolean value 0, while the right edge represents that
it has the value 1. The nodes in the tree have the same order
along all paths from the root, although some of the nodes may
be missing, where the result of the Boolean function does not
depend on the value of the corresponding variable. The leaves
have the Boolean values 0 and 1. Thus, following a path in
this graph, moving left or right corresponding to choosing 0s
or 1s, respectively, leads to a leaf node that is marked by
either a 0 or 1, representing the Boolean value returned by
the function for the Boolean values on the path. The graph is
compacted in such a way that isomorphic subtrees are “glued”
together. Instead of keeping a node b with left or right edges
that lead to the same subgraph, the node and its outgoing edges
are removed from graph representation of the BDD. (previous
edges point directly to a successor node). This means that for
the Boolean values on the prefix of the path so far, the BDD
value does not depend on the value of b. This compaction can
be quite significant. BDDs have been instrumental in achieving
a tremendous improvement in the size of systems that can be
automatically verified [9].

When a new value of some domain Di appears in a predicate
in the current state, we add it to a list of values of that domain
that were seen. In order to search efficiently if this value
already appeared, in time linear with its representation, we
can use e.g. a hash table. Thus, if we see p(“ab”), p(“de”),
p(“af”) and q(“fg”) in subsequent states, where p and q are
over the domain of strings, then we obtain a list of values
[“ab”,“de”,“af”,“fg”].

Each new value that appears in the monitored sequence is
enumerated as a binary number. We use BDDs to represent
sets of values. The BDDs are over Boolean representations
of enumerations of the observed values, according to the
order in which they appear in the input, rather than a direct
representation of the actual domain values. Thus, using two
bits, “ab” can be represented as the bit string 00 (we start
to enumerate from 00), “de” as 01, “af” as 10 and “fg” as
11. A BDD returns a 1 for each bit string representing an
enumeration of a value in the set, and 0 otherwise. Then a
BDD for a set containing the values “de” and “af” (2nd and 3rd

values) will return 1 for 01 and 10. If the Boolean function is
over b0 (for most significant bit) and b1 (for least significant),
then this is the Boolean function (¬b0∧b1)∨ (b0∧¬b1).

We can now represent sets of assignments to variables as
required by our set semantics. We use a partition of the BDD
bits according to the variables. Say, we want to represent a
set S of assignments to the variables x and y, each expected
to assume no more than 8 values. Then we can use the bits
y0 y1 y2 x0 x1 x2, where x0, x1 and x2 represent the enumerations
of values of x, and y0, y1 and y2 represent the enumerations of
values of y. The BDD over these 6 bits will return 1 for each
pair of enumerations that represent an assignment of values to
x and y in the set S.

A subset of a set of k values can therefore be represented as
function on dlog2(k)e bits. It can be represented as a Boolean
tree of size O(k). If we have m variables, z1, . . .zm, where the
number of values from the domain of the variable zi is of size
ki, then we can represent any encoding of an assignments to
the m variables with Σi=1..mdlog2(ki)e bits. With this number
of bits, the BDD graph can grow up to size O(Πi=1..mki).
However, representing this function as a BDD can often be
quite more compact.

The Algorithm

Given some value a observed in the trace as an argument
to a ground predicate, let lookup(a) return a bit string that
represents the occurrence order of appearance of a (among
other values of the same domain) in the trace. Thus, if a is
the first value occurring for that domain, lookup(a) will return
00 . . .00. If it is the 2nd value occurring, 00 . . .01, and so forth.
We update this representation for each new state that appears.

We use a function called build(x,a) for building a BDD
function that represents an assignment of a to the vari-
able x, independent of the other variables. For example, if
lookup(a) = 011, assuming we use only 3 bits, b0, b1 and
b2 to represent values, then build(x,a) will obtain a BDD
representation of the function ¬b0 ∧ b1 ∧ b2. There may be
other bits, representing other variables, but the BDD function
is independent of them (which leads to a large compaction).

Union and intersection of sets of assignments are translated
simply to disjunction and conjunction of their BDDs represen-
tation, respectively, and complementation becomes negation.
We will denote the Boolean BDD operators as and, or and
not. To implement the existential (universal, respectively)
operators, as in the interpretation of ∃x ϕ, we use the BDD
existential (universal, respectively) operator over the bits that
represent (the enumeration of) values of x. Thus, we translate
∃x, where x is represented using the bits x0, x1, . . .xk−1 into
∃x0 . . .∃xk−1. We use the following BDD function to perform
existential quantification over bits: exists(〈x0, . . . ,xk−1〉,bdd).
Finally, BDD(0) and BDD(1) are the BDDs that return always
0 or 1, respectively.

The algorithm uses these standard BDD operators, and is
almost a direct translation of the semantics using sets of
assignments. The structure of the algorithm is similar to that
of [14]. Namely, there are only two vectors (arrays) of values
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indexed by subformulas: for the current state (now) and for
the previous state (pre). However, while in [14] the vectors
contain Boolean values, here the values are BDD functions.
The algorithm follows.

1) Initially, for each subformula ϕ, now(ϕ) = BDD(0).
2) Observe a new state (as set of ground predicates) s as

input.
3) Let pre := now.
4) Make the following updates for each subformula. If ϕ

is a subformula of ψ then now(ϕ) is updated before
now(ψ).
• now(true) = BDD(1)
• now(p(a)) = if p(a)∈ s then BDD(1) else BDD(0)
• now(p(x)) = if ∃a p(a) ∈ s then build(x,a) else

BDD(0)
• now((ϕ∧ψ)) = and(now(ϕ),now(ψ))
• now(¬ϕ) = not(now(ϕ))
• now((ϕSψ))= or(now(ψ),and(now(ϕ),pre((ϕSψ)))).
• now(	 ϕ) = pre(ϕ)
• now(∃x ϕ) = exists(〈x0, . . . ,xk−1〉,now(ϕ))

5) Goto step 2.

We can define the number of bits per domain to a large
enough number k such that we anticipate no more than
2k different values. For example, if k = 20, this will allow
more than a million different values. In fact, large part of
the BDD that is related to bits that are not used is mostly
compacted away. To see this, recall that the BDD functions,
obtained during the runtime verification for representing the
sets of assignments for the subformulas, are functions from
the enumeration of values, according to the order in which
they appear in the input. We start enumerating from 00 . . .00,
and then continue with 00 . . .01, 00 . . .10, etc. The Boolean
operators, including the negation and applying quantification,
maintain invariantly, that as long as only m < 2k values
appeared, then the values for the binary representation of the
m+1st to the 2kth enumerations of values are the same (for
any combination of values of the other variables). In fact, it can
be shown by induction on the length of temporal formulas and
the input sequence that these enumerations, and in particular
the enumeration 11 . . .11, correctly represent all the values that
were not seen so far in the input2.

Suppose now that only l < k bits are needed for storing the
current set of enumerations, where the other (most significant
bits) are 0. Then the maximal enumeration that is assigned
to input values is no larger than binary 00 . . .0011 . . .11, with
k− l times 0s, and l times 1s. The BDD function will return
the same Boolean values for larger enumerations of the same
domain (these will be enumerations that have at least a single

2Formally, let ψ be a subformula, for which a BDD Bψ was constructed
so far. Then Bψ will return 1 for exactly the following bit strings. Let γ be
some assignment satisfying ψ after the current input. Construct the following
concatenation of bit strings, according to the given order on variables: for
each variable, if its value under γ has appeared in the input, concatenate its
binary enumeration, otherwise, concatenate some enumeration larger than the
number of its domain values seen so far.

1 in the most significant k− l digits). This by itself leads to a
significant compaction.

It is important to maintain that for infinite domains there
is at least one such unused enumeration for the allocated k
bits. In particular, the largest possible enumeration 11 . . .11
would play this role (but as discussed above, possibly also
some smaller enumerations). To see why this is important,
consider the case where all 2k enumerations are used (i.e.,
they were seen in the execution so far) for predicate g(x).
Then Pg(x) will be represented as BDD(1), returning con-
stantly a 1. Thus, ¬Pg(x) will be calculated to BDD(0),
returning constantly 0. Now, ∃x¬Pg(x) will be translated
into ∃x0∃x1 . . .∃xk−1BDD(0), and will return BDD(0) (false).
However, checking ∃x¬Pg(x) should have returned BDD(1)
(true), since it claims that there are values that did not occur
so far within a g predicate; indeed, for an infinite domain we
could have never seen all the possible values during a finite
execution.

Dynamic expansion of the BDDs. In case we did not
allocate in advance enough bits, it is possible to extend the
number of bits we use for representing values for a variable.
As explained above, the enumeration 11 . . .11 of length k
represents for every variable “all the values not seen so far
in input the sequence”. Consider the following two cases:
• When the added (most significant) bit has the value 0,

the enumeration still represents the same value. Thus, the
updated BDD needs to return the same values that the
original BDD returned without the additional 0.

• When the added bit has the value 1, we obtain enumer-
ations for values that were not seen so far in the input.
Thus, the updated BDD needs to return the same values
that the original BDD gave to 11 . . .11.

Suppose we have three variables, x, y and z, represented
using 3 bits each, i.e., x0, x1, x2, y0, y1, y2, z0, z1, z2, and we
want to add a new most significant bit ynew for representing
y. Let B be the BDD before the expansion. The case where
the value of ynew is 0 is the same as for a single variable. For
the case where ynew is 1, the new BDD needs to represent a
function that behaves like B when all the y bits are set to 1.
Denote this by B[y0 \1,y1 \1,y2 \1]. This function returns the
same Boolean values independent of any value of the y bits,
but it may depend on the other bits, representing the x and z
variables. Thus, to expand the BDD, we generate a new one
as follows:

((B∧¬ynew)∨ (B[y0 \1,y1 \1,y2 \1]∧ ynew))

The generalization of this formula to any number of variables
is clear.

Finite domains. We now show how to deal with the case
of variables that are defined over finite domains. Say we have
a BDD over enumerations of variables x, y and z, where
y has a domain of size m. Then we need k = dlog2(m)e
bits, y0, . . .yk−1, for representing y. We need to relativize the
use of existential quantifier to m. We can encode a fixed
BDD function smaller(y, t) that expresses that the bits that
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represent y have a binary value that is smaller than the
binary representation of t. (Note that we start enumerating
from 00 . . .00, hence we check smaller rather than smaller
or equal). For example, if we use 2 bits y0 and y1 then
smaller(y,3) = ¬(y0∧y1), as any binary number smaller than
3 will have at least y0 = 0 or y1 = 0. Now, we need to replace
each subformula of the form ∃x ϕ where x appears free in ϕ
by ∃x (smaller(x,m)∧ϕ). This limits the quantification on the
bits that represent x to values that are in the finite domain with
m values. We implement universal quantification ∀x ϕ using
negation (twice) and existential quantification; effectively, it is
translated into ∀x (smaller(x,m)→ ϕ).

Quantifying over values seen so far. We can also extend
our logic with a construct seen(y) for a variable y. This
construct will be translated, in a similar way as explained in
the previous paragraph, into a BDD that encodes the binary
values of the bits representing y that are no bigger than the
maximal enumeration used (seen) so far for the domain of y.
We saw earlier that ∃x ¬Pg(x) should always return a true in
an infinite domain, as it says that there is a value in the domain
of x that did not appear within a g predicate name. However,
we may intend to mean that the existential quantification is
restricted to be only over the values that were seen. In this
case, we can write ∃x (seen(x)∧¬Pg(x)). This can be true if
there is some value in the domain of x that appeared in the
execution so far within a predicate name other than g, but not
within g.

Comparing variables. Another important extension is to be
able to compare different variables, i.e., x = y (or x 6= y). This
can also be coded as a fixed BDD over the bit representation
of enumerations of values of x and y. This is encoded as a
BDD representing x0 = y0∧ x1 = y1∧ . . .xk−1 = yk−1.

V. IMPLEMENTATION

We implemented a monitoring tool for the QTL logic, called
DEJAVU. Let E be the type of n-ary predicate symbols, and
the B be the type of Boolean values. The implementation of
the monitoring algorithm presented in Section IV consists of a
program translate : Spec→ (E∗→ B∗), which, when provided
a specification generates a monitor program; the monitor
takes as input a trace (a sequence of events), and returns
a verdict, effectively a Boolean value for each event in the
trace. In the following we outline the format of the generated
monitor program. The tool is implemented in SCALA, using
the standard approach where a parser parses the specification
and produces an abstract syntax tree, which is then traversed
and translated into the monitor program. The parser is written
using SCALA parser combinators. The generated monitor
program uses the JavaBDD package [15] for generating and
operating BDDs. Log files in CSV format are parsed using
the Apache Commons CSV (Comma Separated Value format)
parser. The tool can be used for online (observing a program as
it executes) as well as offline (analyzing log files) monitoring.
We shall illustrate the monitor generation using an example.
Consider the following variation of the first property from
Section I (using syntax supported by the implementation):

class Formula p extends Formula {
var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False)
var tmp: Array[BDD] = null
val var f :: var m :: Nil = declareVariables("f", "m")

override def evaluate(): Boolean = {
now(5) = build("open")(V("f"),V("m"))
now(4) = now(5).or(pre(4))
now(3) = now(4).exist(var m)
now(2) = build("close")(V("f"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var f)
tmp = now; now = pre; pre = tmp
!tmp(0).isZero
}
}

0 : forall f . close(f) -> exists m . P open(f,m)

1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

4 : P open(f,m)

5 : open(f,m)

Fig. 1: Monitor (top) and AST (bottom) for the property

prop p: forall f . close(f ) → exists m . P open(f,m)

It states that if a file f is closed, it should have been opened
in the past with some access mode (read, write, . . .). The
generated monitor relies on an enumeration of the subformulas
of the original formula in order to evaluate the subformulas
bottom up for each new event. Figure 1 (bottom) shows
the decomposition of the original formula into subformulas
(an Abstract Syntax Tree - AST), indexed by numbers from
0 to 5, satisfying the invariant that if a formula ϕ1 is a
subformula of a formula ϕ2 then ϕ1’s index is bigger than ϕ2’s
index. The monitor generated from the property is shown in
Figure 1 (top). Specifically two arrays are declared, indexed
by subformula indexes: pre for the previous state and now
for the current state. A BDD here represents a predicate on
bit strings, effectively representing a set of bit strings (those
for which the BDD evaluates to true). Actual values in the
trace are uniquely mapped to such bit strings, and the BDD
therefore indirectly represents a set (set membership function)
of the actual values.

In each step the evaluate function re-computes the now
array from highest to lowest index, and returns true (ok) iff
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now(0) is not the zero-BDD. Assume for example that an event
close(out) is observed. At the leaf node 2 representing the
close(f ) event, the function call build ("close")(V("f")) builds
a new BDD for out unless one has previously been computed,
in which case that is used. At composite subformula nodes,
BDD operators are applied. For example for subformula 4,
the new value is now(5).or(pre(4)), which is the interpreta-
tion of the formula P open(f,m). Quantification is solved by
performing quantification over the relevant bits of the BDD
corresponding to the variable in question.

1 0 1 0 1 0

Fig. 2: BDDs for (left) subformula 5 on the first event, (mid)
subformula 5 on the second event, (right) subformula 4 on the
second event

Example

Assume that each variable f and m is represented by three
bits. Consider the input trace, consisting of three events:
〈open(input,read),open(output,write),close(out)〉. When the
monitor processes the first event for subformula number 5 (all
subformulas here are numbered according ot Figure 1), it will
create a bit string composed of a bit string for each parameter
f and m. As previously explained, bit strings for each variable
are allocated in increasing order: 000, 001, 010,..., hence the
first bit string representing the assignment [ f 7→input,m 7→read]
becomes 000000 where the three rightmost bits represent input
and the three leftmost bits represent read. Figure 2 (left) shows
the corresponding BDD. (Note that most significant bits are
implemented lower in the BDD.) For each bit (node) in the
BDD, the dotted arrow corresponds to this bit being 0 and the
full drawn arrow corresponds to this bit being 1. In this BDD
all bits have to be zero in order to be accepted by the function
represented by the BDD.

Upon the second event, new values (output,write) are
observed as argument to the open event. Hence a new bit string
for each variable f and m is allocated, in both cases 001 (the
next unused bit string). The new combined bit string for the
assignments satisfying subformula 5 then becomes 001001,
again forming a BDD representing a single assignment, ap-
pearing in Figure 2 (mid). Subformula 4 now becomes the
union of the two BDDs, resulting in the BDD on Figure 2
(right). The existential quantification in subformula 3 causes
the BDD to be reduced to only the first 3 bits. However since
subformula 2 is still false the whole formula evaluates to true.

prop access : forall u . forall f .
access (u, f ) → [ login (u) , logout (u)) & [open(f) , close ( f ) )

prop file : forall f .
close ( f ) → exists m . @ [open(f ,m),close ( f ) )

prop fifo : forall x .
( enter (x) → ! @ P enter (x)) &
( exit (x) → ! @ P exit (x)) &
( exit (x) → @ P enter (x)) &
( forall y . ( exit (y) & P (enter(y) & @ P enter (x)) ) →

@ P exit (x))

Fig. 3: Evaluation properties in QTL

Finally, on observation of the third and last event close(out), a
new value out for f is observed, and allocated the bit pattern
010, represented by the corresponding BDD for subformula
2. As end result, for the formula in node 1 we end up with a
BDD that is neither constantly true nor constantly false, and
hence universally quantifying over it yields false since it is
not the case that for all bit assignments it yields true.

VI. EVALUATION

DEJAVU performance is evaluated by comparing against
MONPOLY, the tool that seems to have most similarities to
DEJAVU as previously discussed. We specifically evaluated
the three temporal properties shown in Figure 3, on different
sizes of traces, while varying the number of bits allocated to
represent variables in BDDs. The properties were encoded in
MONPOLY in a 1-1 manner. The ACCESS property states that
if a file f is accessed by a user u, then the user should have
logged in and not yet logged out, and the file should have
been opened and not yet closed. The FILE property states that
if a file is closed, then it must have been opened (and not
yet closed) with some mode m (e.g. read or write). Finally,
the FIFO property is a conjunction of four subformulas about
data entering and exiting a queue. The first two subformulas
state that a datum can at most enter and exit once. The last
subformula states the FIFO principle of queues.

TABLE I: Evaluation of DEJAVU and MONPOLY

Property Trace length MONPOLY (sec) DEJAVU (sec)
bits per var.: 20 (40, 60)

ACCESS
11,006 1.9 3.1 (3.3, 3.2)

110,006 241.9 6.1 (9.1, 10.9)
1,100,006 58,455.8 36.8 (61.9, 88.8)

FILE
11,004 61.1 2.8 (2.8, 3.0)

110,004 7,348.7 6.3 (6.5, 8.6)
1,100,004 DNF 30.3 (43.9, 59.5)

FIFO
5,051 158.3 195.4 (OOM, -)

10,101 1140.0 ERR (-, -)

Table I shows the result of the evaluation, which was
performed in the Mac OS X 10.7.5 operating system on a 2
× 2.93 GHz 6-Core Intel Xeon with 32 GB of memory. The
properties were evaluated with each tool on traces of sizes

122

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



spanning from (approximately) 5 thousand to 1 million events
(see table for exact numbers). Traces have the general form
that initially numerous opening events ( login, open, enter)
occur, in order to accumulate a large amount of data stored in
the monitor, after which a smaller number of corresponding
closing events (logout, close, exit ) occur. In addition, for
each trace we experimented with three different sizes of bit
vectors: 20, 40 and 60 bits, corresponding to the ability to
store respectively approximately a million, a trillion, and a
quintillion different values for each variable (the latter two
are not needed for these traces). The following abbreviations
are used: DNF = Did Not Finish (during 16 hours), OOM =
Out of Memory, and ERR = an error occurred, in this case an
array index out of bound problem in the JavaBDD package.
The important numbers to compare are in bold font.

Table I demonstrates clearly that w.r.t. the first two proper-
ties, DEJAVU outperforms MONPOLY by a factor up to 3000.
Those are substantial differences, and demonstrates that BDDs
may be an interesting way to refer to stored data. However,
for the last FIFO property, the two systems are somewhat
comparable, although MONPOLY seems to do better on this
particular property. The complexity lies in the last of the
four subformulas in the conjunction, the actual FIFO property.
Increasing the number of bits allocated per variable, from 20
to 40 and 60, does not seem to have a substantial impact on
the performance, except for the FIFO property, where it causes
an OOM result for 40 bits.

VII. CONCLUSION

We described a BDD based runtime verification algorithm
for checking the execution of a system against a first order
past time temporal logic property. The challenge is to provide
a compact representation that will grow slowly and can be
updated quickly with each incremental calculation that is
performed per each new monitored event, even for very long
executions.

We used a BDD representation of sets of assignments for
the variables that appear (free) in the monitored property. Each
value observed in the trace is represented by a BDD encoding
the value’s enumeration in appearance order. While the size
of the BDD can grow linearly with the number of represented
values, it is often much more compact, and the BDD functions
of a standard BDD package are optimized for speed. Our
representation allows assigning a redundantly large number
of bits for representing the encoding of values, so that even
extremely long executions can be monitorable. For example,
if the encoding for each variable uses 64 bits, the BDD can
hold up to 264 different values for each variable. Redundant
bits, used pessimistically for representing encodings in the
expectation that the number of values encountered during
the execution will grow considerably, do not cause a large
explosion in the size of the BDD. Alternatively, we showed
how to dynamically expand the BDD when the number of
values exhausts the allocated size.

Our experiments provide an optimistic view on the benefit
of using BDDs. The implementation was written in SCALA,

an object-oriented and functional programming language with
active garbage collection. We expect that using an iterative
programming language such as C will result an even quicker
runtime verification monitor. A limitation of our approach is
that the encoding of assignment sets does not blend well with
using various relations between values. While we can easily
compare variables to be equal or not equal, we are not capable
of comparing, say, whether one value is smaller than another
value in an efficient way. This remains a challenge for future
work.
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Abstract—Boolean functional synthesis allows the automated
construction of Boolean functions from declarative specifications.
BDD-based techniques for this problem can be very efficient when
the specification can be compactly represented by a BDD, but
this is not always possible. In model checking, a way around this
problem has been found by using factored representations, where
formulas are represented as a conjunction of subformulas, each
encoded individually as a BDD. We show how techniques and
heuristics for quantifier elimination on factored formulas can also
be lifted to perform synthesis, and show that this approach allows
the synthesis of many problem instances that are intractable
when represented by a single BDD. We compare our approach
to other tools for Boolean synthesis that are not BDD-based. Our
empirical evaluation shows that, while no approach dominates
across the board, our tool outperforms other tools on several
problem instances.

Index Terms—Binary Decision Diagrams, Boolean synthesis,
factored representation

I. INTRODUCTION

The problem of synthesizing Boolean functions from re-
lations is central to many areas of formal methods. Boolean
functions can represent both logical circuits and programs over
finite data types, and Boolean synthesis is also an essential
component of synthesis from temporal specifications [1].

In the Boolean synthesis problem, we are given as spec-
ification a Boolean formula f(~x, ~y), where ~x is a vector of
input variables x1, . . . , xm and ~y is a vector of output variables
y1, . . . , yn. Our goal is twofold: first, to characterize the set of
valid inputs by a formula p(~x) that is satisfied exactly by those
inputs for which there is an output that satisfies f ; second,
to construct a Boolean function g : Bm → Bn such that
p(~x) ⇒ f(~x, g(~x)). In other words, for every input ~x that
satisfies p(~x), setting ~y = g(~x) satisfies f(~x, ~y).

Early approaches to this problem have used techniques
based on Binary Decision Diagrams (BDDs) [2], [3]. The
efficiency of BDDs, however, is highly dependent on finding
a good variable ordering, which is a hard optimization prob-
lem. Furthermore, it is well-known that there are interesting
Boolean formulas that cannot be represented by a polynomial-
sized BDD. Because of this, more recent works have avoided
BDDs in favor of approaches using SAT solvers [4].

Nevertheless, BDD-based techniques have been shown to be
very competitive when the specification can be efficiently rep-
resented by a BDD and a good variable ordering is known [5].
This raises the question of whether it is possible, instead
of discarding BDDs, to find a way to employ BDD-based
techniques even in cases when a BDD for the specification

cannot be constructed. In other applications where the use of
BDDs is common, the solution to this problem came in the
form of factored representations of formulas, which allow a
much wider range of instances to be effectively computed [6].

Factored representations are based on the fact that it is
common for Boolean formulas of practical importance to be
represented by conjunctions of constraints. In other words,
a Boolean formula f(~x, ~y) might be written in the format
f1(~x, ~y)∧ . . .∧ fk(~x, ~y). In this case, rather than constructing
a single monolithic BDD B for f , we can instead represent
the formula as a collection of BDDs B1, . . . , Bk for each of
the factors f1, . . . , fk, implicitly interpreted as a conjunction.
Since conjoining multiple BDDs can lead to a combinatorial
explosion, the factored representation is usually significantly
more compact.

In symbolic model checking, where the idea of factored
BDD representations originated, this approach was able to
reduce the size of representations of transition relations by an
order of magnitude [6]. Since then, different techniques have
been developed for further improving performance, including
heuristics for clustering and reordering factors [7]. Similar
techniques have been used for processing factored formulas
in the context of symbolic satisfiability [8]. In this approach
to the satisfiability problem, a CNF formula is encoded by
partitioning the set of clauses and representing each partition
as a BDD. Then, symbolic quantifier elimination is used to
find if there is a satisfying assignment to the formula. In this
paper we show how techniques and heuristics used in these
applications can be adapted to perform synthesis from factored
specifications.

Other approaches have been developed for synthesis of
factored formulas that do not employ BDDs. A recent work [9]
uses And-Inverter Graphs (AIGs) for representing Boolean
formulas and a counterexample-guided abstraction refinement
(CEGAR) loop for synthesizing the function. A downside to
this approach is that the CEGAR loop requires repeated calls
to a SAT solver, which can have a high cost in running time.
Furthermore, BDDs can be very compact for small formulas,
which poses the question of whether they can produce smaller
functions than AIGs when using factored representation.

A different synthesis approach is based on the close rela-
tion between Boolean synthesis and QBF solving. The CNF
formulas given as input to QBF solvers are special cases of
factored formulas, and a number of modern solvers are capable
of computing Skolem functions for the existential variables
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in terms of the universal variables [10] [11]. Therefore, by
writing a specification f(~x, ~y) in CNF, the synthesis problem
can be encoded as a QBF ∀~x.∃~y.f(~x, ~y).

Although QBF solvers can be very efficient in solving these
formulas, they are able to synthesize Skolem functions only
when the QBF ∀~x.∃~y.f(~x, ~y) evaluates to true. This corre-
sponds to the case when the specification f(~x, ~y) is realizable,
that is, when every input ~x has an output ~y that satisfies
f , and consequently p(~x) ≡ 1. In many applications of
Boolean synthesis we are interested, however, in unrealizable
specifications as well. One such a case is LTLf synthesis using
DFA games [1], in which a winning strategy might not exist for
every state of the automaton, but we would like to synthesize
this strategy for all states for which it exists.

In our experimental evaluation, we first compare our im-
plementation using factored representation with the mono-
lithic approach, allowing us to confirm that indeed factor-
ing the specification allows us to synthesize a number of
instances that would be otherwise intractable. We then com-
pare our implementation using BDDs to two other tools:
CEGARSKOLEM [9] [12], which uses the CEGAR-based
approach, and the QBF solver CADET [11]. The results
show that no approach is universally better, and every tool
outperforms the others in some subset of the benchmarks. Al-
though the QBF approach has a clear advantage for realizable
specifications, being unable to handle unrealizable instances
limits its applicability in a number of practical cases.

Beyond performance, an advantage of using BDDs is that
this makes the approach easier to integrate in temporal synthe-
sis applications, such as [1]. This is because such applications
usually employ some kind of fixpoint computation, for which
BDDs are particularly suited due to the ease of checking if two
BDDs are equivalent. Using other representations for Boolean
formulas, such as AIGs or CNF, it becomes harder to perform
such computations.

II. PRELIMINARIES

A. Boolean Formulas and Functions

We denote by B = {0, 1} the set of Boolean values. We use
the notation ~x to represent a Boolean vector (x1, . . . , xm) ∈
Bm, for some m. We identify a Boolean formula f over
Boolean variables x1, . . . , xm with the Boolean function f :
Bm → B such that f(~x) = 1 if and only if ~x is a satisfying
assignment of formula f .

We use ¬, ∧, ∨ to denote the usual Boolean
operators of negation, conjunction and disjunction,
and ≡ to denote logical equivalence of two Boolean
formulas. Given two formulas f(x1, . . . , xm) and
f ′(y1, . . . , yn), we use f [xi 7→ f ′] to denote the formula
f(x1, . . . , xi−1, f ′(y1, . . . , yn), xi+1, . . . , xm). We say that a
variable xi is in the support of a formula f if xi determines
the value of f , that is, f [xi 7→ 0] 6≡ f [xi 7→ 1].

We also use ∀ and ∃ to denote universal and existen-
tial quantification over Boolean variables. Given a quantified
Boolean formula, we can use the following lemma to obtain
a logically equivalent quantifier-free formula:

Lemma 1 (Self-Substitution [5]). Let f(~x, y) be a Boolean
formula over variables ~x = (x1, . . . , xm) and y. Then
• ∀y.f(~x, y) ≡ f(~x, f(~x, 0))
• ∃y.f(~x, y) ≡ f(~x, f(~x, 1))
Given a formula f(~x, y) with ~x = (x1, . . . , xm), and a

function g : Bm → B, if f(~x, g(~x)) ≡ ∃y.f(~x, y), we say
that g is a witness for y in f . It is clear from Lemma 1 that,
for every formula f(~x, y), f(~x, 1) is a witness for y.

B. Boolean Synthesis

We use the following formulation of the Boolean synthesis
problem:

Problem 1 (Boolean Synthesis). Given a Boolean formula
f(~x, ~y) where ~x = (x1, . . . , xm) and ~y = (y1, . . . , yn), called
the specification, compute a Boolean formula p(~x), called
the precondition, and a Boolean function g(~x) : Bm → Bn,
called the implementation, such that ∃~y.f(~x, ~y) ≡ p(~x) ≡
f(~x, g(~x)).

In this context, we call ~x the input variables and ~y the
output variables. Intuitively, f specifies a relation between
inputs and outputs of the desired Boolean function g, and p
identifies valid inputs for g. If there is an output ~y that satisfies
f for input ~x, then a) p(~x) is true, and b) ~y = g(~x) satisfies
f . The implementation g can be represented by a sequence of
functions 〈g1, . . . , gn〉, gi : Bm → B. In this work we focus on
specifications of the form f(~x, ~y) = f1(~x, ~y) ∧ . . . ∧ fk(~x, ~y).

In the context of Boolean synthesis, we say that a spec-
ification f(~x, ~y) with input variables ~x and output variables
~y is realizable if for every assignment to ~x there exists an
assignment ~y such that f(~x, ~y) evaluates to true. In other
words, if a specification f is realizable then ∃~y.f(~x, ~y) ≡
p(~x) ≡ f(~x, g(~x)) ≡ 1. In this case, every input ~x is a valid
input for g(~x).

C. Binary Decision Diagrams

A [Reduced Ordered] Binary Decision Diagram, or BDD,
is a data structure that represents a Boolean function as a
directed acyclic graph [13]. BDDs can be seen as a reduced
representation of a binary decision tree of a Boolean function.
We require that variables are ordered the same way along every
path of the BDD (“ordered”) and that the BDD is minimized to
eliminate duplication (“reduced”). For a given variable order,
the reduced BDD is canonical. The variable order used can
have a major impact on BDD size, and two BDDs representing
the same function but with different orders can have an
exponential difference in size. Since BDDs represent Boolean
functions, they can be manipulated using standard Boolean
operations. We overload the notation of the operators ¬, ∧, ∨
and functional composition (e.g. B[xi 7→ B′]) with equivalent
semantics to their counterparts for Boolean formulas.

III. SYNTHESIS FROM FACTORED FORMULAS

In this section, we start by formally defining the notion of
factored representations and present some of their properties.
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We then describe a method for performing synthesis over
factored representations.

A. Factored Representation of Boolean Formulas

Let the specification f for an instance of the Boolean
synthesis problem be of the form f(~x, ~y) = f1(~x, ~y) ∧
f2(~x, ~y)∧ . . .∧ fk(~x, ~y). Each formula fi is called a factor of
f . The sequence of BDDs 〈B1, B2, . . . , Bk〉, where Bi is the
BDD encoding of fi, is called the factored representation of
f . In contrast, the representation of f as a single BDD B is
called the monolithic representation.

Note that it is possible for a formula to have an exponential
monolithic representation and a polynomial factored represen-
tation. In particular, the factored representation of a formula
in CNF can always be linear, since the BDD of a single clause
is linear in size.

Although factored representations can be exponentially
more compact than monolithic representations, they introduce
complications into the synthesis procedure. To understand
why, first note from the definition of Boolean synthesis that
there is a close connection between Boolean synthesis and
quantifier elimination. In fact, substituting the implementation
g(~x) in the specification f(~x, ~y) is equivalent to existentially
quantifying ~y, and the precondition p(~x) is exactly the result
of this quantification. Then, recall that existential quanti-
fiers do not distribute over conjunction. That is, in general
∃y1, . . . , yn.

∧k
i=1 fi(~x, ~y) 6≡

∧k
i=1 ∃y1, . . . , yn.fi(~x, ~y).

More precisely, as pointed out in [9], the right-hand side
is an over-approximation of the left-hand side, meaning that
every assignment of ~x that satisfies the left-hand side satisfies
the right-hand side, but not vice-versa.

As a consequence, if we are given a factored representation
of a Boolean formula, it is not clear how to perform existential
quantifier elimination, and consequently synthesis, without
conjoining the factors. However, the insight first employed
in [6] is that it is possible to move conjuncts outside an
existential quantifier if the quantified variable does not appear
in the support of the conjunct. Formally, let Fj ⊆ {1, . . . , k}
be the set of indices i such that yj is in the support of fi.
Then,

∃y1, . . . , yn.
k∧

i=1

fi(~x, ~y)

≡ ∃y1, . . . , yn−1.
(
∃yn.

∧

i∈Fn
fi(~x, ~y)

)
∧
∧

i 6∈Fn
fi(~x, ~y)

Using the relation between synthesis and existential quan-
tification, we obtain the following result:

Lemma 2. Let f(~x, ~y) = f1(~x, ~y)∧f2(~x, ~y)∧. . .∧fk(~x, ~y) be
a specification and gj(~x) be a witness to yj in

∧
i∈Fj fi(~x, ~y).

Then, gj(~x) is a witness to yj in f(~x, ~y).

Proof. Since gj(~x) is a witness to yj in
∧
i∈Fj fi(~x, ~y),

then by definition
(∧

i∈Fj fi(~x, ~y)
)
[yj 7→ gj(~x)] ≡

∃yj .
∧
i∈Fj fi(~x, ~y).

To prove that gj(~x) is also a witness of f(~x, ~y), it needs to
be shown that f(~x, ~y)[yj 7→ gj(~x)] ≡ ∃yj .f(~x, ~y). But

f(~x, ~y)[yj 7→ gj(~x)]

≡


∧

i∈Fj
fi(~x, ~y) ∧

∧

i 6∈Fj
fi(~x, ~y)


 [yj 7→ gj(~x)]

≡


∧

i∈Fj
fi(~x, ~y)


 [yj 7→ gj(~x)] ∧

∧

i 6∈Fj
fi(~x, ~y)

≡


∃yj .

∧

i∈Fj
fi(~x, ~y)


 ∧

∧

i 6∈Fj
fi(~x, ~y)

≡ ∃yj .


∧

i∈Fj
fi(~x, ~y) ∧

∧

i 6∈Fj
fi(~x, ~y)




≡ ∃yj .f(~x, ~y)
Therefore, gj(~x) is a witness of f(~x, ~y).

From Lemma 2 we have that a witness for a variable in a
factored formula can be constructed from only the factors in
which that variable appears. Since in practice each variable
will only be in the support of a small subset of the factors,
this insight means that it is possible to perform synthesis
without converting entirely from the factored to the monolithic
representation. Instead, we can design a strategy for synthesis
directly over factored formulas.

B. Synthesis from Factored Specifications

Algorithm 1 presents a synthesis framework that takes
advantage of the factored representation of the specification,
using the insight from Lemma 2 to avoid conjoining all factors
at once. Instead, we conjoin the factors one-by-one, and after
each conjunction synthesize and eliminate the variables that do
not appear in the support of any of the remaining factors. This
strategy is similar to the ones followed in model checking [6]
and symbolic satisfiability [8] from factored representations.

We assume the existence of a monolithic Boolean synthesis
procedure, denoted by synth(B,X, Y ), which receives a BDD
B, a set of input variables X and a set of output variables Y ,
and returns a BDD P representing the precondition and a se-
quence of BDDs (Wj)yj∈Y representing the implementation.

We start, in line 2, by partitioning the output variables
into sets Y1, . . . , Yk such that yj ∈ Yi if and only if Bi is
the last factor where yj appears. In other words, yj ∈ Yi
if and only if maxFj = i. We maintain a BDD B which
accumulates the factors. In line 3, B is initialized to the empty
conjunction, which is equivalent to the constant 1. We then
iterate over the factors, conjoining the next factor to B at
every iteration in line 5. Once Bi is conjoined, none of the
output variables in Yi appear in any of the remaining factors.
The monolithic synthesis procedure is then called in line 6
to synthesize witnesses for every variable in Yi, in terms of
the input variables x1, . . . , xm and the output variables in
Yi+1, . . . , Yk. Then, in line 7, B is updated to the precondition
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Fig. 1. Synthesis from Factored Specifications
Input: Factored specification 〈B1, . . . , Bk〉.
Output: Precondition BDD P , witness BDDs 〈W1, . . . ,Wn〉.

1: X ← {x1, . . . , xm}
2: Yi ← {yj | Bi is the last factor where yj appears}
3: B ← 1
4: for i← 1 . . . k do
5: B ← B ∧Bi
6: Pi, (Wj)yj∈Yi ← synth(B,X ∪ Yi+1 ∪ . . . ∪ Yk, Yi)
7: B ← Pi
8: end for
9: for i← 1 . . . k, i′ ← (i+ 1) . . . k do

10: W` ←W`[yj 7→Wj ], for all y` ∈ Yi, yj ∈ Yi′
11: end for
12: P ← B
13: return P,W1, . . . ,Wn

Pi, which corresponds to the conjunction of the first i factors
with the output variables in Y1∪. . .∪Yi existentially quantified.

After the end of the loop, every witness Wj for yj ∈ Yi
has the variables from Yi+1, . . . , Yk in its support set. In
the last step, performed by the loop in lines 9-11, these
extra variables are eliminated by substituting their respective
witnesses, making every Wj dependent only in the input
variables x1, . . . , xm.

The following theorem states the correctness of Algo-
rithm 1, which follows from the correctness of the monolithic
synthesis procedure and Lemma 2.

Theorem 1. If P,W1, . . . ,Wn are computed according to
Algorithm 1, then ∃y1, . . . , yn.(B1 ∧ . . . ∧ Bk) ≡ P ≡
(B1 ∧ . . . ∧Bk)[y1 7→W1, . . . , yn 7→Wn].

Proof. We assume the correctness of the monolithic synthesis
procedure synth, meaning that synth(B,X, Y ) returns a
precondition P , and a witness Wj for each variable yj ∈ Y in
terms of the variables in X , such that ∃Y.B ≡ P ≡ B[yj 7→
Wj ]yj∈Y .

Consider the loop in lines 4-8. We will first prove that if
at the start of the i-th iteration B ≡ ∃Y1, . . . , Yi−1.(B1 ∧
. . . ∧ Bi−1), then at the end of the i-th iteration B ≡
∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi). We will use this to prove that
P ≡ ∃y1, . . . , yn.(B1 ∧ . . . ∧Bk)

Assume that at the start of the i-th iteration B ≡
∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1). Then, after line 5, B ≡
(∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1)) ∧ Bi. Since Y1, . . . , Yi−1
do not appear in Bi, the quantifier can be moved outside the
conjunction, so B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Then, in line 6 the monolithic synthesis procedure is
called on B, with input variables X ∪ Yi+1 ∪ . . . ∪ Yk and
output variables Yi. By the correctness of the monolithic
procedure, Pi ≡ ∃Yi.B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧
Bi−1 ∧ Bi). Then, after line 7, when B is updated to Pi,
B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Therefore, if B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1) at the
start of the i-th iteration, B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi)

at the end of the i-th iteration. Taking i = 1, this means that
if B ≡ 1 (the empty conjunction) before the loop then at
the end of the first iteration B ≡ ∃Y1.B1. Since the invariant
B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧Bi) is maintained, at the end of
the last iteration B ≡ ∃Y1, . . . , Yk.(B1∧ . . .∧Bk). Therefore,
after line 12, P ≡ ∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk), as desired.

We now prove that (B1 ∧ . . . ∧ Bk)[y1 7→ W1, . . . , yn 7→
Wn] ≡ ∃Y1, . . . , Yk.(B1 ∧ . . . ∧ Bk). In iteration i, we
construct Wj for every yj ∈ Yi. Since at this time B ≡
∃Y1, . . . , Yi−1.(B1∧. . .∧Bi−1∧Bi), by the correctness of the
synth procedure, (∃Y1, . . . , Yi−1.(B1∧. . .∧Bi−1∧Bi))[yj 7→
Wj ]yj∈Yi ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧ Bi−1 ∧ Bi). Then,
since no variables in Y1, . . . , Yi−1 appear in Bi,

∃Y1, . . . , Yi.(B1 ∧ . . . ∧Bi)
≡ (∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi))[yj 7→Wj ]yj∈Yi
≡ ((∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1)) ∧Bi)[yj 7→Wj ]yj∈Yi

Applying this transformation recursively to
∃Y1, . . . , Yk.(B1 ∧ . . . ∧ Bk) results in (. . . (B1[yj 7→
Wj ]yj∈Y1 ∧B2)[yj 7→ Wj ]yj∈Y2 ∧ . . . ∧Bk)[yj 7→ Wj ]yj∈Yk .
Applying Lemma 2, we can move the composition operators
outside the conjunction, giving

∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk)
≡ (B1 ∧ . . . ∧Bk)[yj 7→Wj ]yj∈Y1 . . . [yj 7→Wj ]yj∈Yk

Recall that each Wj for yj ∈ Yi might contain variables
from Yi+1, . . . , Yk in its support set. Because of this, we
cannot change the order of the composition operators. How-
ever, the loop in lines 9-11 performs the composition of
each witness with the ones that succeed it, making every Wj

dependent only on x1, . . . , xm. This allows the compositions
to be performed in any order, so that ∃Y1, . . . , Yk.(B1 ∧ . . .∧
Bk) ≡ (B1 ∧ . . . ∧Bk)[y1 7→W1, . . . , yn 7→Wn].

A problem with Algorithm 1 is that performance will be
very dependent on the order of the factors. Consider for
example a specification in which for every i, the output support
of fi is {y1, . . . , yi}. Then, Y1 = Y2 = . . . = Yk−1 = {}
and Yk = {y1, . . . , yn}. Processing the factors in order will
result in all factors being conjoined before any witness can be
synthesized, thus degenerating into the monolithic synthesis
procedure. On the other hand, processing the factors in the
reverse order would allow one variable to be synthesized
immediately after each conjunction. Therefore, it is clear
that the algorithm can benefit from reordering the factors
before starting the synthesis. Finding the optimal order is
a combinatorially hard problem, but a number of heuristics
can be used instead. Another possible improvement in the
algorithm is clustering, a technique that has been employed
in other applications which use factored representations of
formulas [8], [14], [15]. In clustering, the set of factors is first
partitioned, and the factors in each partition are conjoined into
monolithic clusters. The algorithm is then applied over the
clusters rather than the individual factors. The next section
explores different heuristics for clustering and reordering.
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C. Clustering and Reordering

As noted in [14], if the individual BDDs for each factor
are small, it is often better to combine different factors into
monolithic clusters. If the clusters are constructed so that they
remain of reasonable size, clustering reduces the number of
iterations while not excessively increasing the cost in space.

Formally, given a factored formula f(~x, ~y) = f1(~x, ~y) ∧
f2(~x, ~y) ∧ . . . ∧ fk(~x, ~y) a clustering heuristic partitions the
set of factors {f1, f2, . . . , fk} into κ disjoint non-empty
subsets C1, . . . , Cκ, called the clusters. In practice, each
cluster Cι is represented by a BDD Bι encoding the formula∧
fi∈Cι fi(~x, ~y). Since conjunction is associative and commu-

tative, 〈B1, . . . ,Bκ〉 is itself a factored representation of the
original formula f . Therefore, Algorithm 1 can be applied
normally to this representation.

The goal of clustering is to create a balance between the
number of factors and size of the factors. An example of
clustering strategy is rank-based clustering, employed in [8].
In this strategy, for every variable yj , cluster Cj = {fi |
rank(fi) = j}, where rank(fi) is the highest index among
the variables in the support of fi.

Rank-based clustering naturally gives rise to some re-
ordering heuristics, in which clusters are ordered either by
increasing or decreasing rank. Two more options for reordering
factors appear in the context of model checking in [7]. In
that work, factored formulas are used to represent transition
relations, and different reordering heuristics are used in the
forward and backward simulation steps. The following are the
four heuristics used in this work:

a) Bouquet’s method: [8] Order by increasing rank.
b) Bucket elimination: [8] Order by decreasing rank.
c) Forward: [7] Greedily order factors by number of

variables that can be eliminated once the factor is conjoined.
In other words, at every step choose the factor that has the
greatest number of output variables that do not appear in any
of the remaining factors.

d) Backward: [7] Order factors such that at every step
the next factor will be the one that has the fewest new
variables, that is, variables that have not appeared in any of
the previous factors. This heuristic tries to avoid as much as
possible increasing the size of the conjoined BDD.

All of the above heuristics for clustering and reordering can
be applied to synthesis from factored representations, but it is
unclear which would give better results. Section IV describes
an experimental evaluation of the different techniques.

D. BDD Variable Ordering

The size of BDDs is strongly influenced by the ordering
of the variables. Part of the goal of using factored repre-
sentations is to be able to represent specifications for which
a good variable ordering is not known beforehand. Rather
than using an arbitrary variable ordering for these cases, it
would be good to be able to compute one by analyzing the
structure of the formula. Similarly to clustering, finding the
optimal variable ordering is a hard combinatorial problem, but

numerous heuristics have been developed to find good enough
approximations.

One such heuristic is the inverse maximum cardinality
search (MCS) ordering [16]. This variable ordering is
constructed based on the Gaifman graph of the formula
f(~x, ~y) = f1(~x, ~y) ∧ . . . ∧ fk(~x, ~y), defined as G = (V,E),
where V = {x1, . . . , xm, y1, . . . , yn} and E = {(v1, v2) |
there exists an i such that v1 and v2 are in the support of fi}.
In other words, the Gaifman graph of a factored formula has
one vertex for each variable and has an edge between every
pair of variables that share a factor.

The inverse MCS order can be computed from the Gaifman
graph by the following procedure: 1) initialize an empty list
L; 2) at each step, select the vertex v ∈ V not in L with the
largest number of neighbors in L, and add v to L; 3) after
all vertices have been added, reverse L, so that vertices added
later come first in the ordering.

Other heuristics for variable ordering were studied in [8],
but among them the inverse MCS heuristic had the best results
in that work. Therefore, this heuristic was chosen for the
experiments in this paper.

IV. EXPERIMENTAL EVALUATION

We performed the experiments using QBF benchmarks
taken from the QBFLIB collection [17]. All benchmarks
selected were of the form ∀~x.∃~y.f(~x, ~y), where f(~x, ~y) is a
CNF formula. In this case, synthesis corresponds to finding a
Skolem function to the existential variables. Every clause in
f(~x, ~y) can be considered one factor.

We implemented the factored algorithm from Section III and
the various heuristics for clustering and reordering factors in
our tool RSYNTH, in C++11 and using the CUDD [18] pack-
age for manipulating BDDs. As of version 3.0.0, CUDD in-
cludes a monolithic Boolean synthesis procedure SolveEqn,
which we used in our implementation as the synth subroutine.

All experiments were executed in the DAVinCI cluster at
Rice University, consisting of 192 Westmere nodes of 12
processor cores each, running at 2.83 GHz with 4 GB of RAM
per core, and 6 Sandy Bridge nodes of 16 processor cores
each, running at 2.2 GHz with 8 GB of RAM per core. The
algorithm has not been parallelized, so the cluster was solely
used to run multiple experiments simultaneously.

Besides comparing the monolithic and factored algorithms
and evaluating different reordering heuristics, we also com-
pare our tool RSYNTH with two existing tools for Boolean
synthesis. The first is the CEGARSKOLEM tool from [9],
which uses a SAT-based CEGAR loop and AIGs to perform
synthesis from factored formulas. The second is the 2QBF
solver CADET [11].

All plots1 in this section are shown in log scale. Each
benchmark was given a time limit of two hours. Only a
subset of the total set of benchmarks is included in the plots.
Benchmarks for which the results were similar to already-
included benchmarks were omitted, as well as benchmarks
for which all or almost all of the methods timed out.

1Plots are best viewed online for ease of reading.
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Fig. 2. Performance of the factored algorithm using different reordering
heuristics, in log scale. The values include both the time spent reordering
the factors and time running the algorithm. Bars of maximum height indicate
instances that timed out. Bars not displayed mean that the instance took less
that 1ms.

A. Heuristics for Factor Reordering

We first measure the performance of the factored algorithm
using different reordering heuristics. The bar plots on Figure 2
show the running time of each heuristic on different bench-
marks. Figure 2(a) shows the results for Bouquet’s Method and
Bucket Elimination, and Figure 2(b) shows the results for the
Forward and Backward heuristics. The bars labeled None show
the running time when no heuristic is used and the factors are
simply processed in the order they are given in the input file.

Surprisingly, the results show that using no reordering is
often preferable. In most of the instances, the best running time
was achieved with no reordering. In fact, some benchmarks
were able to be synthesized in the time limit only when
no reordering was used. What this result suggests is that
the process by which CNF formulas are generated already
produces clauses in a good order. This makes sense because,
when constructing a CNF formula, clauses with the same
variables will generally be close to each other.

To confirm this point, we also ran experiments where the
clauses were reordered randomly. In this case, regardless of
the benchmark, the synthesis almost always timed out. We
conclude that we can generally assume that the input is given
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Fig. 3. Performance of the monolithic and factored synthesis algorithms, in
log scale. Bars of maximum height indicate instances that timed out.

in a good order, but, if this is not the case, using a moderately
good heuristic, such as Bouquet’s Method, already improves
significantly over an arbitrary ordering. The performance of
the other heuristics varied depending on the type of bench-
mark. Every heuristic outperformed the others on at least one
case. Overall, the Forward heuristic seems to have the worst
scalability, timing out for most of the instances. This is likely
due to it being a greedy heuristic which tries to synthesize as
many variables as possible at each step, causing the size of
the BDDs to quickly increase.

B. Factored vs. Monolithic

Next, we compare the running time of the factored algorithm
with synthesis using the monolithic procedure. In the latter,
the running time includes the time necessary to conjoin all
the factors to create the monolithic representation. Given the
previous results, no reordering was used for the factored
approach. Results are shown in the bar plot on Figure 3.

It is immediately noticeable that the monolithic approach
in most cases displays a much poorer performance compared
with the factored one. In the few cases where the monolithic
algorithm outperforms the factored algorithm, it is only by
a small margin. On the other hand, there are several cases
where the factored algorithm outperforms the monolithic one
by an order of magnitude or more. There are additionally a
number of cases synthesized by the factored algorithm which
the monolithic algorithm is not able to solve in the time
limit. This indicates that it is worthwhile to take advantage
of factored representation for synthesis, and that it allows
a number of instances to become feasible compared to a
monolithic representation.

C. Comparison with CEGARSKOLEM and CADET
We compare the performance of RSYNTH with the CEGAR-

based tool CEGARSKOLEM and the QBF solver CADET.
Given the results of previous experiments, we select the
factored algorithm with no reordering for the comparison.

Figure 4 shows a comparison of running time between
RSYNTH, CEGARSKOLEM and CADET on the same bench-
marks used in the previous experiments. All of the benchmarks
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Fig. 4. Comparison of running time between RSYNTH, CEGARSKOLEM and
CADET, in log scale. Bars of maximum height indicate instances that timed
out.
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Fig. 5. Comparison of function size, in number of nodes, between RSYNTH,
CEGARSKOLEM and CADET, in log scale. The size is not displayed for
those instances in which the tool timed out.

are realizable, allowing CADET to be used for them. Out
of 161 total benchmarks, RSYNTH was able to synthesize
87 and CEGARSKOLEM 52. There were only 6 benchmarks
in which CEGARSKOLEM outperformed RSYNTH, all from
the rankfunc class. However, CADET had by far the best
performance in almost all instances, usually by orders of
magnitude, and was able to synthesize all but one of the
161 benchmarks. This leads to the conclusion that the QBF
approach is preferable when the specification is realizable.

Figure 5 shows a comparison of the size of the synthe-
sized functions between the three tools. RSYNTH produces
functions in the form of BDDs, while CEGARSKOLEM and
CADET produce functions in the form of AIGs, therefore the
comparison is in number of nodes of these data structures.
Missing bars mean that the tool timed out for that particular
instance. RSYNTH produced smaller functions for about half
of the benchmarks, while CADET had smaller functions for
the other half. This demonstrates that in many cases BDDs are
indeed able to produce a more compact representation than the
one obtained by AIGs.

The main conclusion that we can draw from this compari-
son is that, for realizable specifications, synthesis approaches

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

ex
qu

er
y

ra
nk

fu
nc

37
s

st
m

t1
9-

64
-8

7

st
m

t1
9-

65
-8

7

st
m

t1
9-

75
-8

3

st
m

t1
9-

79
-8

3

st
m

t1
9-

79
-8

7

st
m

t1
9-

83
-1

42

te
rm

-s
tm

t1
9-

66
-9

0

te
rm

-s
tm

t1
9-

83
-9

0

te
rm

-s
tm

t1
9-

12
5-

13
3

te
rm

-s
tm

t2
1-

5-
13

8

te
rm

-s
tm

t2
1-

70
-8

4

te
rm

-s
tm

t2
1-

71
-7

0

te
rm

-s
tm

t3
1-

22
-2

3

T
im

e
 (

s)

CegarSkolem RSynth

Fig. 6. Comparison of running time between RSYNTH and CEGARSKOLEM
tools, in log scale, over unrealizable benchmarks. Bars of maximum height
indicate instances that timed out.

based on QBF will likely dominate in terms of running time. In
general, however, QBF solvers do not support the generation of
Skolem functions when the formula ∀~x.∃~y.f(~x, ~y) evaluates to
false, i.e., f(~x, ~y) is unrealizable. Therefore, for unrealizable
specifications it becomes necessary to turn to other synthesis
approaches. This brings up the question of how RSYNTH
and CEGARSKOLEM perform in synthesizing unrealizable
instances. The next section presents an evaluation dedicated
to answering this question.

D. Unrealizable Specifications

For this comparison, we also used QBF benchmarks of the
form ∀~x.∃~y.f(~x, ~y) from QBFLIB. This time, however, the
quantified formulas evaluate to false, meaning that f(~x, ~y)
is unrealizable. Since CADET is unable to handle such
cases, we only perform a comparison between RSYNTH and
CEGARSKOLEM for these formulas.

Figure 6 shows the running time of each tool in a set
of unrealizable benchmarks. Comparing RSYNTH and CE-
GARSKOLEM, we see that the results vary depending on the
instance, with either tool outperforming the other on a subset
of the benchmarks. There are also many cases which one of the
tools is able to synthesize while the other times out. In total,
227 benchmarks were solved by at least one of the tools, with
CEGARSKOLEM performing best in 118 cases, and RSYNTH
performing best in the remaining 109. This result suggests that
no approach is strictly better than the other, and the best choice
will likely depend on the specific instance of the problem.

The performance of QBF solvers when the specification
is realizable invites the question of whether we can find a
way to exploit them in synthesizing unrealizable formulas as
well. It turns out that it is possible to transform an unrealiz-
able formula into a realizable one with the same witnesses
by adding an additional quantifier alternation. This idea is
well known in the context of arithmetic realizability [19].
In our case, given a quantified formula ∀~x.∃~y.f(~x, ~y), we
can construct a formula ∀~x.∃p.(p ↔ ∃~y.f(~x, ~y)), which is
always true. By a few simple transformations, we obtain
∀~x.∃p.(¬p∨∃~y.f(~x, ~y))∧(p∨∀~y.¬f(~x, ~y)), and by renaming
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variables and moving the quantifiers to the front, the resulting
formula is ∀~x.∃p.∃~y.∀~z.((¬p ∨ f(~x, ~y)) ∧ (p ∨ ¬f(~x, ~z)).
Because of the additional quantifier, the formula is no longer
in 2QBF, and therefore can no longer be handled by CADET,
but other certifying QBF solvers might be able to synthesize it.
Note additionally that the Skolem function for the additional
existentially quantified variable p now corresponds exactly
to the realizability precondition. This might be a promising
approach, but a number of factors will have to be taken
into consideration. Besides having to deal with the additional
quantifiers, if f is originally in CNF, its negation in the
second conjunct is now in DNF. Dealing with this may impose
another computational challenge. We leave to future work to
explore the possibilities of this transformation and the resulting
synthesis approach.

V. DISCUSSION

In this paper, we adapted techniques for processing factored
representations of Boolean formulas using BDDs to the prob-
lem of Boolean functional synthesis. We show that these tech-
niques allow synthesis from a number of specifications which
cannot be handled when using a monolithic representation.

We performed an experimental comparison of our tool
RSYNTH with other tools for Boolean synthesis, namely the
CEGAR-based tool CEGARSKOLEM [9] and the QBF solver
CADET [11]. Our experiments show the QBF approach to be
very efficient when the specification is realizable, significantly
outperforming the others. However, QBF solvers are not
generally able to synthesize functions for unrealizable spec-
ifications, which motivates the use of alternative approaches
such as the one presented in this paper. For unrealizable
specifications, the results of the comparison between RSYNTH
and CEGARSKOLEM vary, with the best tool depending on
the specific instance. Therefore, we conclude that there is no
single approach that dominates over all cases, rather every tool
is able to handle some specifications that the others cannot.

An advantage of BDD-based techniques lies on their ease
of applicability to synthesis from temporal specifications,
in which Boolean synthesis is a subproblem. The use of
partitioned transition relations is a common technique in
these problems, and BDDs are a popular representation due
to being canonical. Furthermore, these applications usually
require synthesis from unrealizable formulas, where these
formulas represent the subset of winning states in a game.
This suggests that a synthesis approach based on a factored
representation using BDDs might be a good choice for this
problem. Therefore, we are also interested in pursuing forms
of integrating the techniques presented here in frameworks for
temporal synthesis.
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Abstract—SAT-based Property Directed Reachability (PDR)
has become the key algorithmic development for unbounded
model checking of gate-level sequential circuits, but it can be
inefficient when applied to word-level problems with heavy arith-
metic logic. To address this issue, word-level abstraction is often
performed by replacing a whole set of signals with unconstrained
new primary inputs. This paper introduces PDR-WLA, a word-
level abstraction-refinement algorithm integrated into a modified
PDR implementation. The algorithm uses efficient refinement and
re-uses reachability information across iterations of refinement.
PDR-WLA was implemented in ABC and evaluated on a large
set of industrial Verilog designs. Experimental results show
significant speedups on hard problems compared to the original
PDR and to a naive word-level abstraction-refinement method.

I. INTRODUCTION

Unbounded model checking (UMC) on a Register-Transfer-
Level (RTL) circuit is hard but has important applications in
the IC design industry:

1) Sequential equivalence checking (SEC). An RTL circuit
is sequentially synthesized by retiming, clock-gating,
pipelining etc., and UMC is required for proving the
correctness of the synthesis.

2) Property checking. UMC is used to prove that a circuit
always satisfies a set of given properties.

UMC is challenging at the bit level, and even more so at
the word level, where complex arithmetic operators, such as
multipliers, adders, and variable shifters, are involved.

IC3 [3] or Property Directed Reachability (PDR) [8] is
considered the best algorithm for bit-level UMC. Abstraction
has been a key development and is widely used. Different
methods of abstraction include the following. Word-level ab-
straction [12], [1], [5], [4], [14], [11] can be effective by
abstracting away heavy arithmetic logic. Localization abstrac-
tion [19] is a method where gates or signals are replaced
by new unconstrained primary inputs. Counterexample guided
abstraction and refinement (CEGAR) [7] is a framework for
iterating abstraction and refinement, where refinement is based
on the analysis of spurious counterexamples.

We propose PDR-WLA, an efficient CEGAR-based word-
level localization algorithm integrated with PDR. Given a
word-level design, PDR-WLA starts with the extreme abstrac-
tion with all hard signals (e.g., outputs of multipliers, adders,
etc.) abstracted (i.e. replaced by new primary inputs). Next, the
resulting word-level abstraction is bit-blasted and given to a
modified PDR algorithm. If a counterexample (CEX) is found,
PDR-WLA simulates it on the original design to check if it is

real. If so, PDR-WLA reports it and terminates; otherwise, the
CEX is spurious and is used to refine the current abstraction.
Then a new iteration begins with the refined abstraction.

The main contributions embodied in PDR-WLA are that it
• integrates word-level abstraction with PDR efficiently,
• uses a new refinement strategy that takes advantage of

structural and proof-based analysis of spurious coun-
terexamples, and

• re-uses reachability information (reachability clauses) de-
rived in previous iterations.

PDR-WLA is implemented and available in the public
verification tool ABC [6] (command %pdra). It was evaluated
on a set of 195 industrial Verilog RTL benchmarks. PDR-
WLA is capable of solving 18 hard problems not solved by
PDR. The results also show that 1) reusing previously derived
reachability clauses improves performance significantly and 2)
the new refinement strategy is the most effective compared to
several others proposed and tested.

This paper starts with background material in Section II.
PDR-WLA is presented in Section III. Various refinement
strategies are given in Section IV. Related work is discussed
in Section V. Experiments are presented in Section VI. Con-
clusions and future work are discussed in Section VII.

II. PRELIMINARIES

A. The UMC problem

The input is a word-level circuit given in structural Verilog
containing bit-vector (BV) signals, including primary inputs
(PIs), primary outputs (POs), flip flops (FFs), and internal
signals. Flip flops have reset values as initial states1. A design
is modeled as a finite state machine (FSM).

Definition 1. An FSM is a tuple M = (I,O, S, Init, T ) where
I is the set of PIs, O is the set of POs, S is the set of FFs, Init
is the set of initial states, and T is the set of (deterministic)
transition relations where T ⊆ I × S × S. If (i, s, s′) ∈ T ,
there exists a transition from s to s′ under i.

The input word-level circuit is assumed to contain a single
FSM and a single output, out, representing a property to be
checked. If the problem is to prove equivalence between two
designs, it is assumed that a miter circuit, M , has been created
by merging all PIs and merging FFs if their correspondences
are known. The miter’s output, out, is a Boolean signal, which

1Reset values are either constants or free variables (unknown value X).
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is the OR of the pairwise XORs of the corresponding outputs
of the two designs. Thus out = 1 if the two designs are
different. Similarly for property checking, out is the output
of a monitor, and out = 1 if the property fails. In terms of
linear temporal logic (LTL), the UMC problem is formulated
as M |= G¬out, i.e. out is never 1 if the property holds.

A UMC solver either reports a counterexample (CEX)
that falsifies the property or produces an inductive invariant
proving that the property holds globally.

Definition 2. A counterexample (CEX) is a sequence of PI
assignments driving the design from an initial state into a state
falsifying the property.

Definition 3. An inductive invariant (Inv) proving a property
P (s) is a predicate function satisfying the properties below.

1) Init(s) =⇒ Inv(s)
2) Inv(s) ∧ T (i, s, s′) =⇒ Inv(s′)
3) Inv(s) =⇒ P (s)

B. Property Directed Reachability

It is assumed that the reader is familiar with the basic ideas
underlying the PDR [8]. Algorithm 1 outlines a high-level view
of PDR. It maintains a list of sets of clauses, called the PDR
trace: Ω = (R0, R1, . . . , RN ). Every Rj is a set of clauses that
over-approximates the set of states reachable from the initial
states within j steps. These clauses in a PDR trace are called
reachability clauses.

Definition 4. Given an FSM, M = (I,O, S, Init, T ), and a
property P , a PDR trace is a sequence of predicate functions,
Ω = (R0, R1, . . . , RN ), such that

1) R0(s) = Init(s)
2) Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N .
3) Rj(s) ∧ T (i, s, s′) =⇒ Rj+1(s′) for 0 ≤ j < N .
4) Rj(s) =⇒ P (s) for 0 ≤ j < N . 2

Algorithm 1 PDR

Input: GM . GM : the bit-level input circuit
Output: status ∈ { SAT, UNSAT }

1: Ω ← {Init} . Ω: the PDR trace
2: k ← 0 . k: the PDR depth
3: while true do
4: Ω, cex ← RECBLOCKCUBE(GM , Ω, k)
5: if cex 6= ∅ then
6: return SAT . Found a real CEX
7: k ← k + 1
8: Ω ← Ω ∪ {>} . Open a new frame
9: Ω ← PROPAGATEBLOCKEDCUBES(GM , Ω)

10: if Ω contains a fixed point then
11: return UNSAT

PDR starts with the trace Ω with only one element R0 =
Init. It then tries to strengthen the trace by recursively

2RN (s) does not necessarily imply P (s), i.e. RN (s) can contain bad
states. Recursive blocking (line 4) tries to remove bad states from RN (s).
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(a) The original circuit with four
arithmetic operators, where x
and y are primary inputs, 2 is a
constant, ! = is the complement
of a comparator, & is a bit-wise
AND, and out is the negation of
the property.
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(b) An abstraction derived from
the original by replacing the 4
arithmetic operators with 4 new
primary inputs, a, b, c, and d.

Fig. 1: A combinational circuit illustrating word-level abstrac-
tion. out ≡ 0, UNSAT, since 2×x ≡ x+x, which forces out
to be constant 0.

blocking bad cubes3 (line 4). If a bad cube intersects with
the initial states, then a CEX is returned. Otherwise, the last
element Rk of the trace now satisfies the property P . PDR
then adds a new element > (empty set of clauses) to Ω, and
tries to propagate clauses (using induction) from R1 to Rk
(line 9). If a fixed point (Rj = Rj+1) is found, the problem is
declared UNSAT and the inductive invariant (Rj) is returned.

The details of procedures RECBLOCKCUBE and PROPA-
GATEBLOCKEDCUBES can be found in [8].

C. Word-level abstraction

In this paper, localization abstraction [19] is used. Given
a word-level circuit and a set of target signals (e.g., outputs
of arithmetic operators), an abstraction is created by replacing
the target signals with free variables called pseudo PIs (PPIs).
Localization is not necessarily restricted to flip flops; any
signal can be abstracted, similar to GLA [16].

Example 1. Consider the circuits in Figure 1. The PO, out,
in Figure 1a is constant-0, since both 2 × x ≡ x + x
and 2 × y ≡ y + y are true. Figure 1b is the result of
abstracting all 4 arithmetic operators by replacing their outputs
with PPIs. Note that while the example is combinational for
illustration purposes, the abstraction scheme applies generally
to sequential circuits and UMC problems.

Definition 5. Given an original circuit M and an abstraction
A of M , a CEX of A is real if it can falsify the property on
M (make out = 1). Otherwise, it is spurious.

3A cube of states containing one where the property fails (a bad state).
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D. Simple CEGAR (S-CEGAR)

Algorithm 2 (S-CEGAR) is an example of a simple inte-
gration of CEGAR and PDR at the word level. The algorithm
starts by abstracting all signals in the set S (e.g., outputs of all
specified arithmetic operators). Next, an abstraction-refinement
loop is entered where each iteration begins by creating a word-
level abstraction based on the current set B, the set of signals
to be abstracted away. The abstraction is then bit-blasted and
solved by a bit-level PDR. If the solver returns UNSAT, the
property is proved. Otherwise a CEX to the abstraction, cex,
exists and is then simulated on the original circuit (WM ) to
check if it is real. If yes, the property is falsified and cex is
returned; otherwise cex is analyzed to derive a set of signals
(∆B) that, if un-abstracted, can block cex. A new abstraction,
with ∆B un-abstracted, is then created and a new iteration
begins.

Algorithm 2 Simple CEGAR (S-CEGAR)

Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }

1: Iterations ← 1
2: B ← S . B: the set of abstracted signals
3: while true do
4: WA ← CREATEABSTRACTION(WM , B)
5: GA ← BITBLAST(WA)
6: cex ← PDR(GA)
7: if cex 6= ∅ then
8: if ISREALCEX(WM , cex) then
9: return SAT

10: else
11: ∆B ← REFINE(WM , GA, B, cex)
12: B ← B\∆B
13: Iterations ← Iterations+ 1

14: else
15: return UNSAT

In each iteration of S-CEGAR, a new PDR solver is used
and reachability clauses are recomputed from scratch. This is
inefficient when the algorithm needs many iterations to find a
final abstraction, i.e. one that proves the property.

III. PDR WITH WORD-LEVEL ABSTRACTION

A. The algorithm

PDR-WLA uses an important insight; PDR traces can be
re-used between iterations if abstractions are monotone. The
idea is similar to previous work of PDR with abstraction [18],
[10], extending it to the word level.

Similar to PDR, PDR-WLA starts with the trace Ω con-
taining only R0 = Init. One difference is that PDR-WLA
works on an abstraction instead of the original circuit. Similar
to S-CEGAR, it begins by abstracting all targeted signals S,
resulting in a word-level abstraction (WA), which is then bit-
blasted into a circuit (GA). As with PDR, PDR-WLA tries
to recursively block bad cubes at depth k with the abstract

model GA and the trace Ω. If a bad cube intersects with the
initial states, then a CEX, cex, is returned and checked on
the original circuit (WM ). If cex is also a CEX on WM , the
property is falsified; otherwise cex is used to compute a subset
(∆B) of B to refine the current abstraction (∆B will be un-
abstracted). Note that a nonempty ∆B exists because cex can
always be blocked by un-abstracting some signals. Set B is
updated by removing ∆B. A new abstraction is derived for the
next iteration of recursive blocking. If PDR-WLA successfully
blocks bad cubes at the current depth k, then it increments the
depth by one and adds a new element (>) to Ω. It then tries to
propagate the clauses in Ω using induction. If a fixed point is
found, then the property holds; otherwise, blocking bad cubes
at the new depth will be tried (line 10).

Note that PDR-WLA can be viewed as a PDR algorithm
with on-the-fly word-level abstraction. The same trace Ω is re-
used throughout the computation, even though the current ab-
straction is continuously refined. Thus, important reachability
information derived in previous iterations is re-used, resulting
in a significant speedup over S-CEGAR.

Algorithm 3 PDR with Word-Level Abstraction (PDR-WLA)

Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }

1: Iterations ← 1
2: Ω ← {Init} . Ω: the PDR trace
3: k ← 0 . k: the PDR depth
4: B ← S . B: the set of abstracted signals
5: WA ← CREATEABSTRACTION(WM , B)
6: . WA: the word-level abstraction
7: GA ← BITBLAST(WA)
8: while true do
9: while true do

10: Ω, cex ← RECBLOCKCUBE(GA, Ω, k)
11: if cex 6= ∅ then
12: if ISREALCEX(WM , cex) then
13: return SAT
14: else
15: ∆B ← REFINE(GA, B, cex)
16: B ← B\∆B . Un-abstract some signals
17: WA ← CREATEABSTRACTION(WM , B)
18: GA ← BITBLAST(WA)
19: Iterations ← Iterations+ 1

20: else
21: break
22: k ← k + 1
23: Ω ← Ω ∪ {>} . Open a new frame
24: Ω ← PROPAGATEBLOCKEDCUBES(GA, Ω)
25: if Ω contains a fixed point then
26: return UNSAT

B. Analysis of PDR-WLA

PDR-WLA represents a general framework for word-level
abstraction. It is complementary to other abstraction tech-
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niques. The only requirement for soundness is that the derived
sequence of abstractions (line 17) is monotone:

Definition 6. Let {Aj} be a sequence of abstractions, let {Tj}
be their transition relations, and let {Initj} be their initial
states. {Aj} is monotone if Tj+1(i, s, s′) =⇒ Tj(i, s, s

′)
and Initj+1(s) =⇒ Initj(s).

Theorem 1. Let M and A be FSMs where TM =⇒ TA
and InitM =⇒ InitA. Given a property P , if Ω =
(R0, R1, . . . , RN ) is a PDR trace of A with P , then Ω′ =
(InitM , R1, . . . , RN ) is a PDR trace of M with P .

Proof. Since Ω is a PDR trace of A with P , we have

Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N

Rj(s) ∧ TA(i, s, s′) =⇒ Rj+1(s′) for 0 ≤ j < N

Rj(s) =⇒ P (s) for 0 ≤ j < N

Note that Ω′ is the same as Ω, except that R0 is replaced by
InitM . Since InitM =⇒ R0 and TM =⇒ TA, we have

InitM (s) =⇒ R1(s)

InitM (s) ∧ TM (i, s, s′) =⇒ R1(s′)

Rj(s) ∧ TM (i, s, s′) =⇒ Rj+1(s′) for 1 ≤ j < N

InitM (s) =⇒ P (s)

Therefore by Definition 4, Ω′ is a PDR trace of M with P .

Theorem 2. Algorithm 3 is sound and complete.

Proof. Soundness. It is sound to start a new iteration with
the previous trace (line 10) because each iteration makes the
current abstraction tighter by removing signals from B. Note
that R0 is the initial states of the original circuit (WM ) and
is shared by all abstractions. Similarly any state variable in
clauses from a previous abstraction must remain in the next
abstraction because abstractions are monotone. Thus, a trace
can be safely copied over to the next abstraction (Theorem 1).
Finally, Algorithm 3 is sound because it returns UNSAT only
if it finds an inductive invariant proving the property.

Completeness. The algorithm returns SAT only if a CEX is
real. Convergence follows because, in each iteration, the size
of B decreases by at least one (otherwise the CEX must be
real). The number of iterations is bounded by |S|.

IV. REFINEMENTS

Given a spurious CEX, cex, the goal of refinement is to
identify a subset of signals ∆B in B, such that if ∆B is
removed from B, then cex is blocked in the next iteration.
We say that ∆B is un-abstracted.

A. Simulation-based refinement (SBR)

A simple refinement strategy is to simulate cex on the
original circuit (WM ) and compare the PPI values (in cex)
with their counterparts in WM . If the values of a signal s do
not match, then s is a refinement candidate, i.e. a candidate
for un-abstraction. If all such candidates are un-abstracted,
the property must hold; thus cex is blocked. However, this

approach often results in too many candidates being un-
abstracted, and thus is not a good strategy.

A more advanced way is to use a minimized CEX [15],
in which some inputs are assigned to X (don’t care) while
the minimized CEX still falsifies the property using ternary
simulation. Those remaining concrete assignments are called
care-set signals, meaning that, if any assignment in the set is
changed, the output would be changed also. This provides a
set of good candidates for refinement. If all signals in the care
set are un-abstracted, then cex is very likely to be blocked4.

B. Limitations of simulation-based refinement

While simulation-based methods are often good enough in
many applications [16], [10], frequently they do not find a
minimal set to un-abstract.

Example 2. Consider the original circuit and its abstraction in
Figure 1. Suppose a CEX to the abstraction is found (Fig. 1b),
where the assignments of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

For this example, the care set C returned by counterexample
minimization would be all PPIs, C = {a, b, c, d}. If any PPI
is assigned an X , the PO would become X as well; thus all
PPIs are in the care set. However, it is clear that the set is
not minimum because only {a, b} or {c, d} needs to be un-
abstracted to get a final abstraction that results in UNSAT.

Therefore, a more effective proof-based strategy for refine-
ment is proposed.

C. Proof-based refinement (PBR)

The proposed refinement is an enhanced version of the one
used in UFAR [11]. The procedure is presented, followed by
an analysis and comparison with other proof-based methods
in the next subsection.

The main idea is that if cex is spurious, then if the original
circuit (M ) is simulated with cex, the property holds in all
time frames. This implies that the BMC Formula (1) below is
UNSAT, where it is the input i at time t, st is the state variable
at time t, k is the depth of cex, β(·) denotes the assignment
function of cex, and out is the output signal which, in general,
can depend on the input i and the current state.

InitM (s) ∧
k−1∧

t=0

TM (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(it = β(it))

(1)

Next, multiplexers are introduced to select between the con-
crete version and the abstracted version of a signal. If assump-
tions are made such that all the concrete versions are selected
initially, then the resulting BMC formula is still UNSAT and

4It is possible that each care-set signal is fed by a tree, without overlaps
with the trees of other care-set signals. Even if all the care-set signals are
un-abstracted, this will not provide enough constraints, and therefore cex is
not blocked.
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a modern SAT solver, such as MiniSat [9], returns the final
conflict clause. This contains a subset of the assumptions
sufficient for UNSAT. This is an efficient variation of finding
an unsat core, and the subset returned is a candidate for ∆B.

The procedure operates in four steps:
1) Starting with the original circuit (WM ), for each signal s

in B, introduce two new PIs, sel and ppi, where sel is a
Boolean signal and ppi is a bit-vector signal consistent5

with the signal s. Replace s with s′ = ITE(sel, s, ppi)
where ITE is the if-then-else operator. Depending on
the value of sel, either the concrete signal (s) or the
abstracted one (ppi) becomes the new signal s′.

2) Denote the circuit created in Step 1 as N and unroll it
with the values of cex plugged in, and keep sel and ppi
as the remaining PIs. The cex values plugged in are initial
states and PIs at each time frame.

3) Solve the BMC query (2) below, which is guaranteed to
be UNSAT. Note that β(·) is the assignment function of
cex, pit is the original PIs at time t, Xt is the set of
sel inputs at time t, and xtn is the sel input for the n-th
replaced signal at time t. By propagating xtn = 1 for
all t and n, Query (2) is reduced to (1) by construction
(sel = 1 means that the concrete version is chosen).

InitN (s) ∧
k−1∧

t=0

TN (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(pit = β(pit)) ∧
k∧

t=0

|Xt|∧

n=1

xtn

(2)

4) Derive a subset ∆X of X using the assumption interface
of a modern SAT solver, and determine ∆B from ∆X6.

This procedure is different from conventional proof-based
methods. Details will be discussed in Section IV-D.

Example 3. Consider the circuits in Figure 1. Suppose a CEX
to the abstraction (Fig. 1b) is obtained, where the assignments
of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

Circuit (N ), derived by introducing ITEs for each PPI, is
shown in Figure 2. If all sel PIs {s1, s2, s3, s4} are 1, then the
circuit is reduced to the original. Next, PI values (x = 0, y =
0) are plugged in, and PPIs {a, b, c, d} are left unconstrained.
The SAT solver is called to determine if out can be 1. The
result must be UNSAT with the assumptions of the sel PIs
being all 1. In this case, the subset returned would be either
{s1, s2} or {s3, s4}, which is the minimum set needed. This
example demonstrates that PBR can pinpoint a precise set for
refinement while a simulation-based approach only gives a
rough approximation.

5Signals are consistent if they have the same widths and signedness.
6In our implementation, there is only one free variable xn associated with

the replaced signal, i.e. xn ≡ x0n ≡ x1n ≡ . . . ≡ xkn for 1 ≤ n ≤ |B|.
This way, we have |B| assumptions (instead of (k+ 1)|B|) and the returned
∆X is exactly our candidate for ∆B.
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Fig. 2: Example for proof-based refinement, where x and y
are original PIs, a-d are pseudo PIs, s1-s4 are sel PIs. If the
assignments of x and y in cex are plugged in, and assumptions
are made that s1-s4 are all 1, then out is constant-0 (UNSAT).

D. Comparison of refinement strategies

Two additional proof-based refinement strategies, PBR-A
and PBR-B, are presented compared with SBR (Sec. IV-A)
and PBR (Sec. IV-C).

Given a spurious CEX, cex, there are at least two more ways
to formulate an UNSAT query that can be used for proof-based
refinements. β(·) is the assignment function of cex.

PBR-A. This considers Formula (3) below. The idea is that
if the values in cex are plugged into the abstraction TA, then
out must be 1 at some time frame t. Therefore, the formula
asserting that out is 0 for all time frames, with cex plugged
in, must be UNSAT. One can then compute the subset of PPIs
sufficient for UNSAT, deriving a refinement. Note that PBR-A
does not use the information of the original circuit and can be
considered as a proof-based version of SBR.

InitA(s) ∧
k−1∧

t=0

TA(it, st, st+1) ∧
k∧

t=0

¬out(it, st)

∧
k∧

t=0

(it = β(it))

(3)

PBR-B. This uses Formula (4) below. Let pit and ppit be
the original PIs and the PPIs at time t, respectively. Similar to
PBR (Formula 2), it takes the original circuit into account by
introducing MUXes selecting between PPIs and the original
signals, creating a circuit N . The only difference with PBR is
that PBR-B also plugs in the assignments of the PPIs in cex
into the formula.

InitN (s) ∧
k−1∧

t=0

TN (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(pit = β(pit) ∧ ppit = β(ppit)) ∧
k∧

t=0

|Xt|∧

n=1

xtn

(4)

136

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



The four refinement strategies are compared using the two
examples below.

Example 4. Consider the circuits in Figure 1. Suppose a CEX
is obtained with the assignments of PIs and PPIs

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

SBR and PBR-A would refine all PPIs {a, b, c, d}. PBR-B
and PBR would refine only either {a, b} or {c, d} to obtain a
final abstraction. This shows that PBR can get a smaller final
abstraction by refining fewer PPIs compared to using SBR and
PBR-A.

Example 5. Consider slightly different circuits from those in
Figure 1: the AND gates (&) are now replaced by OR gates
(|) in both the original circuit and its abstraction. Suppose a
CEX is obtained with the assignments of PIs and PPIs

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 0).

SBR, PBR-A, and PBR-B all would refine {a, b}, which is
not a final abstraction, requiring another iteration. PBR would
refine all PPIs {a, b, c, d}, which is a final abstraction. This
shows that PBR is able to converge with less iterations than
the other three. The insight is that PBR refutes all spurious
CEXes under the same assignments of original PIs in cex,
while the others only refute CEXes with the same values of
both PIs and PPIs.

E. Proposed refinement (PBR and MFFC)

From previous analysis, PBR provides a good set of can-
didate signals that, if un-abstracted, would block CEXes.
However, we observed that in many cases, the signals in the
fanin cones of those candidate signals would appear in the next
iteration of refinement, implying that an additional structural
analysis can further improve the speed of convergence.

The main idea is to use the maximum fanout free cones
(MFFC) of those candidate signals. The MFFC of a signal s
is a subset of its fanin cone, where each path from a signal in
the MFFC to the POs passes through s, i.e. the MFFC of a
signal contains all the logic used exclusively by the signal. If
a signal is abstracted, its MFFC would be abstracted. On the
other hand, if a signal is un-abstracted, its MFFC is better un-
abstracted also; otherwise, additional iterations may be needed.

In our experience, un-abstracting all candidate signals as
well as those in their MFFCs often converges faster, i.e.
reaching a final abstracion after fewer iterations. Thus, the
proposed refinement operates in three steps:

1) Compute ∆BPBR, a set of candidate signals, using PBR.
2) Compute ∆BMFFC , the set of signals in the intersections

of the MFFCs of ∆BPBR and B.
3) Derive set ∆B: ∆B = ∆BPBR ∪∆BMFFC .

V. RELATED WORK

A. Word-level abstraction and model checking

Most previous work is bounded in that it requires unrolling
a circuit to a certain depth k, and then they use SMT

solvers [12], [1], [5], [4], [13]. These methods rely on Bounded
Model Checking (BMC) [2] and/or k-induction [17]. This
becomes inefficient when deep unrolling is needed. In prac-
tice, BMC- and induction- based approaches are efficient in
finding CEXes, but often incapable of producing an inductive
invariant, which is required for UMC problems. PDR-WLA
addresses unbounded problems and does not require unrolling.

Welp and Kuehlmann proposed a generalization of PDR
to the theory of quantifier free formulas over bit-vectors
(QF BV) [21], [20]. Hybrid simulation and mixed types
of atomic reasoning units are used for inductive and CEX
generalization. However, they do not re-use PDR traces nor
do they perform word-level abstractions.

The closest work to PDR-WLA is AVERROES [14], a
word-level algorithm integrating CEGAR and PDR. It ab-
stracts wide data-paths into uninterpreted predicates, constants,
terms, and functions, and solves the abstraction with an SMT-
based PDR (where SMT solvers are used instead of SAT). The
main differences between PDR-WLA and AVERROES are
• PDR-WLA re-uses PDR traces derived in previous itera-

tions; AVERROES does not.
• PDR-WLA uses PBR and MFFC as the main refinement

strategy; AVERROES uses strategies similar to SBR,
PBR-A, and PBR-B.

UFAR [11] is a word-level algorithm that combines CEGAR
and bit-level model checking. It abstracts arithmetic operators
with black boxes as well as uninterpreted function constraints,
and solves the abstraction with a portfolio of tools, including
BMC and PDR. However, UFAR does not reuse PDR traces
nor does it perform MFFC refinement.

B. PDR with abstraction

Vizel et al. proposed L-IC3 [18], a bit-level IC3 with
localization abstraction, where state variables are the tar-
geted signals and different abstractions are used in different
time frames. Fan et al. showed that gate-level abstraction
(GLA) [16] can be integrated with PDR [10]. However, both
approaches consider only bit-level problems. At the word-
level, abstracting only state variables may result in aggressive
refinement where the entire logic cone of a flip flop would be
refined, limiting scalability. On the other hand, GLA cannot be
applied directly to the word level. In particular, it mainly uses
SBR without considering MFFC, which could be ineffective
as discussed in Section IV-D.

In contrast, PDR-WLA considers not only flip flops, but
any type of signals, resulting in a finer-grained abstraction and
refinement. Also, it uses specific procedures, PBR and MFFC,
to find a final abstraction faster than the bit-level GLA.

VI. EXPERIMENTAL RESULTS

Experiments were done to evaluate PDR-WLA using dif-
ferent settings. PDR-WLA is part of the public verification
tool, ABC [6] (command %pdra), which can parse word-
level Verilog and transform the resulting design into a bit-level
circuit by bit-blasting. For comparison, S-CEGAR (Sec. II-D,
Algorithm 2) was implemented in ABC (command %abs).
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(a) Running with the default set-
tings, PDR-WLA outperforms S-
CEGAR in many cases but not
all of them.
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(b) With appropriate additional
SAT checking, PDR-WLA is
able to outperform S-CEGAR in
all but one case.

Fig. 3: Comparison of PDR-WLA (%pdra) and S-CEGAR
(%abs). This shows the effectiveness of re-using PDR traces.
Note that PDR-WLA and S-CEGAR would be the same if
no PDR traces can be re-used. Therefore, only 29 cases with
non-zero re-used PDR traces are shown.

The benchmarks used for evaluating PDR-WLA were a set
of 195 industrial Verilog RTL designs. Large arithmetic oper-
ators and multiplexers were the signals targeted for possible
abstraction (set S). A workstation with Intel Xeon E5504
CPUs clocked at 2.0 GHz with 24 GB of RAM was used.
A time-out of 3600 seconds was used on all experiments.

First, we compare PDR-WLA to the original PDR [8], in
which the input Verilog circuit is immediately bit-blasted.
Given a 1-hour time-out, PDR-WLA solves 22 fewer test-
cases than PDR (89 vs. 111), but PDR-WLA manages to solve
18 hard cases not solved by PDR. It is likely that many of
the 22 cases can’t be abstracted, so trying such is a waste
of time. Together they can solve 129 out of 195 benchmarks.
Thus PDR-WLA complements PDR and would work well in
a portfolio-based word-level model checker like [11].

To demonstrate the importance of re-using PDR traces in
PDR-WLA, it was compared with S-CEGAR, which uses a
fresh PDR solver in each iteration and does not preserve the
reachability clauses across PDR runs. The results are shown
in Figure 3, where the x and y axes represent the solving
times of PDR-WLA and S-CEGAR, respectively. In Figure 3a,
PDR-WLA outperforms S-CEGAR in all but eight cases.
After investigation, it turns out that after several iterations
of refinement, an abstraction can become combinationally
UNSAT, implying that the circuit output can be proved UNSAT
with all FFs un-initialized. In those cases, PDR-WLA would
work hard to get a non-trivial inductive invariant while S-
CEGAR proves that the problem is UNSAT after just one SAT
call. To address this problem, PDR-WLA was enhanced to
always check if the problem is combinationally UNSAT when
an iteration begins. The results are shown in Figure 3b, where
PDR-WLA beats S-CEGAR in all but one case.

20 out of the 195 designs were chosen in Table I to give an
idea of details such as expected ranges of iterations needed,

clauses in PDR traces re-used, and the sizes of B (signals to
be abstracted way) in the final abstractions. All are UNSAT;
each is characterized by the number of hard signals.

Definition 7. A hard signal is the output of

1) an adder, subtractor with width of at least 8, or
2) a multiplier, divider, modulus with width of at least 4, or
3) a multiplexer with width of at least 8.

The initial set of targeted signals (S) is chosen from hard
signals with an upper bound of 50 for each of the three
categories (e.g., there can be at most 50 adders in S). For each
test-case, we show the runtime of six solvers: a) one PDR,
b) one S-CEGAR (%abs), and c) four PDR-WLA versions
(%pdra) with different refinement strategies (Sec. IV).

Observations from Table I are given below.
1) PDR-WLA vs. PDR. PDR-WLA generally is more

efficient when proving hard problems for which small
abstractions can be derived. On the other hand, if a
problem cannot be abstracted well (e.g., case 20), PDR
performs better.

2) S-CEGAR vs. PDR-WLA. An important factor in the
comparison is the number of re-used clauses in all previ-
ous PDR traces. If the number is high, a high speedup in
PDR-WLA is usually observed. Case 20 is an exception
to this, where the re-use number is non-trivial but PDR-
WLA is still slower. The reason is that the design
becomes combinationally UNSAT after 3 iterations. This
problem can be fixed by additional SAT calls as shown
in Fig. 3. Note that there can be 0 re-used clauses (e.g.,
cases 16-19), since all refinements occur at k = 0 and no
bad states are blocked at k = 1. If the trace Ω contains
only R0 = Init, no clause can be re-used in the next
iteration.

3) SBR (S2) vs. PBR (S5). PBR uses more iterations and
derives smaller final abstractions (large |B|) in most cases,
implying that PBR leads to more fine-grained and focused
refinements.

4) PBR-B (S3) vs. PBR (S5). PBR uses less iterations
to find a final abstraction, while PBR-B takes more
iterations, which can be avoided by a proper analysis (see
Example 5). PBR-B can derive a small final abstraction,
but large numbers of iterations can cause poor perfor-
mance. Note: comparison with PBR-A was not done due
to its similarity to SBR.

5) Without MFFC (S4) vs. with MFFC (S5). MFFC can
be crucial in preventing unnecessary refinement iterations.
This is critical in cases 12, 13, 16, 18, and 19.

VII. CONCLUSIONS AND FUTURE WORK

PDR-WLA efficiently integrates PDR with word-level ab-
straction. It re-uses PDR traces, or reachability clauses, derived
in previous iterations of refinement. An effective refinement
strategy, PBR with MFFC, was developed which was shown
capable of deriving small final abstractions using fewer itera-
tions. PDR-WLA was implemented in the public verification
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TABLE I: Detailed experimental results for 20 unsatisfiable word-level test-cases. #HardSignals is the number of hard signals
(Definition 7). |S| and |B| are sizes of the set of the initial targeted signals (S) and the set of signals to be abstracted away
for each iteration (B) in Algorithm 3. #ReusedClauses is the number of clauses in PDR traces re-used by PDR-WLA. The
number is 0 if all refinements occur at k = 0. The details of SBR, MFFC, PBR, and PBR-B can be found in Section IV.

pdr
%abs (S1)

SBR
+MFFC

%pdra (S2)
SBR

+MFFC

%pdra (S3)
PBR-B 
+MFFC

%pdra (S4)
PBR

%pdra (S5)
PBR

+MFFC
S1 S2 S3 S4 S5 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1252 100 479.32 170.50 196.46 369.95 145.23 164.67 2 2 3 4 4 11 110 181 181 88 88 98 92 92
2 1437 100 1759.97 3253.29 956.76 931.43 914.51 4 4 11 4 4 7438 8129 1493 1493 79 79 81 81 81
3 1437 100 1201.74 653.70 326.80 308.24 306.83 335.50 2 2 3 3 3 17 100 155 155 87 87 97 94 94
4 1437 100 1800.60 1529.84 1299.36 583.27 597.26 4 5 11 5 5 4981 11061 1732 1732 82 79 82 77 77
5 1437 100 931.73 753.11 401.78 272.46 169.87 170.91 2 2 3 3 3 19 84 114 114 87 87 96 90 90
6 1437 100 2531.39 2799.57 1128.25 672.48 686.62 4 4 11 6 6 3661 6804 2694 2694 78 78 81 78 78
7 1437 100 1383.61 2521.83 862.04 925.89 410.96 415.29 5 4 11 6 6 2080 7241 3317 3317 78 78 85 79 79
8 1252 100 925.41 1213.75 538.48 472.20 225.96 227.98 4 4 11 6 6 2518 10122 3889 3889 78 78 83 79 79
9 1437 100 1984.69 949.32 2573.81 387.51 366.87 4 4 8 5 5 2304 9868 2198 2198 80 79 82 77 77

10 1437 100 850.77 391.41 302.57 766.21 242.32 225.09 2 2 5 5 5 113 625 693 693 90 90 95 94 94
11 1437 100 1151.91 2060.92 896.89 958.62 372.40 349.45 4 4 10 5 5 2456 7017 1776 1776 78 78 80 79 79
12 133 101 13.61 675.78 10.38 4 4 17 17 10 0 2486 0 0 11 11 21 27 30
13 133 101 15.00 624.42 8.99 4 4 16 19 10 0 1713 0 0 15 15 21 26 30
14 94 75 763.06 197.19 295.68 112.98 6 6 8 11 6 135 228 551 139 3 3 2 21 3
15 95 75 1685.29 745.23 259.12 816.54 7 7 8 11 6 147 115 475 151 3 3 1 21 3
16 82 82 545.37 507.48 417.23 3 3 4 12 2 0 0 0 0 12 12 0 0 33
17 72 72 353.69 124.98 128.85 132.70 77.52 113.61 9 9 14 18 9 0 0 0 0 16 16 16 14 17
18 58 58 1684.21 1343.36 1237.67 1270.25 861.53 3 3 4 9 2 0 0 0 0 13 13 13 13 13
19 2150 103 1731.26 731.82 732.24 1544.19 789.06 3 3 18 18 12 0 0 0 0 76 76 77 74 77
20 1132 100 414.30 739.13 2138.99 3045.19 2191.30 1296.62 3 3 35 40 33 481 5510 10307 4520 13 13 17 15 9

#ReusedClauses |B| in the last iteration
#Hard
Signals

ID |S|

CPU Time (seconds) Iterations

system ABC and evaluated on industrial benchmarks. PDR-
WLA solves more hard problems and offers speedups, com-
pared to PDR and S-CEGAR.

Future work.
• Integrate BMC into Algorithm 3. The idea is that BMC

can help PDR-WLA find spurious CEXes faster. Early
prototypes suggest speedups in some benchmarks.

• Develop a good way to shrink abstractions. A shrinking
procedure can be useful as shown in GLA [16]. One of
the main challenges is that PDR traces cannot be re-used
if abstractions are no longer monotone.

• Enhance the refinement strategies with constraints. For
example, uninterpreted function constraints are known
to be effective for SEC problems; partial interpretation
constraints can also be useful. The challenge is to derive
and apply constraints efficiently and automatically.
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Abstract—In recent years, IC3 has enjoyed wide adoption
by academia and industry as an unbounded model checking
engine. The core algorithm works by learning lemmas that,
given a safe property, eventually converge to an inductive
proof. As such, its runtime performance is heavily dependent
upon “pushing” (or “promoting”) important lemmas, possibly
by discovering additional supporting lemmas. More recently,
Quip has emerged to be a complementary extension behind the
reasoning capabilities of IC3 as it allows it to target particular
lemmas for pushing. This also raises the following question: which
lemmas should be promoted? To that end, this paper extends the
reasoning capabilities of IC3 and Quip using special SAT queries
to find support sets that represent fine-grained information on
which lemmas are required to push other lemmas. Further, this
paper presents an IC3-based algorithm called Truss (Testing
Reachability Using Support Sets) that uses support sets to identify
sets of lemmas that may be close to forming an inductive proof.
The set is targeted for promotion as a cohesive unit. If any of
the lemmas cannot be promoted, the entire set is abandoned
and a new set excluding that lemma is found. In the presented
framework, there are two reasons why a lemma cannot be
promoted: either because it blocks a known reachable state (in
which case, the lemma is permanently marked as bad), or because
lemma promotion exceeds a specified amount of effort (in which
case the lemma is temporarily marked as ugly). Intuitively, the
proposed approach allows the algorithm to construct a proof
more quickly by focusing on the important yet easily-pushed
lemmas. Experiments on the HWMCC’15 benchmark set show
a significant improvement against existing practices. Compared
to Quip, our algorithm solves 17 more problem instances and it
offers an impressive 1.77x speedup.

I. INTRODUCTION

Formal verification remains one of the fastest growing seg-
ments in verification [1]. Unbounded model checking, which
determines if particular states are reachable in a circuit, is
a problem of fundamental importance in this area. IC3 [2],
[3] has established itself as a state-of-the-art unbounded
model checker and has seen wide adoption in industry [4].
More recently, the closely related technique of Quip [5]
has emerged with better run time performance and greater
reasoning capabilities. Any improvements to IC3 or Quip can
therefore have wide-reaching impact in formal verification.

Both Quip and IC3 aim to construct an inductive invariant
proving a given safety property. They share similar core
functionality. A Boolean Satisfiability (SAT)-based procedure
is used to detect states that can reach a property violation,
which are referred to as counter-examples-to-induction (CTIs).
When a CTI is detected, the algorithm tries to learn a lemma
that explains why the state is not reachable in a bounded

number of steps called the lemma’s level. Through this pro-
cedure, the algorithm learns and refines a sequence of over-
approximations of the states reachable at each level. This se-
quence is known as the inductive trace, and the approximation
at each level is called a frame. An additional pushing step
promotes lemmas from one level to the next if their current
frame is strong enough. The run time performance of these
algorithms is dependent on their ability to learn and promote
relevant lemmas.

This paper presents an algorithm called Truss (Testing
Reachability Using Support Sets) that leverages the features of
modern incremental SAT solvers to compute lemma supports
and the reasoning capabilities of Quip to encourage the
promotion of highly relevant lemmas that are easy to promote.
In a nutshell, special SAT queries are used to identify a set of
lemmas that participate in a bounded proof of the property, and
thus may potentially appear in a safe inductive invariant. This
set is targeted for promotion as a cohesive unit. If any lemma
in the set fails to promote, the entire set is abandoned and one
or more lemmas are temporarily or permanently blacklisted
from appearing in future sets. A new set is found and targeted
for promotion. This process repeats until it can be determined
that no such set is available, at which point the algorithm falls
back to the usual recursive blocking approach used in Quip.

More specifically, a special SAT query identifies a set of
lemmas sufficient to support the promotion of a particular
lemma or the property itself, called its support set [6]. The
query is similar to the one normally used to check for relative
induction, but requires the addition of a unique activation
literal for each lemma. When the property is being promoted to
a new level, a support set is computed from the frame one level
below the property. If one is found, the algorithm attempts
to promote the supporting lemmas first. This is accomplished
by recursively computing their support sets, and attempting to
promote those lemmas, and so on. Lemmas at the bottom level
do not have support sets; they are promoted using the usual
recursive blocking method.

When supporting lemmas cannot be promoted, the algorithm
is allowed to expend a configurable amount of effort to
promote the lemma with recursive blocking. If a lemma still
cannot be promoted, it is marked as ugly and is temporarily
blacklisted from appearing in support sets. As is the case
in Quip this process can reveal reachable states. When a
lemma blocks a known reachable state, it is marked as bad.
Bad lemmas are permanently blacklisted, as they can never
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appear in an inductive invariant. Similarly to Quip, absolute
invariant lemmas are classified as good. Not all lemmas are
classified, some are left in the category of unknown. Ugly
lemmas also fit into the unknown class as it isn’t known
whether they are good or bad. Hence the algorithm partitions
lemmas into classes containing the unknown, the good, the
bad, and the ugly lemmas. This contrasts with the work of [6],
where support sets are used to compute heuristic functions for
each lemma. A special step after pushing attempts to learn new
lemmas in order to promote those that have high heuristic
values. Effort limits are not used and the heuristics require
support sets for every lemma, making the approach presented
in that work computationally expensive.

Experiments on HWMCC’15 circuits demonstrate the ef-
fectiveness of Truss. Compared to Quip, it offers a 1.77x
speedup on the HWMCC’15 benchmark set and solves 17
more problem instances. Further, while Truss processes a
similar number of must-proof obligations, it processes only
one third as many may-proof obligations as Quip. This comes
with the cost of additional overhead to compute support sets,
which is found to represent less than 5% of the total runtime.

The rest of this paper is organized as follows. Section II
presents notation and background material on unbounded
model checking. Section III presents the technique used to
compute support sets. Section IV presents the main algorithm.
Section V presents an empirical evaluation of the approach.
Section VI examines alternative approaches and related work.
Finally, section VII concludes the paper.

II. PRELIMINARIES

A. Notation
The following terminology and notation is used throughout

this paper. A literal is either a variable or its negation. A cube
is a conjunction of literals. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A clause or a cube can be treated as
a set of literals, and a CNF formula as a set of clauses. For a
CNF formula F , c ∈ F means that the clause c appears in F .
Similarly l ∈ c means that the literal l occurs in c.

Consider a finite transition system, and let V be the state
variables of the system. The primed versions V ′ = {v′|v ∈ V}
represent the next-state functions. That is, for each v ∈ V , v′
is a binary function of the current state and input defining
the next state for v. For any formula F over V , the primed
version F ′ represents the same formula with each free variable
v ∈ V replaced by v′. A model checking problem is a tuple
P = (Init, T , Bad) where Init(V) and Bad(V) are CNF
formulas over V representing the initial states and the unsafe
states, respectively. States that are not unsafe are called safe
states. The transition relation T (V,V ′) is a CNF formula over
V ∪ V ′. It is encoded such that T (~v,~v ′) is satisfiable iff state
~v can transition to state ~v ′. States are called i-step reachable
if they can be reached in i or fewer steps from an initial state
under T . States that are i-step reachable for some value of i
are reachable.

For any formula F over V , a state ~v that satisfies F (i.e.,
F (~v) = 1) is called an F -state. Given two formulas F (V) and
G(V), F is inductive relative to G if:

G(~v) ∧ F (~v) ∧ T (~v,~v ′)⇒ F (~v ′)

If F is inductive relative to itself, it is simply inductive.
A problem instance P is UNSAFE iff there exists a natural

number N such that the following formula is SAT:

Init(~v0) ∧
(N−1∧

i=0

T (~vi, ~vi+1)
)
∧Bad( ~vN ) (1)

A problem instance P is SAFE iff there exists an inductive
formula Inv(V) that also meets the following conditions:

Init(~v)⇒ Inv(~v ′) (2)

Inv(~v)⇒ ¬Bad(~v) (3)

A formula satisfying Eq. 2 satisfies initiation, meaning that
it contains all initial states. An inductive formula that satisfies
initiation contains all reachable states and is called an inductive
invariant. A formula satisfying Eq. 3 is safe, meaning that
it represents a superset of the safe states. A safe inductive
invariant represents a superset of the reachable states and a
subset of the safe states. Each of these properties can be
checked using a single query to a SAT solver, so a safe
inductive invariant is a proof that P is SAFE.

B. Overview of Quip
This section gives an overview of Quip [5], which is itself

based on IC3 [2], [3]. Given an unbounded model checking
problem, it either returns an inductive invariant proving the
property or a counter-example trace that reaches an unsafe
state. It works by maintaining a sequence of CNF formulas
F0, F1, ... called the inductive trace. Each Fi is a frame, and
its index i is called its level. Each clause c ∈ Fi is called
a lemma. The frame F0 is identical to Init. The algorithm
maintains two invariants for all i ≥ 0:

Fi ∧ T ⇒ F ′i+1

Fi+1 ⊆ Fi
That is, each frame is inductive relative to the frame below
it and each frame contains a subset of the lemmas in the
frame below it. These invariants imply that Fi is an over-
approximation of the i-step reachable states. The algorithm
also maintains a special frame F∞ containing lemmas that
over-approximate all reachable states. In addition, Quip main-
tains a set R of known reachable states, which is used in
various optimizations.

Algorithm 1 presents pseudocode for the top-level proce-
dure of Quip. Certain bookkeeping details are omitted for
succinctness, including the details needed to construct counter-
example traces. Line 2 checks if any initial states are unsafe,
as the main loop does not handle this case. Lines 3 through 7
contain the main loop. The loop calls the recursive blocking
procedure on line 4, which strengthens the inductive trace such
that ¬Bad is inductive relative to Fk−1. After handling all
proof obligations, line 5 performs the pushing procedure. For
each non-bad lemma ϕ in each non-empty Fi, the algorithm
checks if Fi ∧ T ⇒ ϕ′. If so, the lemma is promoted to
level i + 1. If at any point Fi = Fi+1 for some value of i
then Fi is inductive and can be added to F∞. Finally, line 6
checks if F∞ ⇒ ¬Bad. If this holds, F∞ is a safe inductive
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Algorithm 1 Quip (Init, T , Bad)
1: R = ∅, F0 = Init, k = 1
2: if SAT? (F0 ∧Bad) then return UNSAFE

3: loop
4: if ¬Quip_Block(k) then return UNSAFE

5: Quip_Push()
6: if ¬SAT?(F∞ ∧Bad) then return SAFE

7: k = k + 1

Algorithm 2 Quip_Block (k)
1: Q = ∅
2: Add(Q, 〈Bad, k,must〉)
3: while ¬Empty(Q) do
4: 〈m, i, p〉 = Pop(Q)
5: if (i = 0) ∨ Match(R,m) then
6: if p = must then return false
7: else AddReachable(R)

8: else if SAT?(Fi−1 ∧ T ∧m′) then
9: u = Predecessor(m)

10: Add(Q, 〈Lift(u), i− 1, p〉)
11: Add(Q, 〈m, i, p〉)
12: else
13: (ϕ, g) = Generalize(¬m, i)
14: AddLemma(ϕ, g)
15: if g < k − 1 then Add(Q, 〈¬ϕ, g + 1,may〉)
16: return true

invariant and the algorithm terminates, otherwise the algorithm
continues to the next iteration.

The recursive blocking procedure is described in detail in
Algorithm 2. Quip maintains a queue of proof obligations of
the form 〈m, i, p〉, where m is a cube over V or m = Bad, i
is a level, and p ∈ {must,may} is the type of obligation. A
must-proof obligation represents a cube that must be blocked
in order for the problem to be SAFE. A may-proof obligation
represents a cube that may be useful to block, but its failure
does not necessarily imply the problem is UNSAFE. Line 2
initializes the queue to contain the obligation to block all
unsafe states at level k.

At each step, the algorithm attempts to discharge an obliga-
tion 〈m, i, p〉 with the lowest level by proving that no m-state
is i-step reachable (i.e., blocking m at level i). This process
has three potential outcomes.

The first (lines 5–7) occurs when either i = 0 or R contains
an m-state. In this case, the obligation cannot be discharged
and a counter-example is found (if p = must) or new reach-
able states are discovered. The AddReachable procedure
called on line 7 adds any newly-discovered reachable states to
R by traversing the chain of obligations that includes 〈m, i, p〉.
All lemmas in the inductive trace are checked against R at this
point, and any lemma that blocks a reachable state is marked
bad.

A second possibility (lines 8–11) occurs when Fi−1∧T 6⇒
¬m′, meaning that m has a predecessor state u in Fi−1. The
obligation 〈m, i, p〉 is returned to the queue and 〈u, i−1, p〉 is
added. The Predecessor procedure called on line 9 extracts
a predecessor state u of m from the SAT solver. A proof

Algorithm 3 Support (F, T , ϕ)
1: Fen = ∅, assumps = ∅, Γ(ϕ) = ∅
2: for all ci ∈ F do
3: li = ActivationLit(ci)
4: assumps = assumps ∪ {¬li}
5: cen = ci ∪ {li}
6: Fen = Fen ∪ {cen}
7: Φ = Fen ∧ T ∧ ¬ϕ′
8: if SAT?(Φ, assumps) then return NULL
9: conflicts = ConflictAssumptions(Φ)

10: for all (¬li) ∈ conflicts do
11: Γ(ϕ) = Γ(ϕ) ∪ {ci}
12: return Γ(ϕ)

obligation for u is added on line 10. However, in practice, u
is lifted to a smaller cube that represents more states, all of
which are predecessors of m. This is handled by the Lift
procedure.

The final possibility (lines 13–15) occurs when Fi−1∧T ⇒
¬m′. In this case, the obligation is successfully discharged and
the algorithm learns a new lemma ϕ such that Init⇒ ϕ, ϕ⇒
¬m, and ϕ ∧ Fi−1 ∧ T ⇒ ϕ′. The lemma over-approximates
the i-step reachable states and demonstrates why m is not i-
step reachable. It is added to all frames Fj for j ≤ i. When
blocking m, the lemma ϕ = ¬m is sufficient. However, key
to the performance of Quip and IC3 is the Generalize
procedure on line 13, which may find a stronger clause that
is inductive relative to Fg−1 for some g ≥ i. The generalized
lemma is added at level g on line 14. In addition, on line 15 a
new obligation 〈¬ϕ, g + 1,may〉 can be added to the queue.
This forces the algorithm to push ϕ forward, thereby blocking
m at higher levels.

III. COMPUTING SUPPORT SETS

Computing support sets, first introduced in [6], is an integral
aspect of this work. This section defines the concept and
describes a method to compute them as a matter of practical
interest.

A support set for a lemma ϕ is a set of lemmas relative
to which ϕ is inductive. IC3 and Quip use this concept
implicitly when executing SAT queries of the form SAT?(Fi∧
T ∧¬ϕ′) relative to various frames Fi. This query asks if ϕ is
inductive relative to Fi, or equivalently, if Fi is a support set
for ϕ. In practice, it is often the case that only a small subset
of Fi is actually needed to support ϕ [6]. Various methods can
be used to compute small support sets, but in this work only
one method is considered. It takes as input a CNF formula
F , a transition relation T also given in CNF, and a clause ϕ.
It returns a subset of F relative to which ϕ is inductive. In
other words, it returns a support set Γ(ϕ) ⊆ F . Note that the
support of ϕ is not necessarily unique.

The basic version of the method is shown in Algorithm 3.
In that description, ActivationLit(c) is a procedure that
returns a new activation literal unique to clause c. A unique
activation literal is added to each clause of F to construct
a new formula Fen. A SAT query is constructed from the
following formula:
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Fen ∧ T ∧ ¬ϕ′
∧

ci∈F
¬li

where li is the activation literal for clause ci. The clauses
forcing the activation literals to 0 are passed to the solver
as assumptions. If the formula is satisfiable, then F is not a
support set for ϕ and the algorithm returns NULL. Otherwise,
the activation literals in the conflicting assumption set are
mapped back to their corresponding clauses, each of which
is added to Γ(ϕ). Intuitively, this is equivalent to intersecting
a clausal UNSAT core of Fi ∧ T ∧ ¬ϕ′ with Fi. However,
Algorithm 3 is useful in practice as it may offer better
performance and can be applied when using SAT solvers
without support for efficient generation of clausal cores.

In the context of Truss, Algorithm 3 is used to compute
supports of various lemmas in the inductive trace. Given a
lemma ϕ ∈ Fi+1 for some i, we need to compute its support
relative to a subset of lemmas in frame Fi. More precisely, on
each invocation we may also have a set B ⊂ Fi of blacklisted
lemmas, and a call to Support (Fi \ B, T , ϕ) asks if Fi
contains a support set for ϕ consisting only of non-blacklisted
lemmas.

Furthermore, the SAT queries in Algorithm 3 can be exe-
cuted incrementally. To this end, each time AddLemma(ϕ, g)
is called, ϕ is also added to the incremental solver with
its unique activation literal. When constructing assumps in
Algorithm 3, each activation literal corresponding to a lemma
in Fi \B is added with negative polarity. Those corresponding
to all other lemmas are added with positive polarity, effectively
removing the corresponding clause from the resulting formula.

When ϕ ∈ Fi+1 has a support Γ(ϕ) ⊆ Fi \ B, what we
will really need is the critical part of the support set, defined
as Γ(ϕ) ∩ (Fi \ Fi+1). This critical part of the support set
represents lemmas that would be sufficient to promote in order
to promote ϕ. In particular, when Γ(ϕ)∩ (Fi \Fi+1) is empty,
ϕ can be immediately added to a higher frame. In practice
we do not introduce activation literals for lemmas in F∞, as
in our algorithm these lemmas are never blacklisted and will
never be part of a critical support set.

IV. SAFETY CHECKING WITH SUPPORT SETS

This section presents the Truss algorithm, which solves
the safety checking problem using support sets to guide its
search for an inductive proof. We first explain the classifica-
tion of lemmas into categories of good, bad, and the novel
classification of ugly. We then present the algorithm itself.
Finally, its strategy is contrasted against Quip and IC3.

A. Classifying Lemmas

A key aspect of the algorithm is its classification of lemmas
into the categories of unknown, good, bad, and ugly. This sub-
section explains the criteria that lead to these classifications.
The next subsection explains the algorithm and how it treats
lemmas based on their classification.

The first three categories are also present in Quip, and we
briefly describe them here. Unknown is the default classifica-
tion, and simply means that the lemma is not known to belong
to the other categories. Good lemmas are those that have been
promoted to the frame F∞. They are intuitively good because

the algorithm terminates when ¬Bad is inductive relative to
F∞.

On the other hand, bad lemmas are those that are known
to be non-inductive. This is detected through the discovery
of reachable states. Letting the cube r represent a known
reachable state, a lemma ϕ is marked bad if the formula ϕ∧r is
unsatisfiable, which indicates that ϕ does not over-approximate
the set of reachable states. These lemmas are undesirable for
the algorithm. It is forced to spend time pushing them despite
the fact that they cannot appear in a proof. As mentioned
earlier, non-inductive lemmas may also make it harder for the
algorithm to discover a proof. In Quip and in our approach,
no attempt is made to push bad lemmas forward.

The novel classification used in Truss is ugly. Unlike good
and bad, which are applied to a lemma permanently, ugly may
be a temporary classification. In that sense, ugly is a sub-class
of unknown, since ugly lemmas are also not known to be good
or bad. Informally, an ugly lemma is one that appears difficult
to push to higher levels. This could happen if the lemma
is non-inductive, or if the algorithm simply needs to learn
more supporting lemmas to push it forward. A lemma ϕ may
be marked as ugly when considering a may-proof obligation
of the form 〈¬ϕ, i,may〉. If promoting ϕ to level i requires
adding more than one lemma to Fi−1, it appears difficult to
push and is therefore ugly. Different criteria could be applied
instead. This criterion ignores many aspects of the true cost
of supporting ϕ, but is simple to implement and works well
in practice.

In addition, an ugly lemma may be reclassified into any
of the other classifications. If the lemma is promoted to F∞,
it is marked as good. If it is found to exclude a reachable
state, it becomes bad. Finally, if it is pushed forward during
Quip_Push, it ceases to be ugly and becomes unknown.
Intuitively, this is because the lemma was marked ugly as a
result of insufficient support at its current level. The fact that
it was successfully pushed indicates that the algorithm has
learned enough supporting lemmas.

B. The Algorithm
This subsection describes the Truss algorithm. It uses

the outer loop from Quip as described in Algorithm 1. It
also uses a similar pushing procedure, the only difference
being the re-classification of ugly lemmas as noted in the
previous subsection. However, it uses a novel blocking proce-
dure Truss_Block that discharges proof obligations using
support sets where possible. This section describes the new
blocking procedure.

As is the case for Algorithm 2, Truss_Block takes as
input a natural number k representing the level at which to
block all unsafe states. As mentioned earlier, it identifies a
set of lemmas that could be close to forming a safe inductive
invariant. This is accomplished by computing a critical support
set for the property, and then computing critical support sets
for the supporting lemmas, and so on. This continues until
reaching lemmas for which no suitable support set can be
found. Those lemmas are promoted using an approach similar
to that used by Quip_Block. When a lemma cannot be
promoted, the set is abandoned and a new one identified.

This procedure is integrated with the proof obligation pro-
cessing scheme. Before explaining the algorithm, we first
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Algorithm 4 Truss_Block (k)
1: Q = ∅
2: E[ϕ] = 0 ∀ lemmas ϕ
3: Add(Q, 〈Bad, k,must〉)
4: while ¬Empty(Q) do
5: 〈m, i, p〉 = Pop(Q)
6: if (i = 0) ∨ Match(R,m) then
7: if p = must then return false
8: else
9: AddReachable(R)

10: Q = {〈Bad, k,must〉}; continue
11: Ind = ¬SAT?(Fi−1 ∧ T ∧m′)
12: if (i > 2) ∧ ¬Ind ∧ IsEligible(〈m, i, p〉) then
13: Γ(¬m) = Support(Fi−2 \ (B ∪ U), T ,¬m)
14: if Γ(¬m) 6= NULL then
15: for all ϕ ∈ (Γ(¬m) \ Fi−1) do
16: Add(Q, 〈¬ϕ, i− 1,may〉)
17: Add(Q, 〈m, i, p〉); continue
18: else
19: if p = may ∧ E[¬m] ≥ 1 then
20: U = U ∪ {¬m}
21: Q = {〈Bad, k,must〉}; continue
22: E[¬m] = E[¬m] + 1

23: if ¬Ind then
24: u = Predecessor(m)
25: Add(Q, 〈Lift(u), i− 1, p〉)
26: Add(Q, 〈m, i, p〉)
27: else
28: (ϕ, g) = Generalize(¬m, i)
29: AddLemma(ϕ, g)

30: return true

introduce two different methods by which proof obligations
are processed in Truss. The first is the fallback behavior.
When processing an obligation using the fallback behavior,
the algorithm behaves identically to Algorithm 2, except that
it does not add may-proof obligations i.e., line 15 is not
executed. Alternatively, an obligation can be processed using
support sets. In this case, the obligation 〈m, i, p〉 is processed
by computing a support set Γ(¬m) and enqueuing may-proof
obligations 〈ϕ, i − 1,may〉 for all ϕ ∈ Γ(¬m). If a suitable
support set cannot be found, then the obligation is processed
using the fallback behavior.

For some obligations, the algorithm skips the support set
computation and proceeds directly to the fallback behavior.
Obligations that are processed using support sets are called
eligible. Different eligibility criteria could be considered, and
one alternative is discussed in Section VI-C. In this section,
eligible obligations are 〈Bad, k,must〉 and may-proof obliga-
tions 〈¬ϕ, i,may〉 where ϕ is a lemma already present in the
inductive trace.

Pseudocode for the procedure is shown in Algorithm 4.
Truss_Block is only called at level k when ¬Bad is in-
ductive relative to Fk−2. The algorithm’s goal is to strengthen
Fk−1 until ¬Bad is inductive relative to that frame. It begins
by processing the obligation 〈Bad, k,must〉, which is added
on line 3. We discuss the handling of this obligation first,

and later move on to general obligations. The first step is to
check if ¬Bad is already inductive relative to Fk−1 (line 11).
If so, lines 28–29 are executed, adding a lemma ¬Bad at
a level g ≥ k, and the algorithm terminates. Otherwise, it
tries to compute a critical support set Γ(¬Bad) from Fk−2,
excluding any blacklisted (i.e., bad or ugly) lemmas (line 13).
This may not succeed, as the property may be supported by
those lemmas. In this case, the algorithm uses the fallback
behavior, which results in adding a new must-proof obligation
at level i− 1 (lines 24–26).

Now, assume a support set is found. The algorithm adds
obligations 〈¬ϕ, k−1,may〉 for each ϕ ∈ Γ(¬Bad) (lines 15–
16). The original obligation is also returned to the queue.
Note that, since the lemmas in Γ(¬Bad) are in Fk−2, they
are inductive relative to Fk−3. Since the obligations are
enqueued at level i = k − 1, each ϕ is inductive relative to
Fi−2. The added may-proof obligations at level i are handled
similarly, by computing a support set from Fi−2 and enqueuing
obligations at level i−1. This is the reasoning behind Lemma 1
below.

Lemma 1 In Truss, for every proof obligation 〈¬ϕ, i, p〉
with i ≥ 2, ϕ is inductive relative to Fi−2.

Proof: For 〈Bad, k,must〉, the proof is trivial. For
obligations added on line 25, the proof follows from the
properties of Quip and IC3. For obligations added on line 16,
the obligation 〈¬ϕ, j,may〉 is added at level j = i − 1. We
have ϕ ∈ Fi−2 by the behavior of Support. Since ϕ ∈ Fi−2
it is inductive relative to Fi−3 i.e., Fj−2. The lemma follows
immediately.

We now describe the processing of an eligible obli-
gation 〈¬ϕ, i,may〉. Note that must-proofs other than
〈Bad, k,must〉 are not eligible, so the obligation is assumed
to be a may-proof. The first step on lines 6–10 is to check if
the obligation fails. This step is the same in Quip_Block
and is also part of the fallback behavior. The next step is to
check if ϕ is inductive relative to Fi−1 (line 11). If so, the
obligation is successfully discharged. Otherwise, by Lemma 1,
ϕ is inductive relative to Fi−2. The algorithms tries to compute
a support set for ϕ of the form:

Γ(ϕ) ⊆ Fi−2 \ (B ∪ U) (4)

where B and U represent the set of bad and ugly lemmas,
respectively. This occurs on line 13.

If a support set is found, obligations are added for the
supporting lemmas on lines 15–16. Note that due to the
subtraction of Fi−1 on line 15, only the lemmas in the critical
support set are added.

Conversely, if a support set is not found, the algorithm tries
to learn new lemmas to support ϕ. The rationale behind this
behavior comes from the following corollary of Lemma 1.

Corollary 1 If no support set of the form from Eq. 4 exists,
all support sets Γ(ϕ) ⊆ Fi−2 include some lemma in B ∪ U .

Proof: Immediate from Lemma 1.
Corollary 1 does not imply that ϕ is non-inductive. How-

ever, promoting ϕ to level i−1 requires promoting blacklisted
lemmas or learning new ones. The former is undesirable, so

144

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



the algorithm uses its fallback behavior to learn new lemmas
(lines 23–29). However, an effort limit is applied that restricts
the algorithm to learn only one new lemma towards the goal
of supporting ϕ. When a support set cannot be found, line 19
checks if the effort limit for ϕ has been exceeded. If so, the
entire obligation queue is abandoned and ϕ is marked as ugly
(lines 19–21). In other words, the second time 〈¬ϕ, i,may〉 is
popped from the queue, if ϕ is not inductive relative to Fi−1
then ϕ is marked as ugly and the queue is abandoned.

Throughout this procedure, obligations may not be dis-
charged due to a counter-example or due to effort limits.
Consider the case where an obligation intended to push a
lemma ψ ∈ Γ(ϕ) forward is abandoned. The algorithm has
no reason to continue pushing the other lemmas in Γ(ϕ)
either, since Γ(ϕ) \ {ψ} is not necessarily a support set
for ϕ. Intuitively, the corresponding obligations should be
abandoned. However, it may also be the case that ϕ has no
suitable support set, since ψ is now blacklisted. This means
ϕ should be abandoned. These cascading failures can end up
requiring a large number of obligations to be abandoned.

Rather than checking each individual obligation, the al-
gorithm simply abandons all may-proof obligations when
any one of them cannot be discharged. This leaves only
〈Bad, k,must〉 in the queue. The algorithm simply repeats all
of the steps of computing support sets for the property, then for
the supporting lemmas, and so on. In practice, re-computing
support sets would be costly, so the most recently-computed
support set for each lemma is cached. When the computations
are repeated, the cached result is used unless it contains a
blacklisted lemma. Therefore, only the support sets that have
been invalidated are re-computed.

A corner case occurs when i < 2, as Fi−2 does not exist.
The algorithm resorts to the fallback behavior in this case.
Additionally, for performance reasons, the fallback behavior
is used when i = 2. This is because F0 represents the
initial states, and as such contains lemmas that are given as
input rather than learned by the algorithm. These lemmas
are expected to be non-inductive, so pushing them forward
is undesirable. Therefore, the fallback behavior is used when
i ≤ 2. Note that in this case proof obligations are not subjected
to effort limits.

C. Comparison with Quip and IC3
Quip, IC3, and Truss all repeatedly attempt to discharge

〈Bad, k,must〉 for increasing values of k. This represents an
obligation to construct a bounded proof of the property at level
k. All three algorithms repeat this process until converging to
an inductive proof.

The algorithms differ in the additional reasoning they ap-
ply to accelerate convergence. In IC3, when an obligation
〈m, i,must〉 is discharged, 〈m, i+ 1,must〉 may be returned
to the queue. This ensures that the CTI represented by m is
blocked at higher levels, but causes the algorithm to expend
effort learning multiple lemmas to block the same CTI. In
Quip, upon discharging the same obligation by learning a
lemma ϕ, a new obligation 〈¬ϕ, i + 1,may〉 may be added
to the queue. This forces the algorithm to try to promote ϕ to
block m at higher levels, even if it requires learning additional
lemmas to support ϕ. This can be an expensive process and
may only result in the algorithm discovering reachable states

instead of blocking m at higher levels. The algorithms apply
these consistently without regard to the particular lemmas or
CTIs being considered.
Truss instead uses support sets to guide these decisions.

Rather than consistently trying to push forward every lemma,
support sets are used to identify a set of lemmas that might
be close to forming an inductive invariant. In fact, the set
of lemmas identified represents a portion of a bounded proof
excluding any bad or ugly lemmas. It may be the case that
this set of lemmas is only useful together i.e., if one cannot
be promoted, the entire set is not useful. Therefore, when a
targeted lemma is not promoted, the algorithm detects and
abandons obligations that are only valuable in conjunction
with that lemma. In essence, the algorithm tries to identify
the portion of the existing bounded proof that is likely to be
inductive and support it until it becomes inductive. However,
effort limits are used to limit this procedure.

All of these algorithms are forced to construct bounded
proofs at higher and higher levels in order to “escape” the non-
inductive lemmas they have learned and to learn new lemmas
to replace them. In IC3, once a lemma is learned, no effort
will ever be made to learn new lemmas to support it and push
it forward. It will only be pushed forward if such lemmas are
learned by chance. In Quip, an effort is made immediately
upon learning a lemma to learn its supporting lemmas using
may-proof obligations. However, after that process finishes,
no further effort is made. Truss is able to identify important
lemmas and then learn new lemmas to support them at any
time. We believe this represents a significant extension of the
algorithm’s reasoning capabilities.

V. EXPERIMENTAL RESULTS

All results presented in this section are executed on a single
core of a Linux workstation with an i5-3570K 3.4 GHz CPU
and 16 GB of RAM. We provide an experimental evaluation
of IC3, Quip, and Truss. We have implemented both
Quip and Truss1 in IImc [7], [8]. For all algorithms, the
backend SAT solver is Glucose [9], [10] as it was found to
give a substantial runtime improvement over the other solvers
available in IImc. Experiments are timed out after one hour.

We present results for problem instances in the HWMCC’15
benchmark set, excluding the proprietary circuits from Intel.
The 126 benchmarks that were not solved by any solver in the
competition are not considered, leaving 387 circuits. A further
122 circuits that were not solved by any of the evaluated
algorithms are excluded. After pruning those circuits, the
benchmark set contains 265 circuits.

In order to demonstrate that the “baseline” Quip approach
is reasonable, it is compared against the IC3 implementation
provided by IImc, referred to as IImc-IC3. However, we
disable several features that are not present in our implemen-
tations, including expansion of the initial states using forward
Binary Decision Diagrams [11], equivalence propagation, and
counter-examples to generalization [12]. All of the disabled
features are applicable to Quip and Truss, but are not
present in our implementation. These features are disabled so

1Source code and detailed results for each circuit are available at:
ryanmb.bitbucket.io/truss
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TABLE I
SUMMARY OF RESULTS

SAFE SAFE UNSAFE UNSAFE TOTAL TOTAL
SOLVED TIME SOLVED TIME SOLVED TIME

IImc-IC3 175 (6) 77632 66 (5) 30131 241 (11) 107765
Quip 174 (3) 83450 56 (1) 66067 230 (4) 149517
Truss 183 (8) 57394 64 (5) 44147 247 (13) 101541
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Fig. 1. Runtime comparison of Quip and Truss

as to limit the impact that the unrelated optimizations present
in IImc-IC3 have on the results.

A summary of the results is shown in Table I. The columns
SAFE SOLVED and UNSAFE SOLVED show the number
of safe and unsafe instances solved by each algorithm, re-
spectively. The number in parenthesis shows the number of
unique instances solved. The TOTAL SOLVED column shows
the total number of instances solved by each algorithm. The
SAFE TIME and UNSAFE TIME columns show the total
time spent by each algorithm on safe and unsafe instances
respectively. The TOTAL TIME column shows the total time
spent processing all instances. All times are in seconds.

The experiments show that our Quip implementation, while
weaker in comparison to IImc-IC3, is competitive and rep-
resents a reasonable baseline for comparison. Since Quip is
expected to outperform IC3 in typical cases, we expect this is
due to other unrelated optimizations present in IImc-IC3 that
could not readily be disabled. The experiments demonstrate
that Truss offers a substantial improvement over Quip for
both SAFE and UNSAFE instances. It also outperforms the
highly-tuned IImc-IC3 implementation, especially on SAFE
instances where it achieves a 1.35x speedup. Out of 265
circuits, Truss solves 247 instances compared to the 230
solved by Quip and processes the entire set 1.47x faster. Not
counting the 11 instances uniquely solved by IImc-IC3, the
speedup increases to an impressive 1.77x.

Figure 1 shows a detailed comparison of the runtime for
each approach. It plots the runtime of Truss versus that
of Quip for each of the benchmark circuits on a log-log
scale. The blue marks indicate SAFE instances while the
black marks indicate UNSAFE instances. It includes the 254
circuits that were solved by at least one of Quip or Truss.
Points under the solid line indicate that Truss is faster,
while points above it indicate that Quip is faster. It can be
seen that Truss is faster than Quip in most cases. Indeed,
145 of the 254 points fall below the line. However, this
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Fig. 2. Speedup versus reduction in proof size for challenging instances

significantly understates the benefits offered by Truss, as
it truly shines on the more challenging problem instances.
The benchmark sets contains 139 “easy” instances that were
solved by both algorithms in under 12 seconds. Excluding
the easy instances, Truss outperforms Quip on 81 out of
115 of the remaining “challenging” instances. Apparently,
Truss introduces overhead for easy benchmarks, but pays
off substantially for challenging ones.

The intuition behind Truss is that by promoting important
lemmas, the algorithm is able to more quickly discover a proof.
Naturally, it is expected to learn smaller proofs as a result. It
may not always do so, as random factors can significantly
impact the runtime and change the final proof. For instance,
Quip may learn a very important lemma by chance that
Truss never learns due to having a different inductive trace.
Truss does not address the problem of learning better ones,
so this problem is unavoidable.

To examine the relationship between runtime and proof
size, Figure 2 plots the speedup for Truss versus the proof
size reduction. It includes the 49 SAFE instances in the
challenging set that were solved by both algorithms. The solid
line indicates a 1:1 correlation between the two axes. Across
these 49 instances, Truss finds proofs that are an average
of 73.3% as large as those found by Quip. It can be seen
that higher speedups tend to occur when Truss computes
smaller proofs than Quip. This is unsurprising, as Truss
tends to find a smaller proof by processing fewer obligations
for more important lemmas.

To further examine this point, Table II reports the runtime
of various operations for Quip and Truss. It considers the
83 challenging instances solved by both algorithms. The first
column reports the total runtime. The PUSH TIME, MAY
TIME, MUST TIME, and SUPPORT TIME columns report the
time spent pushing, processing may-proofs (excluding calls
to Support), and processing must-proof obligations, and
computing support sets, respectively. The MAY PROOFS and
MUST PROOFS columns report the number of may-proof and
must-proof obligations processed, respectively. The SUPPORT
CALLS column reports the number of calls to Support.

The data explains how Truss achieves better runtime per-
formance. It spends similar amounts of time pushing lemmas
and processing must-proofs. However, it processes fewer than
one third as many may-proofs as Quip. Additionally, the
overhead of computing support sets is small, accounting for
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TABLE II
TIME SPENT PER OPERATION

TOTAL PUSH MAY MAY MUST MUST SUPPORT SUPPORT
TIME TIME TIME PROOFS TIME PROOFS TIME CALLS

Quip 14000 2940 7108 1826812 2940 88983 0 0
Truss 10878 3317 3372 554233 2935 87616 517 135736

only 4.7% of the total runtime. Indeed, computing a support
set is expected to cost substantially less than processing a
proof obligation. Processing a proof obligation often results in
learning a new lemma, thereby running generalization which
may involve numerous SAT queries. Conversely, computing a
support set involves only one SAT query. Truss avoids a large
number of expensive generalization operations by performing
a smaller number of less expensive support set computations.

VI. ALTERNATIVES AND FUTURE WORK

This section presents alternative implementations of Truss
that combine the novel aspects in different ways. We also
discuss ways that the implementation could be improved and
aspects that may be applicable to other algorithms.

A. No Ugly Lemmas
An alternative version of Truss could use different criteria

to define ugly lemmas. The simplest alternative is to increase
the effort limit from 1. In the most extreme form, infinite effort
could be allowed, thereby eliminating ugly lemmas altogether.
A preliminary evaluation of this approach found it to perform
poorly. The algorithm expends much more effort pushing
forward lemmas that ultimately end up being marked as bad.
Even increasing the effort limit slightly had a similar but
less dramatic effect. Intuitively, it appears as though valuable
lemmas tend to be easy to support in most cases, since Truss
achieves better results when using a low effort limit.

B. Re-Enqueuing Obligations
Truss does not re-enqueue obligations in the manner

Quip does on line 15 of Algorithm 2. The algorithm can
be modified to accommodate this operation, though several
variations are reasonable. For instance, it’s unclear if re-
enqueued lemmas should be subject to effort limits or not. A
preliminary experimental evaluation found that several vari-
ations of this approach performed worse than Truss. One
possible explanation is that the re-enqueue operation is to
ensure important lemmas are available at higher levels. This
is exactly the same reasoning behind adding lemmas from
support sets. However, support sets contain more fine-grained
information about which lemmas are important. Therefore the
extra proof obligations from the re-enqueue operation may be
less helpful than those added by Truss.

C. Using Support Sets for Non-Lemmas
Another alternative implementation could use different eli-

gibility criteria, such as using support sets to discharge every
proof obligation. In Truss, support sets are only used when
an obligation represents a lemma in the inductive trace. How-
ever, Lemma 1 holds for every proof obligation, so it would
be a reasonable to use support sets for every proof obligation.
This procedure takes the goal of re-using of existing lemmas
rather than learning new ones to the extreme.

D. Improved Solving under Assumptions
Algorithm 3 for computing lemma supports is based on

incremental SAT solving with many assumptions, which may
significantly slow down SAT-queries, see for example [13].
However, on problems where all assumptions can be cleanly
separated into original problem literals and activation literals
various solutions are possible [13], [14]. In the future we are
planning to investigate the precise effect of assumptions on
Algorithm 3 and adjust the back-end SAT solver accordingly.
In addition, most state-of-the-art SAT solvers tend to propagate
assumptions in the order they are received and it seems a
good idea to experiment with different assumption orders. For
example, by putting the activation literals in decreasing order
of level for the corresponding lemma, the algorithm is likely
to find a smaller critical support set.

VII. CONCLUSION

This work presents an IC3-based unbounded model check-
ing algorithm called Truss. The algorithm detects a subset
of lemmas in the inductive trace that participate in a bounded
proof of the property and targeting the set for for pushing as
a cohesive unit. Experiments on HWMCC’15 designs show a
substantial speedup against the state-of-the-art.
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Abstract—We present a flexible algorithmic framework KIC3
that combines IC3 and k-induction. The key underlying obser-
vation is that k-induction can be easily simulated by existing IC3
implementations by following a slightly different counterexample-
queue management strategy.

I. INTRODUCTION

The principle of k-induction is the first successful tech-
nique for unbounded SAT-based model checking [1]. It is based
on the following generalization of the usual one-step induction
principle: a safety property ϕ is invariant (i.e., holds in all
the reachable states of the system) if (a) ϕ holds in all states
reachable in up to k steps, and (b) ϕ holds for k consecutive
steps implies that it holds for k + 1-steps. Interestingly, k-
induction is complete when restricted to loop-free (or simple)
paths. That is, any invariant ϕ is k-inductive for some k, when
only loop-free paths of length k are considered. This gives rise
to an unbounded model checking algorithm that repeatedly
tries to prove that ϕ is k-inductive for increasing values of k.

Today, k-induction [1] remains a very important technique
for unbounded model checking in both hardware and software
domains [2]. A classical implementation of k-induction uses a
SAT-solver to check a k-step unrolling of a transition relation,
and ensures loop-freedom of counterexamples via additional
unique state constraints. However, the scalability of the tech-
nique is limited by the depth k of the required unrolling. While
combining k-induction with additional invariant synthesis (e.g.,
[3]) is beneficial, applicability of k-induction remains limited
to properties that can be established with a small value of k.

IC3/PDR [4], [5] is currently the dominant SAT-based un-
bounded model checking technique. Pioneered by Bradley [4],
IC3 has became the definitive framework for developing SAT-
and SMT-based model checking algorithms for both hardware
and software verification. Given a safety property ϕ, IC3
computes an inductive strengthening F of ϕ. That is, a formula
F such that ϕ→ F and F is inductive. Furthermore, when ϕ is
not an invariant, then IC3 produces a counterexample. One of
the distinguishing features of IC3 is that it does not explicitly
build an unrolling of the transition relation: all reasoning is
done over a single step.

As was pointed out in [6], the strengths of k-induction and
IC3 are complementary. Properties that are k-inductive for a
small value of k (e.g., 3 or 4) and, therefore, are “easy” for k-
induction, are not necessarily easy for IC3. More specifically,
IC3 is not guaranteed to terminate after exploring all k-depth
counterexamples even when a property is k-inductive. Based
on this observation, Jovanovic and Dutertre [6] presented an

This work is partially funded by an IBM Faculty Award.

alternative model checking approach using the insights from
both algorithms. However, their approach requires a significant
modification of IC3 and an unrolling-based check for k-
induction. In this paper, we explore an alternative solution that
tighter and more elegantly integrates k-induction within IC3.

The paper makes two contributions. First, we introduce
a new algorithm, called K-Ind, to decide whether a given
safety property ϕ is k-inductive. The algorithm is based on the
insights from IC3, and does not explicitly unroll the transition
relation. Whenever ϕ is k-inductive, K-Ind returns an induc-
tive strengthening of ϕ; otherwise, it returns a counterexample
to k-induction. Perhaps the most interesting feature of K-Ind
is that it does not rely on an expensive unique-states con-
straint to guarantee that only loop-free paths are considered.
Furthermore, since it is embedded in the IC3 framework, it
benefits from all the usual IC3 optimizations such as inductive
generalization and generalization of predecessors.

Second, we introduce a framework, called KIC3, that
combines IC3 and k-induction in a single IC3-like algo-
rithm. Our key insight is that k-induction can be simulated
by a specialized counterexample-queue management strategy.
This enables KIC3 to immediately be compatible with all
known IC3-optimizations and extensions (e.g., [5], [7]–[9]).
The algorithm is parameterized by the degree of k-inductive
reasoning, where k-induction can be used to simply validate k-
inductive conjectures, construct k-inductive strengthening, or
recursively block counterexamples to induction.

The rest of the paper is organized as follows. In Section II,
we review the necessary background about k-induction and
IC3. In Section III, we present the K-Ind algorithm, and
in Section IV, we present the KIC3 framework. Finally, we
conclude the paper with an overview of related work in Section
V, an experimental evaluation in Section VI, and conclusion
in Section VII.

II. BACKGROUND

A. Propositional Satisfiability

Let V be a set of variables. A literal is either a variable
b ∈ V or its negation ¬b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal `, we write ` ∈ c to mean that ` occurs
in c, and c ∈ F to mean that c occurs in F .
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Let V be a set of variables and V ′ = {v′ | v ∈ V}. A safety
verification problem is a tuple P = (Init ,Tr ,Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V,V ′) is
a formula with free variables in V ∪V ′ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

Init(~v0) ∧
(
N−1∧

i=0

Tr(~vi, ~vi+1)

)
∧ Bad(~vN ) (1)

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(~v)→ Inv(~v) Inv(~v) ∧ Tr(~v,~v′)→ Inv(~v′) (2)
Inv(~v)→ ¬Bad(~v) (3)

A formula Inv that satisfies (2) is called an invariant, while a
formula Inv that satisfies (3) is called safe.

B. k-invariants and k-induction

An invariant over-approximates all the reachable states of
the transition relation; however, there is no efficient way to
check that a formula is an invariant. An inductive invariant is
an invariant that is easy to validate.

A formula ϕ is called a k-invariant if it over-approximates
all states reachable up to k-steps. That is,

∀0 ≤ N ≤ k ·
(
Init(~v0) ∧

N−1∧

i=0

Tr(~vi, ~vi+1)

)
→ ϕ(~vN ) (4)

Note that any formula F that over-approximates the initial
states is a 0-invariant. A formula ϕ is k-inductive invariant if
it is a k-invariant and

(
k∧

i=0

ϕ(~vi) ∧ Tr(~vi, ~vi+1)

)
→ ϕ(~vk+1) (5)

The definition of k-induction naturally extends to k-induction
relative to some 0-invariant formula F , by replacing all but
the last occurrence of ϕ in eq. (5) with (ϕ ∧ F ).

Neither induction nor k-induction are complete. That is,
there are a transition system Tr and an invariant ϕ such
that ϕ not k-inductive for any k. However, as shown in [1],
k-induction is complete when restricted to loop-free (or sim-
ple) paths. That is, the antecedent of eq. (5) is strengthened to
ensure that the sequence ~v0, . . . , ~vk+1 is loop free.

C. Description of IC3

We give a brief description of IC3 that highlights some
steps, but omits many crucial optimizations. We refer the
reader to [10] for an overview of available optimizations and
their possible implementations.

IC3 maintains a sequence of sets of clauses F0, F1, . . .
called an inductive trace. Each set of clauses Fi in a trace
is called a frame, each clause c ∈ Fi is called a lemma, and
the index of a frame is called a level. We assume that F0 is

Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive

1 Add(Q, 〈s0, f0))
2 while ¬Empty(Q) do
3 〈s, f〉 ← Pop(Q)
4 assert ¬s is (f − 1)-invariant
5 if f = 0 then
6 return CEX
7 if SAT?(¬s ∧ Ff−1 ∧ Tr ∧ s′) then
8 t← ExtractPredecessor(s)
9 Add(Q, 〈t, f − 1〉)

10 Add(Q, 〈s, f〉)
11 else
12 〈c, g〉 ← Generalize(¬s, f)
13 AddLemma(c, g)
14 if g < f0 then
15 Add(Q, 〈s, g + 1〉)
16 return BLOCKED

Fig. 1. IC3 Blocking (IC3_Block).

initialized to Init and that Init → ¬Bad . IC3 maintains the
following invariant:

Fi → ¬Bad Fi+1 ⊆ Fi Fi ∧ Tr → F ′i+1

That is, each element of the trace is safe, the trace is syntac-
tically monotone, and each Fi+1 is inductive relative to Fi.

Fig. 1 presents the blocking procedure of IC3. The inputs
to IC3_Block are a state s0 and a level f0, with ¬s0 already
known to be (f0−1)-invariant. The procedure either strength-
ens the inductive trace and returns BLOCKED indicating that
¬s0 is f0-invariant, or finds a counterexample trace witnessing
that s0 is reachable from Init and returns CEX.

IC3_Block maintains a queue of proof obligations (or
CTI’s) of the form 〈s, f〉 where s is a cube over state variables
and f is a level. At each point of the execution, it considers a
proof obligation 〈s, f〉 with the smallest level f , and attempts
to prove that s is reachable in f steps. If f = 0 then there is a
real counterexample. Otherwise, it makes a predecessor query
SAT?(¬s ∧ Ff−1 ∧ Tr ∧ s′) that checks whether a state in s
can be reached from a state in Ff−1. If the result is satisfiable,
it adds a predecessor of s as a new proof obligation at level
f − 1. If the result is unsatisfiable, it learns a new lemma c,
such that Init → c, c→ ¬s and c∧Ff−1∧Tr → c′, and adds
c to Fj , for all j ≤ f . In other words, the lemma c represents
a new over-approximation, and in particular demonstrates why
the state s cannot be reached in up to f steps from the initial
states. An important optimization is to re-enqueue s at the
lowest unknown frame.

Each time that IC3 blocks Bad for one additional level,
it enters a propagation phase, in which for each level f and
for each lemma c ∈ Ff \Ff+1, it executes the following SAT
query: SAT?(c ∧ Ff ∧ Tr ∧ ¬c′). Whenever this query is
unsatisfiable, the lemma c can be added to frame Ff+1.

IC3 terminates if at any point of the execution Ff−1 = Ff
and Ff → ¬Bad . In this case Ff represents an inductive
invariant establishing the correctness of the property.
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Input: A number k, a k-invariant `, a 0-invariant F0

1 F ← F0

2 Add(Q, 〈¬`, k))
3 while ¬Empty(Q) do
4 〈s, f〉 ← Pop(Q)
5 assert ¬s is (f − 1)-invariant
6 if f = 0 then
7 if s ∩ Init 6= ∅ then return CEX
8 else return K-CTI
9 F ← F ∧ ¬s

10 if SAT?(F ∧ Tr ∧ s′) then
11 t← ExtractPredecessor(s)
12 assert t→ F
13 Add(Q, 〈t, f − 1〉)
14 Add(Q, 〈s, f〉)
15 else
16 c← Generalize(¬s)
17 F ← F ∧ c
18 G← G ∧ c
19 return (BLOCKED, G)

Fig. 2. k-induction without unrolling (K-Ind).

III. K-INDUCTION WITHOUT UNROLLING

In this section we present K-Ind, an algorithm for decid-
ing whether a given k-invariant formula is k-inductive. Unlike
the traditional approach that reduces k-induction to BMC by
unrolling the transition relation, our algorithm is based on IC3,
and maintains only a single copy of the transition relation. In
addition, unlike the traditional approach, K-Ind guarantees
loop-free paths without introducing expensive unique-state
constraints. In the rest of this section, we present the algorithm,
argue for its correctness, and illustrate it on an example.

A. The Algorithm

The pseudo-code of K-Ind is shown in Fig. 2. The inputs
to K-Ind are a number k determining the depth of induction,
a k-invariant formula `, and a 0-invariant F0. For simplicity
of presentation, we require that ` is a clause. The algorithm
returns one of three values: CEX to indicate that ` is not (k+1)-
invariant, K-CTI to indicate that ` is not k-inductive relative to
F0, and a tuple (BLOCKED, G) to indicate that ` is k-inductive
relative to F0, and G is an inductive strengthening of ` (i.e.,
G contains ` and is inductive relative to F0.

K-Ind closely follows the blocking procedure of IC3
(shown in Fig. 1) with several important differences that are
highlighted next. First, all SAT-queries are made relative to
the single frame F . This can alternatively be explained as
IC3_Block in which all frames are the same and do not
necessarily form an inductive trace. Second, a lemma learned
at any stage of the algorithm holds for all frames. Hence,
discharged proof obligations are not re-enqueued to higher
levels. In particular, the priority queue Q acts as a LIFO
stack. Third, the level of a proof obligation represents how
much remaining budget it has rather than the frame on which
it should be blocked. Fourth, the assertion on line 5 holds.
Fifth, the negation of the predecessor to be blocked is assumed
during blocking of all of it descendants (line 9). Lastly, the
generalization of predecessors is done with respect to the frame
F so that the assertion on line 12 holds.

B. Correctness

In the following, we establish the correctness of K-Ind.
Our correctness argument is partitioned into two cases: (1)
K-Ind returns CEX or K-CTI, and (2) it returns BLOCKED.

Lemma 1 Let k be a natural number, a clause ` be a k-
invariant, and F0 be a 0-invariant. If K-Ind(k, `, F0) returns
CEX, then ` is not a (k+1)-invariant, and if it returns K-CTI
then ` is not k-inductive relative to F0.

Proof: Similarly to IC3_Block, whenever K-Ind
reaches line 6, the queue Q contains a loop-free sequence of
k + 1 states consistent with F0 and satisfying the transition
relation. This sequence witnesses that ` is not k-inductive.
Furthermore, if it intersects with the initial state, then ` does
not hold after (k + 1) steps of the tranistion relation. Hence,
` is not (k + 1)-invariant.

Lemma 2 Let k be a natural number, a clause ` be a k-
invariant, and F0 be a 0-invariant. If K-Ind(k, `, F0) returns
a tuple (BLOCKED, G), then G is an inductive strengthening
of ` relative to F0.

Proof: By construction, G contains ` and is inductive
relative to F . Whenever K-Ind terminates with BLOCKED,
every state that has ever been added to Q is blocked. Hence,
for every clause c in F \F0 there is a stronger clause d in G.
Thus, G is also inductive relative to F0.

Theorem 1 Let k be a natural number, a clause ` be a
k-invariant, and F0 be 0-invariant. Then, assuming that
Generalize(¬s) always returns ¬s, K-Ind(k, `, F0) ter-
minates and returns BLOCKED iff ` is k-inductive relative to
F0, CEX iff ` is not (k + 1)-invariant, and K-CTI iff ` is not
k-inductive but (k + 1)-invariant.

Proof: We only need to show termination. The rest
follows from Lemma 1 and Lemma 2. The number of iterations
of the outer loop is bounded by the number of clauses (or
cubes). At every iteration of the loop, either a new predecessor
is added to the queue Q, or a new clause is added to frame
F . No predecessor is added more than once. All the clauses
in F are distinct.

The assumption that Generalize(¬s) always returns
¬s in Theorem 1 is needed only to guarantee that K-CTI
is returned whenever ` is not k-inductive. Removing this
assumption makes the algorithm stronger by allowing it to find
an inductive strengthening of ` even when ` is not k-inductive
(of course, this is only possible when ` is an invariant).

Interestingly, K-Ind is complete in the sense that if `
is an invariant, then there is a k such that K-Ind(k, `,>)
returns BLOCKED. This follows from the fact that K-Ind
only considers loop-free counterexamples to k-induction. Note
that restriction to loop-free paths follows from assuming the
negation of a state to be blocked (line 9). This is a simpler
alternative to a traditional approach of encoding loop-freedom
of a path via an explicit unique-states constraint.

C. An Example

In this section, we illustrate K-Ind and highlight the
difference with IC3_Block on an example. Consider the
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following transition system P

V = {x, a, b, c}
Init ≡ x ∧ a ∧ b ∧ c
Tr ≡ (x′ = ¬x ∨ a ∨ b ∨ c) ∧

(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0)

Bad ≡ ¬x
Note that a = 1 and x = 1 are invariants of P , while b = 1
and c = 1 are not. In fact, c = 1 only holds on the initial
cycle, and b = 1 only holds on the first two cycles. Consider
the property ` ≡ ¬Bad = (x = 1). ` is not 1-inductive but is
2-inductive.

We begin by illustrating a run of K-Ind with inputs: ` =
{x = 1}, k = 2 and F0 = >. On the first iteration of the loop,
F is updated to (x), and the predecessor query for s0 relative
to F yields a SAT query:

(x) ∧ (x′ = ¬x ∨ a ∨ b ∨ c) ∧
(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0) ∧ (x′ = 0)

This query is satisfiable. This, in particular, shows that ` is not
1-inductive. The corresponding predecessor is

t = {x = 1, a = 0, b = 0, c = 0}
On the second iteration of the loop, F is updated to (x) ∧
(¬x∨ a∨ b∨ c), and the predecessor query for t relative to F
yields a SAT query

(x) ∧ (¬x ∨ a ∨ b ∨ c) ∧ (x′ = ¬x ∨ a ∨ b ∨ c) ∧
(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0) ∧ (x′ = 1) ∧

(a′ = 0) ∧ (b′ = 0) ∧ (c′ = 0)

This query is unsatisfiable. Assuming that Generalize does
not remove any literals, K-Ind learns the lemma (¬x∨a∨b∨c)
and adds it to F . With the proof obligation t being blocked,
the algorithm re-examines `, and makes the predecessor query

(x) ∧ (¬x ∨ a ∨ b ∨ c) ∧
(x′ = ¬x ∨ a ∨ b ∨ c) ∧ (a′ = a ∨ b) ∧ (b′ = c) ∧

(c′ = 0) ∧ (x′ = 0)

This query is also unsatisfiable. The algorithm outputs
BLOCKED, with the constructed 1-inductive strengthening of
ϕ being ψ = x∧(¬x∨a∨b∨c). Finally, we note that general-
ization relative to F (the procedure Generalize) could have
also yielded the lemma (a = 1) (resulting in the strengthening
(x ∧ a)), but could not have yielded lemma (b = 1) since
(b = 1) is not inductive relative to (x) ∧ (¬x ∨ a ∨ b ∨ c).

Next, consider IC3 on the same example. The blocking
procedure of IC3 similarly finds t as a predecessor of s, but
makes the next predecessor query relative to F0 = Init . More
importantly, it calls Generalize on (¬x∨a∨ b∨ c) relative
to F0, possibly learning the lemma (b = 0) instead. Then,
IC3 concludes that s0 is blocked on level 2. However, since
(x) ∧ (b) is not an inductive invariant, IC3 needs to unfold
the trace for an additional frame and continue blocking s on
frame 3.

This example shows that K-Ind guarantees to strengthen
a k-inductive property to an inductive one, while IC3 does
not provide any such guarantees.

Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive

1 res← UNKNOWN
2 while res = UNKNOWN do
3 strategy ← AdjustStrategy()
4 res← BlockUsingStrategy(s0, f0, strategy)
5 return res

Fig. 3. KIC3 Top-level blocking (KIC3_Block).

IV. KIC3: K-INDUCTIVE IC3 ALGORITHM

In this section, we describe the KIC3 framework that uni-
fies IC3 and k-induction model checking algorithms. The core
of KIC3 is a blocking procedure that integrates IC3_Block
with a variant of k-induction. This procedure is then incorpo-
rated into a flexible approach for blocking proof obligations
and for pushing existing lemmas forward.

A. Top-level blocking in KIC3

A pseudo-code for the top-level blocking procedure,
KIC3_Block of KIC3 is shown in Fig. 3. The proce-
dure takes as input a state s0 and a level f0 and assumes
¬s0 is an (f0 − 1)-invariant. The procedure outputs either
BLOCKED to indicate that ¬s0 is f -invariant, or CEX to
indicate that s0 is reachable from Init . As in IC3, KIC3 main-
tains an inductive trace F0, F1, . . . that is updated through-
out the blocking process. Internally, KIC3_Block imple-
ments a portfolio approach, delegating lower-level blocking to
other procedures such as IC3_Block (shown in Fig. 1), or
KIC3_Block_Kind (shown in Fig. 3 and described later in
this section). Note that the internal blocking procedure might
return UNKNOWN to indicate that it has given up before finding
a solution.

B. k-induction blocking in KIC3

Fig. 4 presents the k-inductive blocking procedure
KIC3_Block_Kind of KIC3. In addition to a state s0 and
a level f0, KIC3_Block_Kind requires two parameters:
k0 – the induction depth, and m0 – the maximum number
of predecessors to k-induction to be blocked by an external
blocking procedure. The output of KIC3_Block_Kind is
one of BLOCKED, CEX or UNKNOWN. As s0 is only known
to be (f0− 1)-inductive, the actual induction depth k is set to
the smaller of the two values k0 and f0 (line 1). Our algorithm
is strongly reminiscent of both IC3_Block and K-Ind, with
several important differences that are described below.

First, all SAT queries (line 16) are performed relative to
the same frame Ff0−1. The level f of a proof obligation 〈s, f〉
has a slightly different interpretation than in IC3_Block: s is
guaranteed to be unreachable from Init in f − 1 steps or less
(assertion on line 6). The same queue management strategy as
in IC3_Block is used. That is, proof obligations with lowest
levels are chosen first. As in K-Ind, all the learned lemmas
hold up to level f0. The discharged proof obligations do not
need to be re-enqueued, and the priority queue Q acts as a
LIFO stack. However, unlike K-Ind, the query on line 16
does not fully implement loop-free paths, and instead a more
relaxed condition of IC3_Block is used.
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Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive; parameters k0 and m0

1 k ← min(k0, f0)
2 m← 0
3 Add(Q, 〈s0, f0))
4 while ¬Empty(Q) do
5 〈s, f〉 ← Pop(Q)
6 assert ¬s is (f − 1)-invariant
7 if f = f0 − k then

// Found cex to k-induction
8 if m < m0 then
9 m← m+ 1

10 if BlockInRange(s, f0 − k, f0) = CEX
then

11 return CEX
12 else if (f = 0) ∧ (s ∩ Init 6= ∅) then
13 return CEX
14 else
15 return UNKNOWN
16 if SAT?(¬s ∧ Ff0−1 ∧ Tr ∧ s′) then
17 t← ExtractPredecessor(s)
18 Add(Q, 〈t, f − 1〉)
19 Add(Q, 〈s, f〉)
20 else
21 〈c, g〉 ← Generalize(¬s, f0)
22 AddLemma(c, g)
23 return BLOCKED

Fig. 4. KIC3 blocking using k-induction (KIC3_Block_Kind).

Input: A state s0, levels f0 and f1 s.t. s0 is
(f0 − 1)-invarant

1 for f = f0, . . . , f1 do
2 if (f = 0) ∧ (s0 ∩ Init 6= ∅) then
3 return CEX
4 if (f 6= 0) ∧ (KIC3_Block(s0, f) = CEX) then
5 return CEX
6 return BLOCKED

Fig. 5. KIC3 Top-level blocking in a range of frames (BlockInRange).

Second, when a proof obligation 〈s, f〉 at level f = f0−k
is examined, and consequently a K-CTI is discovered, the algo-
rithm may attempt to recover by blocking this counterexample
to k-induction. Since ¬s is (f0 − 1)-invariant, s needs to be
blocked in every level in the range [f0−k, f0] (see line 10). The
implementation of BlockInRange is shown in Fig. 5. As
usual, we require that ¬s0 is (f0−1)-invariant. The procedure
iterates over levels from f0 to f1 and calls KIC3_Block to
block s0 at the corresponding level. It returns BLOCKED if
s0 is blocked on all levels in [f0, f1] (and hence ¬s0 is f1-
invariant), and CEX otherwise.

Third, there is a parameter to limit the number of K-CTIs
considered. When the number of K-CTIs reaches the maxi-
mum number m0, KIC3_Block_Kind returns UNKNOWN.
Note that whenever m0 = 0, the external blocking procedure is
not used at all, and KIC3_Block_Kind returns UNKNOWN
(or possibly CEX) as soon as the first K-CTI is discovered.
This limits the algorithm to only learn “high-quality” lemmas
that hold up to level f0, at the risk of eventually returning
UNKNOWN sooner. On the other hand, when m0 =∞, all the

K-CTIs are blocked with an external blocking procedure. In
this case, KIC3_Block_Kind is also guaranteed to return
either BLOCKED or CEX (and to never return UNKNOWN).

C. Correctness and Termination

In this section, we argue the correctness of
KIC3_Block_Kind. First, the assertion on line 6 holds:
the top-level proof obligation s0 satisfies the assertion by
assumption, and other proof obligations are added on line 18
and satisfy the assertion due to the following lemma.

Lemma 3 Let s be a state, and f ≥ 0 be a natural number,
such that ¬s is f -invariant. Let t be a predecessor of s. Then
¬t is (f − 1)-invariant.

Proof: By contradiction. Assume ¬t is not (f − 1)-
invariant. Then, there is a counterexample trace π of length
at most f that reaches t from the initial states. Since t is a
predecessor of s, there is a one-transition extension of π that
shows that ¬s is not f -invariant.

Second, whenever KIC3_Block_Kind reaches line 13,
the queue Q contains a sequence π of k + 1 states satisfying
the transition relation, with the first state in the sequence
intersecting the initial states, and the last state intersecting s0.
The path π shows that s0 is reachable from Init in k+1 steps.

Third, whenever the algorithm reaches line 23, correctness
is argued as in IC3: each lemma c added in line 22 satisfies
Init → g and g ∧ Ff0−1 ∧ Tr → g, and, hence, is inductive
relative to Ff0−1.

Fourth, whenever KIC3_Block_Kind calls
BlockInRange recursively with a state s, by construction
BlockInRange always calls an internal blocking procedure
at the lowest level at which s is not yet blocked. Thus, the
pre-conditions of the internal blocking procedure are satisfied.

Finally, the recursion of BlockInRange is well
founded. Suppose that KIC3_Block_Kind(s0, f0)
calls BlockInRange which, in turn, calls
KIC3_Block_Kind(s1, f1). Then either f1 < f0, or
f1 = f0 and, thus, BlockInRange has already blocked s1
at level f0 − 1 and learned a new lemma. Thus, in both cases
the recursion makes a progress and must terminate.

D. Discussion

It is interesting to contrast the blocking strategies in IC3
and KIC3. IC3_Block blocks each proof obligation at the
lowest level it is yet unknown. Thus, if 〈s, f〉 ∈ Q is a proof
obligation and t is a predecessor of s, then IC3_Block
recursively attempts to block t at level f − 1, and, if suc-
cessful, blocks t at level f as well. On the other hand,
KIC3_Block_Kind attempts to directly block t at level
f , without blocking it at level f − 1 first. Thus, from a
high-level perspective, KIC3_Block_Kind is a variant of
IC3_Block, with a different counterexample-queue manage-
ment strategy.

By always making SAT queries relative to the frame Ff0−1,
KIC3 essentially ignores all lemmas not in Ff0−1. On the
one hand, this may force it to spend more effort on blocking
the top-level proof obligation 〈s0, f0〉. On the other hand, all
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learned lemmas automatically hold up to level f0. Intuitively,
since the lemmas are true for more steps of the transition
relation they are of a “higher-quality”, i.e., more likely to be
part of the final inductive invariant.

Note that while KIC3_Block_Kind is similar to K-Ind,
it does not fully incorporate the search for loop-free paths.
This might be important when proof obligations are not
enqueued at their lowest unknown levels. In particular,
KIC3_Block_Kind may fail to find an inductive strength-
ening of ¬s0, even when s0 is k-inductive relative to Ff0−1.
Addressing this deficiency requires an ability to remove lem-
mas from frames in an IC3 framework. Developing support
for this feature is an interesting direction for future work.

Another interesting technical dilemma reflects predecessor
generalization on line 17 of KIC3_Block_Kind. More pre-
cisely, when the SAT query SAT?(¬s ∧ Ff0−1 ∧ Tr ∧ s′) is
satisfiable, with t̄ being the predecessor of s, it is customary
to generalize t̄ to a larger set of states t such that any
state in t leads to s [5]. In practice, it is not clear whether
it is desirable to additionally enforce that t → Ff0−1 and
t → ¬s. On the one hand, generalizing predecessors with
respect to ¬s ∧ Ff0−1 avoids spurious K-CTIs. On the other
hand, it significantly increases the sizes of proof obligations
considered. We do not take these additional constraints into
account in our experiments.

E. Portfolio blocking strategies

In this section, we describe the portfolio blocking strategies
used in the experimental evaluation. Given a state s0 to be
blocked at level f0, the B(k0,m0)-strategy with 1 ≤ k0 ≤ ∞
and 0 ≤ m0 ≤ ∞ is defined as follows:

B(k0,m0)
1) Block (s0, f0) using KIC3_Block_Kind with the in-

duction depth k0, the maximum number of K-CTIs
m0, and the procedure BlockInRange realized by
IC3_Block;

2) If the previous procedure returns UNKNOWN, block
(s0, f0) using IC3_Block.

There are several important special cases of this strategy.
First, when k = ∞, KIC3_Block_Kind is called with the
largest induction depth (in other words, f0) allowed for block-
ing (s0, f0). Second, when m0 = 0, KIC3_Block_Kind
returns UNKNOWN as soon as the first K-CTI is discovered,
in the process only learning lemmas at levels at least f0. Third,
when m0 = ∞, KIC3_Block_Kind blocks all counterex-
amples to k-induction using IC3_Block, and IC3_Block
is never called directly.

F. Pushing in KIC3

Our generic framework for blocking a state at a specific
level can also be used in the pushing stage of IC3. The pseudo-
code of KIC3_Push is shown in Fig. 7. Lines 1–5 implement
the traditional pushing procedure: when a lemma c ∈ Ff \
Ff+1 is inductive relative to Ff , it is also added to the frame
Ff+1. Interestingly, this process can be reinterpreted as calling
KIC3_Block_Kind with parameters k0 = 1 and m0 = 0.
On lines 6–7, we propose to additionally push lemmas at the
last level of the inductive trace using KIC3_Block_Kind
with a larger value of k0 (and m0 still equal to 0).

1 N ← Level((¬Bad))
2 for f = 1, . . . , N do
3 for all lemmas c ∈ Ff \ Ff+1 do
4 if Ff ∧ c ∧ Tr ⇒ c′ then
5 Ff+1 ← Ff+1 ∪ {c}
6 for all lemmas c ∈ FN do
7 KIC3_Block(¬c, f + 1)

Fig. 6. KIC3 Pushing (KIC3_Push).

There are many alternative ways to integrate
KIC3_Block_Kind into the pushing stage of IC3.
However, as in general KIC3_Block_Kind(¬c, f + 1) can
add new lemmas to the level f + 1, additional care must be
taken to guarantee termination of the pushing stage.

V. RELATED AND FUTURE WORK

There is a large body of work on automating k-induction
using SAT-based reasoning and on unbounded model checking
using IC3. We focus only on the most closely related work.

It is well-known that k-induction principle is stronger than
induction. In fact, k-induction is complete when restricted to
loop-free paths while induction is not. Bjørner et al. [11] show
that any k-inductive property can be converted into an induc-
tive property by interpolation. Thus, the size of an inductive
property is linear in the size of the resolution proof of the
corresponding k-inductive property. Our K-Ind algorithm is
a constructive proof of this fact. Given a k-inductive property,
K-Ind constructs an inductive certificate in CNF.

K-Ind is built on top of the blocking procedure of IC3
and shares many similarities with it. When the property ϕ un-
der consideration is k-inductive, both K-Ind (instantiated with
the induction depth at least k) and IC3 are guaranteed to ter-
minate and to discover a suitable inductive strengthening of ϕ.
However, K-Ind is guaranteed to only learn k-inductive lem-
mas, while IC3 provides no such guarantees. In particular, the
convergence depth of IC3 might be significantly larger than
k. We believe that this is an important theoretical advantage of
K-Ind over IC3. Unfortunately, our KIC3_Block_Kind in
the KIC3 framework does not guarantee to converge in k steps,
making it closer to IC3_Block than to K-Ind. Addressing
this deficiency is an interesting topic for future work.

In Quip [9], a variant of IC3, a maximal inductive subset
of all the lemmas is explicitly computed and maintained in a
separate frame. This guarantees that Quip converges as soon
as the trace contains an inductive subset. It is interesting to
extend KIC3 to guarantee convergence as soon as the trace
contains a k-inductive subset. Using KIC3_Block_Kind
for pushing, as suggested in Section IV-F, is a step in that
direction.

The PD-Kind algorithm of Jovanovic and Dutertre [6]
is closest to ours, and has inspired our work. The main
difference is that we have tried to integrate k-induction into
IC3 with the fewest modifications of the IC3 framework. For
example, PD-Kind requires unrolling the transition relation
for validating k-induction queries, while KIC3 does not.
Unfortunately, a direct experimental comparison of KIC3 and
PD-Kind is difficult, as PD-Kind is implemented at the level
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Fig. 7. Summary of experimental results comparing KIC3 (y-axis) with Quip (x-axis) on benchmarks from HWMCC’15.

of SMT and does not target hardware benchmarks. Further,
in our experience, a direct implementation of PD-KIND for
hardware does not scale, as unrolling the transition relation
has a huge negative effect on many benchmarks. At the same
time, using k-induction for pushing clauses on the last frame,
as we suggest in KIC3_Push in Section IV-F, while blocking
all predecessors to k-induction using IC3_Block, is closely
related to the PUSH procedure in PD-Kind. Overall, adapting
the ideas of PD-Kind to hardware is a non-trivial task, and
to some extent our algorithm can be viewed as a step in this
direction.

Recall that KIC3_Block_Kind can be seen as
IC3_Block with a specialized counterexample-queue man-
agement. Alternatively, KIC3_Block_Kind can also be seen
as a form of abstraction. Whenever a proof obligation 〈s, f〉
should be blocked, traditionally, we check whether ¬s is
inductive relative to Ff−1. However, any abstraction of Ff−1
can be used as well. For example, using only lemmas that are
also in Ff as the abstraction closely corresponds to KIC3.

VI. EXPERIMENTS

The techniques presented in this paper are implemented on
top of Quip (a variant of IC3 presented in [9]) in the IBM
formal verification tool IBM RuleBase SixthSense Edition [12],
[13]. All experiments were performed on a 2.13Ghz Linux-
based machine with Intel Xeon E7-4830 processor and 16GB
of RAM. We have used all single property designs from the
HWMCC’15 benchmark set. Each design is initially simplified
using standard logic synthesis techniques (similar to the &dc2
command in ABC [14]). We used a timeout of 900 seconds.

TABLE I. SUMMARY OF EXPERIMENTAL RESULTS.

Technique Solved Time (seconds)
Quip 230 52,776
B(5, 0) 233 51,695
B(5, 5) 224 57,864
B(5,∞) 212 68,012
B(∞, 0) 229 53,757
B(∞, 5) 223 57,551
B(∞,∞) 219 62,397

We omit a direct experimental comparison to the original k-
induction algorithm, as k-induction solves tremendously fewer
properties than any of the IC3-based techniques. On the other
hand, on most of the (few) properties that k-induction is able
to solve, the value of k is small. In these cases, k-induction
(based on unrolling the transition relation) usually outperforms
IC3-based techniques, in the same manner as BMC usually
outperforms IC3 when searching for counterexamples.

We focus the experimental evaluation on the comparison
of Quip and KIC3 with different blocking strategies. The
experiments are presented for 238 designs – which are all of
the designs that remain after removing all instances solved by
logic synthesis alone and all instances not solved by any of the
techniques. Recall that the blocking strategy B(k0,m0) means
that KIC3_Block_Kind is called with induction depth k0
and at most m0 K-CTIs. We say that k0 = ∞ whenever a
proof obligation is always blocked with the largest possible
induction depth. In what follows, we report the results for 6
different configurations of KIC3, obtained by setting k0 to
either 5 or∞, and setting m0 to either 0, 5, or∞. A summary
of the overall results is shown in Table I. The columns Solved
and Time represent the total number of instances solved
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and the cumulative time in seconds, respectively. A detailed
comparison between Quip and each KIC3 variant is shown in
the scatter plots in Fig. 7. For each of the plots the horizontal
axis measures the runtime of Quip, while the vertical axis
measures the runtime of KIC3 with the corresponding k-
induction blocking strategy. Thus, points below the diagonal
represent wins for the pure Quip approach, and vice versa.

According to the experiments, the blocking strategy B(5, 0)
performs the best, slightly outperforming Quip by solving 3
more instances in less time. Furthermore, from the plot on
the top-left, we can see that the total runtimes of Quip and
KIC3 with B(5, 0) are fairly well correlated, as most points
are in the vicinity of the diagonal. However, a more detailed
analysis shows that about 30% of the total time to block a
proof obligation is spent in the KIC3_Block_Kind part of
the procedure, so the actual profiles of the two algorithms are
significantly different.

We have also experimented with other blocking strategies
B(k0, 0), and in general all the results are highly consistent.
For example, the “extreme” configuration B(∞, 0) solves 4
instance less than B(5, 0) (and 1 instance less than Quip),
and the plot on the bottom-left still shows high correlation
with Quip.

At the same time, increasing the number m0 of K-CTIs
has a clear negative effect on the algorithm’s performance for
almost every k0. The three top plots demonstrate this for k0 =
5, while the three bottom plots demonstrate this for k0 =∞.
However, we can also note that Quip and KIC3 become less
correlated as m0 is increased, while some instances get solved
faster than before.

VII. CONCLUSIONS

In this work, we present an algorithm to decide whether a
given safety property is k-inductive. This algorithm is based
on the insights from IC3, and does not explicitly unroll the
transition relation or add unique-state constraints to guarantee
simple paths. In addition, we show how k-induction can be
integrated into IC3 with minor modifications of the IC3-
framework. On the practical side, a preliminary experimental
evaluation shows a potential benefit of the suggested methods.
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Abstract—Property Directed Reachability (PDR) is an efficient
model checking technique. However, the intrinsic high compu-
tational complexity prevents PDR from meeting the challenges
of real world verification. To address this problem, this paper
introduces the parallel algorithm P3 based on: 1) partitioning
of the input problem, 2) exchanging of learned reachability
information, and 3) using algorithm portfolios. The generic
nature of the proposed techniques makes them immediately
suitable for software verification. This paper investigates the
benefits of these techniques while taken individually and when
combined together, implemented using distributed computing
environment on top of the SMT-based software model checker
SPACER. In our experiments over SV-COMP benchmarks we
observe up to an order of magnitude speedup with respect to the
sequential implementation with twice as many instances solved
within a timeout.

I. INTRODUCTION

Applying model checking to realistic, complex systems is
highly non-trivial in part due to the computational complexity
of the underlying decision problem. This paper studies how
parallel computing can help in scaling model checking to such
problems. We concentrate on parallelizing the execution of the
Property directed reachability (PDR/IC3) algorithm [1], [5]
using algorithm portfolios and approaches based on divide-
and-conquer together with sharing of information learned in
the model checking process. In particular, we study how
a computational cluster can speed up model checking of
software represented as sets of Constrained Horn Clauses
(CHC) over Satisfiability modulo theories (SMT) constraints.

The PDR/IC3 algorithm (PDR in brief) is a relatively recent
procedure that, given a transition system and a safety property,
computes a safe inductive invariant or finds a counterexam-
ple for the safety of the system. During the computation,
the algorithm maintains an increasingly long sequence of
frames Fi representing symbolically safe over-approximations
of states reachable from the initial state of the transition
system in at most i steps. The frames are constructed as
sets of PDR-lemmas that are computed to block spurious
counterexamples. The algorithm terminates either by finding a
concrete counterexample or by showing that the set of states
described by Fi+1 is a subset of the set of states described
by its immediate predecessor frame Fi. In this case, the frame
Fi+1 is a safe inductive invariant for the program. Constructing
the frame sequence is a heuristic process which can employ
several different strategies within the PDR algorithm.

In this paper we introduce, to the best of our knowledge, the
first divide-and-conquer technique for PDR (called partition-
ing throughout the paper), combine it with a portfolio of PDR
solvers running different strategies, and allow the solvers to

share PDR-lemmas. We combine these techniques in our new
algorithm called P3 (Parallelly Performed PDR).

The P3 algorithm enables efficient parallel model-checking
using PDR with the aim of improving the current state-of-
the-art of parallel software verification. The approach is based
on three concepts that expand the sequential PDR algorithm
as follows: (i) P3 applies a portfolio of sequential PDR
implementations parameterized to compute the frame sequence
in different ways through different search strategies and by
randomizing the search heuristic of the underlying SMT
solver; (ii) P3 implements the novel partitioning approach
introduced here by using the transition function of the program
to compute, based on the negation of the safety property,
its pre-images which are then distributed over the solvers
in the portfolio as new safety properties; and (iii) the PDR
implementations in the portfolio may share the PDR lemmas
stored in the frames among each other. To the best of our
knowledge, P3 enables parallel PDR for software verification
for the first time.

We implemented the P3 algorithm using the sequential
SPACER model checker [12] as a basis. We performed a
thorough experimental analysis processing over 1000 instances
from the Software Verification Competition 2016 (SV-COMP)
with different configurations. The experiments were run in a
computational cluster of 60 CPU cores. Our results show that a
combination of divide-and-conquer, lemma sharing, and algo-
rithm portfolio is capable of solving twice as many instances
within our timeout of 1000 seconds and provides up to an order
of magnitude speedup compared to the best sequential SPACER
configuration. Our experimentations furthermore reveals that
the choice of the heuristic for selecting which clauses to share
is important, and that especially the partitioning technique
benefits the most from it. The results are interesting also in
the sense that they report the first experiments on running
PDR on a computing cluster targeting in particular software
verification with SMT-based Constrained Horn Clauses.

The paper is structured as follows. We compare with related
work in Section II, and in Section III we review the basics of
the PDR algorithm. In Section IV, we introduce our notion of
distributed PDR and give details about our new parallelisation
strategies. In Section V, we describe our implementation used
for empirical evaluation presented in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

The first attempt to parallelize PDR is mentioned in the
original PDR paper [1], where the experimented parallel
setting is based on sharing all the frames among different
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computing threads on the same machine. This work is further
improved in [3] where they study different parallel approaches,
all of them focused on multi-threaded portfolios and PDR-
lemma sharing, addressing propositional PDR.

Both [1], [3] are limited to propositional PDR, making them
suitable mainly for hardware verification. In contast to [1],
[3], we propose and thoroughly evaluate different lemma
sharing strategies by differentiating between k-invariants and
∞-invariants inside the frames. We introduce the novel parti-
tioning technique for PDR, together with a concise algorithm
capable of combining all these techniques in a sound manner.
Moreover our implementation is based on the more scalable
distributed computing, thus exploiting the much bigger com-
putational power offered by cloud-computing environments
compared to single-machine threads.

A first investigation of PDR in the setting of software
verification is done in [4]. A different approach based on CHC
for software verification is presented in [12]. We extend this
work with the aim of improving the current state-of-the-art of
parallel software verification.

There is a substantial amount of work on parallel SMT
solving that can help software verification model checking
techniques in general. The parallelization tree framework for
combining divide-and-conquer and portfolio directly on SMT
formulas is introduced in [10] and augmented with clause
sharing in [14]. A parallel approach for model checking of
concurrent programs is given in [9], while [15] presents a
parallel symbolic execution involving several sequential SMT
solvers.

III. PRELIMINARIES

We assume that the reader is familiar with the basic notation
and semantics of First Order Logic (FOL), and theories of
Linear Integer Arithmetic (LIA) and Arrays. For a set of
variables X , we write X ′ to denote the set of primed variables
X ′ = {x′ | x ∈ X}. We extend the notation to formulas,
and write ϕ′ for a formula obtained from ϕ by replacing
all variables in ϕ with the corresponding primed variables.
Furthermore we denote by X [i] the set of variables obtained
by adding i primes to each x ∈ X .

A. Safety Properties

A program can be expressed as a transition system con-
sisting of variables X , a formula Init(X) describing the
program’s initial states, and a formula Tr(X,X ′) describing
the program’s transition relation. Given a transition system,
a safety property ¬Bad(X) is a formula over the variables
of the system. A set of states described by a formula F is
safe if F ∧ Bad is unsatisfiable. A transition system satisfies
a safety property, i.e., is safe with respect to ¬Bad , if all
its states reachable from the initial state with the transition
relation are safe. The transition system is safe up to k steps if
its states reachable by i applications of the transition relation,
for all 0 ≤ i ≤ k, are safe. In this paper, we are interested
in determining whether a given program satisfies a given
safety property. An instance of this problem is expressed as a
triple S = 〈Init(X),Tr(X,X ′),Bad(X)〉. For simplicity, we

assume that Init(X) =⇒ ¬Bad(X), otherwise, S is unsafe
and the counterexample is a trivial model over X that satisfies
Init(X) ∧ Bad(X).

Definition 1 (Post Image). Given a transition relation Tr and
a set of states represented by F , the predicate postnTr (F ) is
the set of states reachable from any state in F after taking
exactly n transitions of Tr . It is defined as follows:

postnTr (F ) =

{
F if n = 0,

∃X ′ · postn−1Tr (F )(X ′) ∧ Tr(X ′, X) if n ≥ 1.

post∗Tr (F ) is the transitive closure of Tr :

post∗Tr (F ) =
∨

n≥0
postnTr (F )

The set of reachable states for a program S is post∗Tr (Init).
The PDR algorithm constructs an approximation of the reach-
able states by computing modularly overapproximations of
states reachable by S in a certain number of steps. The
algorithm presents these overapproximations as PDR-lemmas,
formulas over variables X describing reachability information
learned by PDR.

Definition 2 (Relatively Inductive and Invariant Lemmas).
Given initial states represented by Init , transition relation Tr
and a set of lemmas F , a PDR-lemma ϕ is inductive relative
to F if and only if

Init =⇒ ϕ ϕ ∧ F ∧ Tr =⇒ ϕ′

Whenever ϕ is inductive relative to true, we say that ϕ is an
inductive lemma. A PDR-lemma ϕ is an invariant lemma if
it is true in all the reachable states, i.e., post∗Tr (F ) =⇒ ϕ.
Every inductive PDR-lemma is invariant, but the converse is
not true in general.

An instance S is safe if there exists a safe inductive invariant
Inv(X) such that Inv(X) =⇒ ¬Bad(X). S is unsafe
if there exists an n ∈ N such that postnTr (Init) ∧ Bad is
satisfiable. For an unsafe S, a satisfying assignment for

Init(X [0]) ∧ Bad(X [n]) ∧
n−1∧

i=0

Tr(X [i], X [i+1])

is called a feasible counterexample. The satisfying assignment
corresponds to a sequence of states where the first state
satisfies Init , each consecutive pair of states satisfies Tr , and
the final state satisfies Bad , and can, therefore, be considered
as an evidence for a programming error.

B. Property Directed Reachability (PDR)

In this section, we give a high-level overview of IC3/PDR
algorithm. We refer the reader to [1], [5], [8], [6], [12] for the
details of the original algorithm and its extensions to SMT.

Definition 3 (PDR Trace). Given an instance of the safety
problem S, a PDR trace for S is a sequence of frames F =
〈F0, F1, . . . , FN , . . .〉 such that each frame Fi ∈ F is a set
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of PDR-lemmas. Furthermore, the trace satisfies the following
properties for i ≥ 0:

F0 ≡ Init (1)
Fi ∧ Tr =⇒ F ′i+1 (2)

Fi =⇒ Fi+1 (3)
i < N =⇒ (Fi =⇒ ¬Bad) (4)

Intuitively, each frame Fi ∈ F over-approximates all the
states reachable in at most i steps of the transition relation
Tr from Init . Moreover, the trace proves that S is safe up to
N − 1 steps of Tr from Init .

PDR uses the trace to compute an increasing bound of steps
from Init up to which S is safe. The algorithm works by
iteratively adding an initially empty frame FN at the end of
the trace. PDR then tries to either prove safety of FN by
strengthening it, or to find a feasible counterexample based
on it.

Definition 4 (Proof Obligation). Given an instance S of the
safety problem and a PDR trace F for S, a proof obligation
is the pair 〈σ, i〉 where σ is a conjunction of predicates over
state variables and i ≤ N . In addition, the proof obligation
satisfies the following:
• σ ∧ Fi is satisfiable, and
• for all models m such that m |= σ, post∗Tr (m)∧Bad is

satisfiable.
The conjunction σ represents a set of the states consistent with
a frame Fi ∈ F , containing states that can reach Bad with a
feasible path.

Given an instance S, PDR computes a trace F of increasing
length for S until either a fixed point is found for Tr or
the algorithm determines a feasible counterexample. In the
process, PDR constructs candidate counterexamples, proof
obligations, that are stored in an obligation queue Q. The
proof obligations 〈σ, i〉 are propagated towards the initial state
by computing their pre-image with respect to Tr , resulting in
〈σ−, i− 1〉 which is then inserted to Q. If a counterexample
candidate is not feasible, a proof obligation will at some point
be blocked by a frame. This happens if for a proof obligation
〈σ, i〉 it holds that Fi−1 ∧Tr ∧ σ′ is unsatisfiable. The clause
¬σ is then simplified to a PDR-lemma and inserted to Fi.

PDR proves S safe if:

∃i < N · Fi+1 =⇒ Fi

This simplifies Equation (2) to Fi∧Tr =⇒ F ′i . Thus together
with Equations (1) and (4) Fi is proved to be both a fixed point
for Tr and a safe inductive invariant for S.

The way PDR computes the fixed point leaves room for
some flexibility in how the lemmas are organized. In particu-
lar [6] suggests to separate the inductive lemmas to a distinct
frame F∞. Hence the frame F∞ is initially empty and always
consists of those lemmas ϕ ∈ ⋃Fi inductive relative to F∞.
Thus, S is safe when

F∞ =⇒ ¬Bad .
PDR proves S unsafe whenever a proof obligation 〈σ, 0〉 is

added to the obligations queue. By Definition 4, σ represents a

set of states in Init from which there is a feasible path leading
to a state in Bad .

Definition 5 (PDR Configurations). Given an instance of the
safety problem S , a PDR configuration is the quadruple C =
(N,F , F∞,Q) where:
• N ∈ N,
• F = 〈F0, . . . , FN , . . .〉 is a trace of S,
• F∞ is the inductive frame of F ,
• Q = {〈σ, i〉, . . .} is the obligation queue, where i ≤ N .

The Initial gonfiguration of PDR for S is C0 =
(1, 〈Init , ∅, . . .〉, ∅, ∅)

Given a PDR configuration C of a safety problem S,
each of the following operation performed on C updates its
components resulting in a new configuration C′.

Candidate. If there exists σ such that σ =⇒ FN ∧ Bad ,
then the proof obligation 〈σ,N〉 is added to Q.

Predecessor. Given 〈σ, i〉 ∈ Q with i > 0, if there exists a
conjunction of predicates δ such that for all consistent m
such that m |= δ, m∧Tr |= σ′ holds, then 〈δ, i− 1〉 is added
to Q.

Blocking. Given 〈σ, i〉 ∈ Q with i ≥ 1, if Predecessor is not
applicable then remove 〈σ, i〉 from Q and add the PDR-lemma
ϕ to all Fj with 1 ≤ j ≤ i such that

Init =⇒ ϕ ϕ =⇒ ¬σ Fi−1 ∧ Tr =⇒ ϕ′

Unfold. If Q = ∅ and Candidate is not applicable then
N := N + 1.

Inductive. Given a subset of lemmas ϕ ⊆ Fi with 0 ≤ i < N
s.t. ϕ ∧ F∞ ∧ Tr =⇒ ϕ′, add ϕ to F∞ (and to each Fi).

In addition PDR has the following two rules that guarantee
the termination of the algorithm when always taken when
they are applicable:

Safe . If F∞ =⇒ ¬Bad report safe.

Unsafe . If any 〈σ, 0〉 ∈ Q report unsafe and generate a
counterexample.

In PDR with theories, and, therefore, in our implementa-
tion, the operation Predecessor employs Model-Based Projec-
tion [12] to ensure termination, while Blocking uses interpo-
lation [8] to build the lemma.

Definition 6 (PDR Strategy). Given an intance S of the safety
problem and a PDR configuration C, a PDR strategy TS is a
function that maps C to one of the possible PDR operations
applicable for C, based on S.

A PDR execution is a sequence of configurations
〈C0, C1, . . . , CT 〉 such that for every i ∈ {1, . . . , T}, Ci is
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the result of the operation TS(Ci−1) on Ci−1, C0 is the
initial PDR configuration for S, i.e. (1, 〈Init , ∅, . . .〉, ∅, ∅), and
TS(CT ) ∈ {Safe,Unsafe} .

IV. THE P3 ALGORITHM

In this section we introduce the P3 (Parallelly Performed
PDR) algorithm for parallel model-checking with PDR.

P3 implements three parallelisation techniques for PDR:
portfolio, partitioning, and lemma sharing. These techniques
can be combined in order to exploit each one strengths.

Portfolio takes advantage by using different PDR strategies
while partitioning focuses the search by constraining the
problem. In general, partitioning means dividing a problem
into several sub-problems. The PDR partitioning technique
introduced in this paper partitions the problem by restricting
the paths leading to the bad states.

Finally, lemma sharing provides each solver with useful
information arising from search diversification, and possibly
not derivable locally. The intuition is that PDR-lemmas express
what is learned by each PDR execution. Since different
executions employs different strategies, PDR-lemmas that are
easily found by one strategy can be difficult to find by another.

In the rest of the section, we formalize portfolio, partition-
ing, and lemma sharing strategies and provide details of P3.

A. Portfolio

The most naı̈ve parallel technique is a portfolio – concurrent
and independent execution of multiple sequential PDR strate-
gies on the same problem. A portfolio terminates as soon as
one of its instances terminates successfully.

We define a notion of a distributed PDR configuration
to model a PDR portfolio with any combination of lemma
sharing and partitioning.

Definition 7 (Distributed PDR Configuration). Given an
instance S of the safety problem, a distributed PDR configu-
ration is a set of tuples:

Dn = {
(
T i, Ci

)
}

where for each i ∈ {1, . . . , n}, n ∈ N :

• T i is a PDR strategy from Definition 6,
• Ci =

(
N i,F i = 〈F i0, F i1, . . . , F iNi , . . . , 〉, F i∞,Qi

)
is a

PDR configuration from Definition 5.

A distributed PDR configuration expresses a PDR portfolio
when for every i ∈ {1, . . . , |D|}, T i is a strategy for the input
problem S. That is, every strategy evolves the corresponding
PDR-configuration independently, performing asynchronous
and arbitrary choices based on S.

A PDR portfolio D terminates when there exists T iS(Ci) ∈
{Safe,Unsafe} for some i ∈ {1, . . . , |D|}. Termination and
soundness of this setting follows trivially from PDR because
every execution is independent.

B. Partitioning

In this section, we define partitioning strategy and argue for
its soundness.

Definition 8. Given a safety problem S, partition(S) is a
set of problems {Sp1 , . . . ,Spn}, where each instance Spi =
〈Init(X),Tr(X,X ′), pi(X)〉 is called a partition of S, and
such that

n∨

i

pi ⇐⇒ ∃X ′ · Tr(X,X ′) ∧ Bad(X ′)

From Definition 8, it follows that S is safe if and only if all
of its partitions are safe. A distributed PDR configuration D
expresses partitioning if for each partition Sp ∈ partition(S)
there is a pair (T iSp , Ci) ∈ D. The result of a distributed con-
figuration with partitioning is Unsafe if there exists T iSp(Ci) =
Unsafe , and the result is Safe if for each Sp ∈ partition(S)
there exist T iSp(Ci) = Safe .

The soundness is by construction: a counterexample for Sp
is also valid for S, while the safety of all Sp ensures the
safety of S because every state leading to Bad in one step is
expressed in a partition.

C. Lemma Sharing

In this section, we give the formal definition of lemma
sharing and argue for its soundness in a distributed portfolio
setting.

Definition 9 ((k-)invariant). A PDR-lemma ψ is k-invariant if
it is true in all the states reachable in k steps or less, i.e.,
postkTr (Init) =⇒ ψ. If ϕ is invariant, then it is k-invariant
for any k ∈ N.

Following Definition 9, each frame Fk, k ∈ N, is a set of
k-invariants for S , while F∞ is a set of invariants for S.

Theorem 1 (Lemma Sharing). Given a distributed PDR
configuration D for an instance S of the safety problem, the
PDR-lemma ψ ∈ F ik, k ∈ N is a k-invariant for S and the
operation of adding ψ to any F jl with i 6= j and l ≤ k keeps
Cj a valid PDR configuration for S.
The same holds for ϕ ∈ F i∞ when added to any F j∞, i 6= j.

Proof. The proof follows from Definition 2. Each ϕ ∈ F ik is a
k-invariant if k ∈ N, or an invariant if k =∞ and can be used
to soundly refine a different abstraction of states reachable in
up to k steps.

Similarly, sharing invariants is sound and makes every F i∞
an invariant for S. Thus, S is safe whenever any F i∞ implies
¬Bad .

D. Parallelly Performed PDR

The P3 algorithm is shown in Algorithm 1. It combines
portfolio, lemma sharing, and partitioning. The algorithm
works as follows. Until there are available computing re-
sources, the procedure Entrust randomly selects a partition not
yet solved, creates a new strategy and allocates the necessary
resources in order to run PDR.

The procedure Exclude at line 12 is taken exactly once for
each partition in P whenever a corresponding sequential PDR
instance terminates. This happens finitely many times because
there are finitely many partitions. Therefore, the algorithm
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Input : Safety problem
S = 〈Init(X),Tr(X,X ′),Bad(X)〉.

Output : {Reachable, Unreachable}
Data : A distributed PDR configuration D, a set of

partitions P .
Initially: D ← ∅, P ← ∅.
Assume: Init ∧ Bad is unsatisfiable.

1 P ← partition(S)
2 while True do
3 Reachable: if 〈σ, 0〉 ∈ Qi for some i ∈ {1, . . . , |D|},

return Reachable.
4 Unreachable: if P = ∅, return Unreachable.
5 Lemma Sharing: copy a PDR-lemma ϕ ∈ F in to F jn

with: i, j ∈ {0, . . . , |D|}, i 6= j and n ∈ N ∪ {∞}
6 Entrust: if computing resources are available, then:
7 select a partition Sp ∈ P
8 create a new PDR strategy TSp
9 create new C = (1, 〈Init , ∅, . . .〉, ∅, ∅)

10 set D ← D ∪ {(TSp , C)}
11 allocate computing resources for PDR(TSp , C)
12 Exclude: if there exists Sp ∈ P such that

F i∞ =⇒ ¬p for some i ∈ {1, . . . , |D|}, then:
13 P ← P \ {p}
14 release computing resources used for each

(TSp , C) ∈ D
15 end

Algorithm 1: The P3 algorithm.

terminates if all corresponding PDR instances terminate. Once
exclude is taken, all the computing resources available might
be reallocated on other partitions by several Entrust calls.

Lemma Sharing does not affect termination because it only
refines the frames, leading the execution toward convergence.
It is not possible for any frame to get weaker after lemma
sharing is applied.

If partition(S) = {S} at line 1, then partitioning is
disabled, and if procedure Lemma Sharing at line 5 is never
taken then lemma sharing is disabled. If both are disabled then
the algorithm corresponds to a PDR portfolio. We assume that
there is a global t to handle the desired setting.

V. IMPLEMENTATION

We implemented our parallel PDR algorithm using the tool
SMTSERVICE [13], a framework for parallel and distributed
solving already used in [14] for distributed SMT. A Graphical
User Interface [2] is also available for analysing the parallel
executions. We upgraded it to also support distributed PDR.
SMTSERVICE is a client-server based framework. The server
implements Algorithm 1. The client uses the SMT-based PDR
model checker SPACER [12]. We modified SPACER in order
to expose the API for lemma sharing. The overview of the
architecture is shown in Figure 1.

The server is written in PYTHON and its behaviour can
be controlled through a configuration file. The server is in
charge of pre-processing the input instances, managing clients
connections and solving tasks and collecting statistics sent
by the client solvers. The server stores its information in an

SQLITE3 database called Logs. The database is also used to
analyse the steps of the parallel solving process. Instances to
be solved are provided to the server at run time through the
control socket. The control socket allows either the user or a
tool (e.g., a model checker) to interact with the server.

The partitioner component creates the partitions. The parti-
tioning process is guided by the CHC syntactic structure of the
input instances. When partitioning is disabled, the partitioner
creates a single partition corresponding to the bad states.

The scheduler keeps the list of all the instances and their
partitions and manages connected clients. The scheduler solves
one instance at a time. The partitions of the current instance
are evenly distributed among the connected clients. Once
a partition is proven unsatisfiable, the client working on it
is provided with a remaining unsolved partition. SPACER
implements three strategies, SPACER(DEF), SPACER(IC3),
SPACER(GPDR), which differ in how they manage the queue
of proof obligations. The scheduler proceeds in a best-effort
way assigning each partition to 3 solvers, each configured
with one strategy. If there are still solvers available then the
same procedure is repeated using a different random seed in
the underlying SMT solver of the client. Client failures and
connection of new clients are handled in a sound way so that
computational power may be added or removed on request.

The Lemma Database is implemented as a separate server.
Each client periodically pushes learned lemmas to the Lemma
Database accordingly to the sharing strategy provided by the
server. The pull of the lemmas is also periodic and each client
only pulls lemmas that are yet unknown for that client.

We implemented 4 lemma sharing strategies. The server
reads from the configuration file which is the desired lemma
sharing strategy and forwards it to the solver together with
the instance. The procedure Lemma Sharing at line 5 in
Algorithm 1 describes the strategy ∗-invariants, namely the
exchanging of every learned PDR-lemma. Sharing only PDR-
lemmas from F∞ (∞-invariants) is done by fixing n = ∞,
while sharing only k-invariants is achieved by constraining
n ∈ N. Finally, lemma sharing is disabled when the procedure
Lemma Sharing is never taken. Once an instance is solved
its lemmas are removed to reduce memory consumption. In
the case of partitioning combined with lemma sharing, our
implementation shares lemmas only among solvers working
on the same partition.

...

Server

Lemma DB

Client 
Spacer

Configuration

Cluster
Partitioner

Client 
Spacer

Client 
Spacer

Scheduler

Control Socket

User Logs

Figure 1. SMTSERVICE framework overview. The server implements Algo-
rithm 1. Each client represents a different solver process in a computing node.
Solid lines represent TCP/IP connections, while dashed lines represent disk
I/O.
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Table I
SUMMARY OF RESULTS SHOWING THE NUMBER OF SOLVED INSTANCES.

Technique less500 more500
#reachable #unreachable #unknown #reachable #unreachable #unknown

SPACER(GPDR) 63 175 13 0 8 317
SPACER(IC3) 64 155 32 2 9 314
SPACER(DEF) 64 155 32 2 13 310

portfolio 66 185 0 8 40 277
∞-invariants 66 185 0 7 49 269
k-invariants 66 182 3 7 90 228
∗-invariants 66 185 0 7 90 228

partitioning 66 176 9 10 34 281
partitioning+∞-invariants 66 183 2 11 49 265
partitioning+k-invariants 66 182 3 11 115 199
partitioning+∗-invariants 66 185 0 16 98 211

virtual best 66 185 0 18 132 175

VI. EXPERIMENTS

This section presents an extensive experimental evaluation
of the P3 algorithm on instances from the Software Verifica-
tion Competition. We measure separately the performance of
the algorithm on instances that are known to be easy and hard
for the SPACER model checker, and study the performance
of combinations of lemma sharing, portfolio, and partitioning.
We also experiment on different lemma sharing heuristics on
these settings.

All the reported experiments are executed on a cluster
where each computing node is equipped with 2×Intel E5-
2650 v3 CPU, 64 GB of RAM and Intel 40Gbps Infiniband
network adapter. The parallel experiments are executed using
60 solvers on 6 computing nodes, with the server running on a
separate node. The timeout is set to 1000 seconds (wall-clock
time) on all the experiments.

The benchmark set used in our evaluations is constructed
by SEAHORN [7], a fully automated analysis framework for
LLVM-based languages. Given as input the source file, SEA-
HORN constructs the triplet 〈Init(X), T r(X,X ′), Bad(X)〉
expressed in SMT-LIB v2 like language and representing the
input safety problem ready to be provided to SPACER. Our
benchmark set is based on 1,802 C problems taken from the
SV-COMP 2016 Device Drivers Linux 64-bit (LDV) cate-
gories available at https://github.com/sosy-lab/sv-benchmarks/
tree/master/c and preprocessed by SEAHORN.

We first evaluate the benchmarks sequentially using the
different strategies available in SPACER: IC3, GPDR and DEF.
We call these settings sequential. Those benchmarks solved
in less than one second are removed from the set and we
experiment over the remaining 562 benchmarks.

Based on these evaluations we create two different bench-
marks sets of easy and hard instances respectively:
• less500: benchmarks solved in less than 500 seconds by

at least one strategy. It contains 251 benchmarks.
• more500: benchmarks solved in more than 500 or timed

out by at least one strategy. It contains 325 benchmarks.

These benchmark sets partially overlap by having 14 bench-
marks in common.

Table I shows an overall evaluation over all the experiments
we carried out. For each technique, we report the number of
instances proven reachable, unreachable, and those unsolved,
for both the experimental sets. The table is partitioned into 4
parts. Going from top to bottom: part 1 contains the results
from sequential executions; part 2 contains the result for
lemma sharing strategies with pure portfolio; part 3 contains
results with partitioning; and part 4 presents the results of the
virtual best solver that uses the best configuration for each
problem. This virtual best is achievable by running in isolation
a portfolio of the 8 combinations, using 8×60 CPUs. Notably,
every parallel technique outperforms sequential execution.

For the more500 set the partitioning-based techniques per-
form the best. For the less500 set, especially for reachable
instances, portfolio-based technique is the best, matching the
virtual best solver.

In Table II, we show average time speedups between se-
quential executions and the respective best parallel techniques
for both sets, over benchmarks that did not time out. The
columns 60 CPU show the performance of the best technique:
∞-invariants for less500 and partitioning+k-invariants for
more500. An overview of performance over all the techniques
is shown in Figure 2. We present the runtime performance for
the three sequential strategies (IC3, GPDR and DEF) and all

Table II
AVERAGE SPEEDUP COMPARED TO SEQUENTIAL SOLVING.

Sequential
strategy

less500 more500

60 CPU
virtual
best 60 CPU

virtual
best

SPACER(GPDR) 8× 10× 59× 91×
SPACER(IC3) 26× 32× 56× 88×
SPACER(DEF) 27× 33× 53× 83×
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Figure 2. Comparison among all tested techniques on the sets less500 (top)
and more500 (bottom). k-invariants refers to sharing only lemmas from the
trace, ∞-invariants refers to sharing just F∞, while ∗-invariants implements
both. Finally, for each benchmark we report the virtual best runtime among
all the tested techniques.

the parallel techniques tested in the cluster.
An overview for the set less500 is given in Figure 2 (top).

Sharing ∞-invariants over portfolio is the best technique for
this set, already performing similarly to the virtual best. In
fact, ∞-invariants solves all the benchmarks with an average
30% slowdown with respect to the virtual best, and up to 27×
faster than sequential, as reported in Table II.

Figure 2 (bottom) shows a similar overview for more500.
Regarding this set, partitioning techniques are the best choices.
In fact, the best technique for this set is partitioning+k-

Table III
LEMMA SHARING STATISTICS.

Parallel
technique

less500 more500
time #lemmas time #lemmas

portfolio +
∞-invariants 0.35% 141 0.41% 670
k-invariants 1.24% 252 1.00% 347
∗-invariants 1.55% 243 0.83% 348

partitioning +
∞-invariants 1.46% 170 0.87% 403
k-invariants 3.51% 140 4.55% 238
∗-invariants 3.27% 221 4.45% 320

invariants, followed by partitioning+∗-invariants. However, 40
benchmarks are solved by only one of these two techniques,
making them complementary rather than strictly better than
the other.

A possible way to address the complementarity issue is
by implementing a portfolio of multiple isolated parallel
techniques, giving priority to the complementary ones. This
approach is capable of gradually improving performance to-
ward the virtual best results, where the best performance is
reached with the highest CPU resource allocation.

Regarding more500, a portfolio of partitioning+k-invariants
and partitioning+∗-invariants is capable of solving 140 in-
stances, 10 less than the virtual best and with an average 15%
slowdown. Then, by adding ∗-invariants and k-invariants it is
possible to solve 148 instances with 5% slowdown and half
computing resources with respect to virtual best. The missing
2 instances are only solved by partitioning+∞-invariants and
∞-invariants.

Regarding less500, a similar setting can only decrease
solving time. This is because ∞-invariants already solved
all the benchmark. Figure 3 shows the comparison between
partitioning and portfolio with ∗-invariant sharing being quite
complementary. Thus, a portfolio of these two techniques is
capable of solving the entire less500 set using one fourth
the CPU power requested by the virtual best, with a 14%
slowdown.

Another important result shown in Figure 3 that partitioning
often outperforms pure portfolio on reachable instances. This
is because the first partition proven satisfiable also proves the
entire problem satisfiability, and the focused search done in
each partition helps the solvers to converge quickly.

Table III shows results about lemma sharing. The columns
time show the average amount of time spent on lemma sharing
push and pull, with respect to solving time. The columns
#lemmas show the average number of PDR-lemmas exchanged.
The amount of time spent on PDR-lemmas push and pull is
about 1% and 3% of solving time respectively for portfolio
based techniques, and partitioning based technique. The av-
erage amount of PDR-lemmas generated is significantly lower
than in parallel SAT and SMT [10], [11]. While heuristics
for clause sharing within parallel SAT and SMT are required
due to the high throughput, in this settings lemma sharing
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heuristics are less crucial.
Overall, our experimental evaluations show that parallel

techniques are highly beneficial. In particular, parallelization
with portfolio combined with sharing PDR-lemmas from F∞
is the best choice for easier instances, while partitioning with
sharing PDR-lemmas from the trace is the best choice for
harder instances. This demonstrate that the choice of the
lemma sharing strategy is important.

More experimental results are available at http://verify.inf.
usi.ch/content/p3-experimental-results-fmcad2017.

VII. CONCLUSIONS

This work introduces the first parallel approach of the
IC3/PDR algorithm for software model checking based on
constrained horn clauses and satisfiability modulo theories.
The P3 algorithm is based on combining in a new and
PDR-specific way algorithm portfolios, divide-and-conquer
approaches, and sharing of information learned during the
algorithm execution. We describe our algorithm and its parallel
extensions in a unified framework that allows us to both reason
about the correctness of the implementation, and study the
effect of each component in relative isolation. In addition we
identify two different types of PDR-lemmas, the k-invariants,
and the∞-invariants, and give the first results on constructing
lemma sharing heuristics. To the best of our knowledge in
particular the divide-and-conquer approach and the lemma
sharing heuristics have not been previously used in the context
of PDR. The techniques we propose improve the previously
introduced powerful portfolio technique for PDR, and we
believe that the contributions help in applying parallel and
distributed computing both in hardware and software verifica-
tion.

We implemented the P3 algorithm following the same
principle of isolation between the different techniques. The
implementation is based on the SPACER model checker and
is adaptable to both distributed environments and multi-core

1

10

100

1000

1 10 100 1000 t/o

p
a
rt

it
io

n
in

g
+

∞
-i
n
va

ri
a
n
ts

pure portfolio+∞-invariants

Figure 3. Comparison between sharing invariant with and without partitioning
over less500 sat (×) and unsat (�) instances. Compared to “best”, this
combination is overall 14% slower while using 75% less CPU. Moreover
it is shown that partitioning outperforms on all sat instances.

computing throught our SMTSERVICE framework. Our exper-
imental results obtained by running P3 on a representative set
of software verification benchmarks from the SV-COMP 2016
competition show that the parallel approach is vastly superior
to sequential SPACER configurations, solving over hundred
more instances within our timeout and providing on the
average super-linear speed-ups. We also show that each of the
new techniques work in isolation and that they have interesting
interaction with the different clause-sharing heuristics.

Acknowledgements. This work is supported by the Swiss Na-
tional Science Foundation (SNSF) grants 153402 and 166288.

REFERENCES

[1] Bradley, A.R.: SAT-based model checking without unrolling. In: Verifi-
cation, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011.
Proceedings. pp. 70–87 (2011)

[2] Budakovic, J., Marescotti, M., Hyvrinen, A., Sharygina, N.: Visualising
SMT-based parallel constraint solving. In: Proceedings of the 15th
International Workshop on Satisfiability Modulo Theories. (2017)

[3] Chaki, S., Karimi, D.: Model checking with multi-threaded IC3 port-
folios. In: Verification, Model Checking, and Abstract Interpretation -
17th International Conference, VMCAI 2016, St. Petersburg, FL, USA,
January 17-19, 2016. Proceedings. pp. 517–535 (2016)

[4] Cimatti, A., Griggio, A.: Software model checking via IC3. In: Computer
Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings. pp. 277–293 (2012)

[5] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of
property directed reachability. In: International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA,
October 30 - November 02, 2011. pp. 125–134 (2011)

[6] Gurfinkel, A., Ivrii, A.: Pushing to the top. In: Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, Septem-
ber 27-30, 2015. pp. 65–72 (2015)

[7] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn
verification framework. In: Computer Aided Verification - 27th Inter-
national Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I. pp. 343–361 (2015)

[8] Hoder, K., Bjørner, N.: Generalized property directed reachability. In:
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings.
pp. 157–171 (2012)

[9] Holzmann, G.J.: Cloud-based verification of concurrent software. In:
Verification, Model Checking, and Abstract Interpretation - 17th Inter-
national Conference, VMCAI 2016, St. Petersburg, FL, USA, January
17-19, 2016. Proceedings. pp. 311–327 (2016)

[10] Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space parti-
tioning for parallelizing SMT solvers. In: Theory and Applications of
Satisfiability Testing - SAT 2015 - 18th International Conference, Austin,
TX, USA, September 24-27, 2015, Proceedings. LNCS, vol. 9340, pp.
369–386. Springer (2015)

[11] Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Incorporating clause
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FuseIC3: An Algorithm for Checking Large Design Spaces
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Abstract—The design of safety-critical systems often requires
design space exploration: comparing several system models that
differ in terms of design choices, capabilities, and implementa-
tions. Model checking can compare different models in such a set,
however, it is continuously challenged by the state space explosion
problem. Therefore, learning and reusing information from solv-
ing related models becomes very important for future checking
efforts. For example, reusing variable ordering in BDD-based
model checking leads to substantial performance improvement.
In this paper, we present a SAT-based algorithm for checking a
set of models. Our algorithm, FuseIC3, extends IC3 to minimize
time spent in exploring the common state space between related
models. Specifically, FuseIC3 accumulates artifacts from the
sequence of over-approximated reachable states, called frames,
from earlier runs when checking new models, albeit, after careful
repair. It uses bidirectional reachability; forward reachability
to repair frames, and IC3-type backward reachability to block
predecessors to bad states. We extensively evaluate FuseIC3 over
a large collection of challenging benchmarks. FuseIC3 is on-
average up to 5.48× (median 1.75×) faster than checking each
model individually, and up to 3.67× (median 1.72×) faster than
the state-of-the-art incremental IC3 algorithm.

I. INTRODUCTION

In the early phases of design, there are several models of the
system under development constituting a design space [2, 19,
23]. Each model in such a set is a valid design of the system,
and the different models differ in terms of core capabilities,
assumptions, component implementations, or configurations.
We may need to evaluate the different design choices, or to
analyze a future version against previous ones in the product
line. Model checking can be used to aid system development
via a thorough comparison of the set of models. Each model
in the set is checked one-by-one against a set of properties
representing requirements. However, for large and complex
design spaces, such an approach can be inefficient or even fail
to scale to handle the combinatorial size of the design space.
Nevertheless, model checking remains the most widely used
method in industry when dealing with such systems [5, 19,
21, 23, 24].

We assume that different models in the design space have
overlapping reachable states, and the models are checked
sequentially. In a typical scenario, a model-checking algorithm
doesn’t take advantage of this information and ends up re-
verifying “already explored” state spaces across models. For
large models this can be extremely wasteful as every model-
checking run re-explores already known reachable states. The
problem becomes acute when model differences are small, or

Artifacts for reproducibility, code, theorem proofs, and detailed experi-
mental results can be found at http://temporallogic.org/research/FMCAD17.
Thanks to NSF CAREER Award CNS-1552934 for supporting this work.

when changes in the models are outside the cone-of-influence
of the property being checked, i.e., although the reachable
states in the models vary, none of them are bad. Therefore, as
the number of models grows, learning and reusing information
from solving related models becomes very important for future
checking efforts.

We present an algorithm that automatically reuses
information from earlier model-checking runs to minimize the
time spent in exploring the symbolic state space in common
between related models. The algorithm, FuseIC3, is an
extension to one of the fastest bit-level verification methods,
IC3 [6], also known as property directed reachability (PDR)
[17]. Given a set of models and a safety property, FuseIC3
sequentially checks each model by reusing information:
reachable state approximations, counterexamples (cex), and
invariants, learned in earlier runs to reduce the set’s total
checking time. When the difference between two subsequent
models is small or beyond the cone-of-influence of the
property, the invariant or counterexample from the earlier
model may be directly used to verify the current model.
Otherwise, FuseIC3 uses reachable state approximations as
inputs to IC3 to only explore undiscovered reachable states
in the current model. In the former, verification completes
almost instantly, while in the latter, significant time is saved.
When the stored information cannot be used directly, FuseIC3
repairs and patches it using an efficient SAT-based algorithm.
The repair algorithm is the main strength of FuseIC3, and
uses features present in modern SAT solvers. It adds “just
enough” extra information to the saved reachable states to
enable reuse. We demonstrate the industrial scalability of
FuseIC3 on a large set of 1,620 real-life models for the
NASA NextGen air traffic control system [19, 23], selected
benchmarks from HWMCC 2015 [1], and a set of seven
models for the Boeing AIR6110 wheel braking system [5].
Our experiments evaluate FuseIC3 along two dimensions;
checking all models with the same property, and checking
each model with several properties. Lastly, we evaluate the
effect of model relatedness on the performance of FuseIC3.

Related Work The idea of reusing model-checking informa-
tion, like variable orderings, between runs has been extensively
used in BDD-based model checking leading to substantial
performance improvement [3, 27]. Similarly, intermediate SAT
solver clauses and interpolants are reused in bounded model
checking [22, 25]. Reusing learned invariants in IC3 speeds up
convergence of the algorithm [8]. These techniques enable effi-
cient incremental model checking and are useful in regression
verification [28] and coverage computation [9]. FuseIC3 is an
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incremental algorithm and is applicable in these scenarios.
Product line verification techniques, e.g., with Software

Product Lines (SPL), also verify models describing large
design spaces [4, 13, 15, 16]. The several instances of fea-
ture transition systems (FTS) [14] describe a set of models.
FuseIC3 relaxes this requirement and can be used to check
models that cannot be combined into a FTS. It outputs model-
checking results for every model-property pair in the design
space without dependence on any feature. Nevertheless, SPL
instances can be checked using FuseIC3. Large design spaces
can also be generated by models that are parametric over a
set of inputs. Parameter synthesis [10] can generate the many
models in a design space that can be checked using FuseIC3.
The parameterized model-checking problem [18] deals with
infinite homogeneous models. In our case, the models in a set
are heterogeneous and finite.

The work most closely related to ours is a state-of-the-
art algorithm for incremental verification of hardware [8]. It
extends IC3 to reuse the generated proof, or counterexample,
in future checker runs. It extracts minimal inductive subclauses
from an earlier invariant with respect to the current model.
In our analysis, we compare FuseIC3 with this algorithm,
and show that with the same amount of information storage,
FuseIC3 is faster when checking large design spaces.

Contributions The contributions of our work are many-
fold. We present a query-efficient SAT-based algorithm for
checking large design spaces, and incremental verification.
The algorithm is fully automated, general, and scalable. To
the best of our knowledge, FuseIC3 is the first algorithm to
reuse reachable state approximations to guide bad-state search
in IC3. Our novel procedure to repair state approximations
requires little computation effort and is of individual interest.
We present an extensive experimental analysis using real-life
benchmarks. Lastly, we make all reproducibility artifacts and
source code publicly available.

Structure Section II details background information,
overviews the typical IC3 algorithm, and defines the notation
used throughout the paper. Section III presents the FuseIC3
algorithm. A large-scale experimental evaluation forms
Section IV, and Section V concludes by highlighting future
work and possible extensions.

II. PRELIMINARIES

A. Definitions

A Boolean transition system, or model M is represented
using the tuple (Σ, Q,Q0, δ) where Q0 ⊆ Q is the set of initial
states and δ is the transition relation over state variables Σ.
A safety property is a predicate ϕ over Σ. A primed variable
σ′, such that σ ∈ Σ, represents σ in the next time step. If ψ is
a Boolean formula over Σ, ψ′ is obtained by replacing each
variable in ψ with the corresponding primed variable.

A sequence of states s0, s1, . . . , sn is a path in M if s0 is
an initial state, each si ∈ Q for 0 ≤ i ≤ n, and for 0 < i < n,
(si, si+1) ∈ δ, i.e., there is a valid transition from si to si+1.
A state t in a model is reachable if there exists an execution

path such that sn = t. A model M satisfies safety property ϕ,
denoted M |=ϕ, when no reachable states of M intersect ¬ϕ.

The state variables and their negations are called literals. A
disjunction of literals is called a clause. A Boolean formula
containing a conjunction of clauses is said to be in Conjunctive
Normal Form (CNF).

We assume that a Boolean formula ψ over Σ represents a
set of states in M , or ψ ⊆ Q. Two Boolean formulas ψ1 and
ψ2 over Σ overlap if ψ1 ∩ψ2 6= ∅, i.e., they contain common
symbolic states. Models M and N are related if they contain
overlapping reachable states. A set of models is a collection
of such related models.

B. Overview of IC3

IC3/PDR [6, 17, 26] is a novel verification method based
on property directed invariant generation. Given a model
M = (Σ, Q,Q0, δ), and a safety property ϕ, IC3 incre-
mentally generates an inductive strengthening of ϕ to prove
whether M |= ϕ. It maintains a sequence of frames S0 =
Q0, S1, . . . Sk such that each Si, for 0 < i < k, satisfies ϕ
and is an over-approximation of states reachable in i-steps or
less. If two adjacent frames become equivalent, IC3 has found
an inductive invariant and the property holds for the model. If
a state violating the property is reachable, a counterexample
trace is returned. Throughout IC3’s execution, it maintains the
following invariants on the sequence of frames:

1) for i > 0, Si is a conjunction of clauses,
2) Si+1 ⊆ Si,
3) Si ∧ δ ⇒ S′i+1, and
4) for i < k, Si ⇒ ϕ.

Each clause added to the frames is an intermediate lemma
constructed by IC3 to prove whether M |= ϕ. The algorithm
proceeds in two phases: a blocking phase, and a propagation
phase. In the blocking phase, Sk is checked for intersection
with ¬ϕ. If an intersection is found, Sk violates ϕ. IC3
continues by recursively blocking the intersecting state at
Sk−1, and so on. If at any point, IC3 finds an intersection
with S0, M 6|= ϕ and a counterexample can be extracted. The
propagation phase moves forward the clauses from preceding
Si to Si+1, for 0 < i ≤ k. During propagation, if two
consecutive frames become equal, a fix-point has been found
and IC3 terminates. The fix-point I represents the inductive
strengthening of ϕ and has the following properties: Q0 ⇒ I,
I ∧ δ ⇒ I ′, and I ⇒ ϕ. We refer the reader to [7, 20] for
lower-level details of IC3.

C. SAT with Assumptions

In our formulation, we consider SAT queries of the form
sat(ϕ, γ), where ϕ is a CNF formula, and γ is a set of
assumption clauses. A query with no assumptions is simply
written as sat(ϕ). Essentially, the query sat(ϕ, γ) is equivalent
to sat(ϕ∧γ) but the implementation is typically more efficient.
If ϕ ∧ γ is:

1) SAT, get-sat-model() returns a satisfying assignment.
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2) UNSAT, get-unsat-assumptions() returns a unsatisfi-
able core β of the assumption clauses γ, such that β ⊆ γ,
and ϕ ∧ β is UNSAT.

We abstract the implementation details of the underlying
SAT solver, and assume interaction using the above functions.

D. Notation

We reduce the task of verifying a set of models by restrict-
ing the description of our algorithm to two related models
M = (Σ, QM , Q0M , δM ) and N = (Σ, QN , Q0N , δN ) in the
set. Each model has to be checked against a safety property
ϕ. Assume that model M is checked first. The algorithm
computes frame sequence R and S for M and N , respectively.
|R| denotes number of frames in the sequence R.

III. ALGORITHM

In this section, we present the main contribution of our
paper, FuseIC3. We start with the core idea behind the algo-
rithm by giving the intuition behind recycling IC3-generated
intermediate lemmas. We then provide a general overview
of different sub-algorithms that help FuseIC3 achieve it’s
performance. We next describe the two main components:
basic check and frame repair of FuseIC3.

A. Intuition

Recall that frames computed by IC3 represent over-
approximated states. When M is checked with IC3, frames
R0, R1, . . . , Rj , are computed such that Ri ∧ δM ⇒ R′i+1 for
i < j (invariant 3, Section II-B). In the classical case, checking
N after M requires resetting and restarting IC3, which then
computes frames S0, S1, . . . , Sk for N . Due to to the reset,
all intermediate lemmas are lost and verification for N has to
start from the beginning. However, since M and N are related,
the frames for M and N overlap, and therefore, frames for
M can be recycled and potentially reused in the verification
for N . The idea is illustrated using Venn diagrams in Fig. 1.

In Fig. 1a, the parallelogram and ellipse represent clauses c1
and c2, respectively, in frame Ri+1 such that Ri+1 = c1 ∧ c2,
and the triangle represents states reachable from Ri in one
step, i.e., Ri ∧ δM . So, Ri ∧ δM ⇒ R′i+1. Now consider
a scenario in which we recycle the clauses in Ri+1 when
verifying N . The triangle and the rectangle in Fig. 1b represent
the states reachable from Si in one step. If we were to make
Si+1 = Ri+1, we end up with Si∧δN 6⇒ S′i+1 since c1 doesn’t
contain some states reachable from Si. Therefore, we have to
modify c1 such that the invariant holds. Fig. 1c and 1d show
the two possible modifications of c1. In the former case, we
add states (Si∧δN )\c1 to c1. In the latter, we over-approximate
c1 to ĉ1 such that Si ∧ δN ⇒ ĉ1 (a trivial over-approximation
is to make c1 equal to the set of all states). Irrespective of
the approach used, we end up with Si ∧ δN ⇒ R̂′i+1 = S′i+1,
where R̂i+1 = ĉ1∧c2. Then we check the (i+1)-th step over-
approximation for intersection with ¬ϕ and IC3 continues. In
this way, reusing clauses from model M , saves a lot of effort
in rediscovering these clauses for model N . FuseIC3 uses state
over-approximations.

(a) (b)

(c) (d)

Fig. 1. Intuition behind repairing frames computed for one model by IC3,
and reusing them for checking another related model.

bool FuseIC3 (Q0, δ, ϕ)
1: if CHECKINVAR(Q0, δ, last invariant, ϕ) : return true
2: if SIMULATECEX(Q0, δ, last cex, ϕ) : return false
3: k ← 0, Sk ← Q0 # first frame is initial state
4: while true : # main FuseIC3 loop
5: while sat(Sk ∧ ¬ϕ) : # blocking phase
6: s← get-sat-model()
7: if not recursive block(s, k) :
8: last cex ← extract cex(), return false
9: k ← k + 1

10: Sk ← FRAMEREPAIR(k − 1)
11: for i← 1 to k − 1 : # propagation phase
12: for each new clause c ∈ Si :
13: if not sat(Si ∧ c ∧ δ ∧ ¬c′) : add c to Si+1

14: if Si ≡ Si+1 : # found fix-point invariant
15: last invariant ← Si, return true

frame FRAMEREPAIR (int i)
1: if not sat(Si ∧ δ ∧ ¬R′i+1) : return Ri+1

2: G ← FINDCLAUSES(Si, δ, Ri+1)
3: R̂i+1 ← Ri+1 \ G
4: for each clause c ∈ G :
5: ĉ← EXPANDCLAUSE(Si, δ, c)
6: ĉ← SHRINKCLAUSE(Si, δ, c, ĉ)
7: R̂i+1 ← R̂i+1 ∧ ĉ
8: return R̂i+1 # repaired frame Ri+1

Fig. 2. High-level description of FuseIC3. Parts of the algorithm for typical
IC3 are based on the description in [17, 20].

B. Overview

FuseIC3 is a bidirectional reachability algorithm. It uses
forward reachability to reuse frames from a previously-
checked related model, and IC3-type backward reachability
to recursively block predecessors to bad states. The algorithm
description appears in Fig. 2.

FuseIC3 takes as input the initial states Q0 and the transi-
tion relation δ for the current model, and a safety property ϕ.
The internal state maintained by the algorithm is last invariant,
last cex, and the frames R computed for the last model
verified. Initially, the state is empty. Lines 1–2 perform basic
checks in an attempt to reuse proofs from an earlier run to
verify the current model. Lines 4–15 loop until an invariant or
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a counterexample is found. FuseIC3 maintains a sequence of
frames S0, S1, . . . , Sk for the current model being checked.
Whenever a new frame Sk is introduced in line 10, the
algorithm reuses a frame from R after repairing it with
FRAMEREPAIR. The repaired frame is added to Sk, which
after propagation in lines 11–15, is checked for intersection
with a bad state. A typical execution of IC3 follows until a
new frame is introduced. Upon termination, R is replaced with
the current set of frames S, and last invariant and last cex are
updated accordingly.

FRAMEREPAIR takes as input an integer i. It checks if Ri+1

can be used as is in line 1. If yes, Ri+1 is returned. Other-
wise, the frame is repaired in lines 2–7. FINDCLAUSES finds
violating clauses in Ri+1. Each of these clauses is repaired in
lines 4–7 using EXPANDCLAUSE and SHRINKCLAUSE. After
repair, the updated frame R̂i+1 is returned.

The models in a set are checked sequentially. When
FuseIC3 is run on the first model in the set, it reduces to
running typical IC3. During propagation and when k < |R|,
only repaired clauses (from FRAMEREPAIR) and discovered
clauses for the current model are propagated. When k ≥ |R|,
FRAMEREPAIR returns an empty frame and all clauses from
earlier frames take part in propagation.

C. Basic Checks

It is possible that the changes in design between two
models are very small, and are outside the cone-of-influence
of the verification procedure. Therefore, although the models
are different, they might have the same over-approximated
inductive invariant with respect to the property being checked.
A similar argument applies for two models that fail a property.
In this case, a counterexample for the first model might be a
valid counterexample for the second model. Both these checks
can be carried out in very little time as explained below. For
the case when M and N have different state variables, cone-
of-influence with respect to variables in N is applied on the
invariant/counterexample before performing the checks.

a) Inductive Invariant: If IM is an inductive invariant for
M with respect to ϕ, it satisfies the following three conditions:

1) Q0M ⇒ IM ,
2) IM ∧ δM ⇒ I ′M , and
3) IM ⇒ ϕ.
If changes in N are outside the cone-of-influence of IM ,

then N |= ϕ if the above conditions hold for N (checked
using three SAT calls).

b) Counterexample Trace: If M 6|= ϕ, IC3 generates a
counterexample trace s0, s1, . . . sk such that

1) s0 ∈ Q0M ,
2) (si, si+1) ∈ δM for i < k, and
3) sk ∈ ¬ϕ.
Simulate the counterexample trace for M on N and check

if it satisfies the above three conditions (using k+1 SAT calls).
If the conditions are satisfied, conclude that N 6|= ϕ.

To summarize, if changes in two subsequent models are
outside the cone-of-influence of the proofs generated by IC3,

bool CHECKINVARIANT (Q0, δ, invariant I, ϕ)
1: if not sat(Q0 ∧ ¬I) and not sat(I ∧ δ ∧ ¬I) and not

sat(I ∧ ¬ϕ) : return true
2: else return false

bool SIMULATECEX (Q0, δ, trace s, ϕ)
1: if not sat(s0 ∧Q0) : return false
2: if not sat(sk ∧ ¬ϕ) : return false
3: for i← 0 to len(s) :
4: if not sat(si ∧ δ ∧ s′i+1) : return false

5: return true # valid counterexample

Fig. 3. CHECKINVARIANT evaluates the last known invariant against the cur-
rent model, and returns true if invariant holds, otherwise false. SIMULATECEX
simulates the last known counterexample on the current model, and returns
true if successful, otherwise, false.

FINDCLAUSES (frame S, δ, frame R)
1: for each clause ci ∈ R : # configure solver assertions
2: introduce auxiliary variable yi
3: for each literal l ∈ c′i :
4: add assertion ¬l ∨ yi to solver
5: G ← ∅ # set is initially empty
6: while sat(S ∧ δ, (¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yk)) :
7: α← get-sat-model()
8: for each y1, y2, . . . yk :
9: if α(yi) == ⊥ :

10: add ci to G and remove yi from sat query
11: return G # set of violating clauses

Fig. 4. FINDCLAUSES algorithm to find all clauses in R that lead to violation
of S ∧ δ 6⇒ R′. Upon termination, G contains violating clauses.

verification completes almost instantly. The pseudo-code for
these two basic checks is given in Fig. 3.

D. Frame Repair

We want to expand clauses in frame Ri+1 that are respon-
sible for the violation of Si ∧ δN ⇒ R′i+1. The satisfiability
model is a pair of states (a, b) such that a ∈ Si, b 6∈ Ri+1, and
(a, b) ∈ δM . In other words, b is missing from some, or all
clauses in Ri+1. If all such missing states are added to clauses
in Ri+1, resulting in R̂i+1, the condition Si ∧ δN ⇒ R̂′i+1

becomes valid and R̂i+1 can be reused in checking N . Adding
these states one-by-one requires several calls to the underlying
SAT solver and is infeasible in practice (reduces to all-SAT).
Instead, the violating clauses in Ri+1 are over-approximated.
The over-approximation ends up adding several states to Ri+1

that are in the post-image of multiple states in Si. As the first
step in repairing the frame, we want to find all such violating
clauses.

Find Violating Clauses: Let’s assume frame Ri+1 is composed
of clauses C = {c1, c2, . . . cn}. There are clauses G ⊆ C such
that the assertion Si ∧ δN ⇒ c′ is violated for all c ∈ G.
Set G can be found by brute-forcing the assertion check for
all clauses in C. However, such an approach doesn’t scale
since IC3 frames can have thousands of clauses. Algorithm
FINDCLAUSES, which is inspired by the Invariant Finder
algorithm in [8], efficiently finds such violating clauses. The
pseudo-code for the algorithm is given in Fig. 4.
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EXPANDCLAUSE (frame S, δ, clause ĉ)
1: v ← all primed variables in δ
2: l← all variables in clause ĉ′

3: B ← v \ l # variables not in clause ĉ
4: while |B| > 0 and sat(S ∧ δ ∧ ¬ĉ′) :
5: α← get-sat-model()
6: randomly pick any b′ ∈ B
7: if α(b′) == > : add b to clause ĉ
8: else if α(b′) == ⊥ : add ¬b to clause ĉ
9: remove b′ from B

10: if sat(S ∧ δ ∧ ¬ĉ′) : return ∅
11: return ĉ # expanded clause; S ∧ δ ⇒ ĉ′

Fig. 5. EXPANDCLAUSE algorithm to add literals to clause c such that S ∧
δ ⇒ ĉ′. Upon termination, an empty set is returned if expansion fails.

FINDCLAUSES takes as input frame S = Si, transition
relation δ = δN , and frame R = Ri+1. Upon termination,
it returns all violating clauses. An auxiliary variable yi is
introduced for each clause ci in R in line 2. Lines 3–4 are
equivalent to adding the assertion ci ⇒ yi to the solver. Lines
6–10 loop until the query in line 6 is SAT. On every iteration
of the loop, there is at least one yi that is assigned false.
Clauses ci corresponding to all such yi are added to G and yi
is removed from the query. When the query becomes UNSAT, G
contains all violating clauses in R, and is returned. In practice,
multiple yi are assigned false which helps terminate the loop
faster.

Lemma 1. FINDCLAUSES returns all clauses in Ri+1 that
are responsible for Si ∧ δ 6⇒ R′i+1.

After discovering all violating clauses, FuseIC3 attempts
to expand them before reusing Ri+1 to check model N . In
the trivial case, each violating clause can be removed from
Ri+1 altogether. However, doing this is quite wasteful. For
example, consider a frame in which all clauses are violating.
Reusing this frame entails restarting IC3 from an empty frame,
a scenario we want to avoid. Instead, we rely on efficient use
of the SAT solver to over-approximate the violating clauses.

Expand Violating Clauses: A clause c is violating if none of
its literals match the literals in state b (recall the model (a, b)
to the SAT query Si ∧ δN ⇒ R′i+1). If any literal from b is
added to c, resulting in ĉ, then b ∈ ĉ. Fundamentally, we want
to add literals to clause c without actually enumerating all
such b such that the assertion Si ∧ δN ⇒ ĉ′ holds. A literal
can be added as is, or in its negated form. Adding both makes
the assertion trivially valid. For example, consider a system
with variables x, y, z, and a violating clause c = (x∨ y). Our
aim is to add states to c. Either z or ¬z can be added to
c, but not both. However, deciding what to add to make the
assertion valid is beyond the scope of a SAT solver. Instead,
we use an efficient randomized algorithm, EXPANDCLAUSE,
to add literals to clause c. The pseudo-code for the algorithm
is given in Fig. 5.

EXPANDCLAUSE takes as input frame S = Si, transition
relation δ = δN , and the violating clause c ∈ Ri+1. Initially,
ĉ = c. Lines 1–3 find all variables that are missing from c and

SHRINKCLAUSE (frame S, δ, clause c, clause ĉ)
assert(not sat(S ∧ δ ∧ ¬ĉ′))

1: v ← {literals in ĉ} \ {literals in c}
2: for each l ∈ v :
3: g ← v \ l # drop literal l
4: if not sat(S ∧ δ ∧ ¬c′,¬g′) :
5: v ← {literals j | j′ ∈ get-unsat-assumptions()}
6: return c ∨∨{literals in v}

Fig. 6. SHRINKCLAUSE algorithm to remove excess literals from clause c
while maintaining S ∧ δ ⇒ c′.

store them in set B. The loop in lines 4–9 is repeated until set
B becomes empty, or the query S ∧ δ ⇒ ĉ′ becomes valid. In
the latter case, enough literals have been added to expand c and
the algorithm can terminate. From the SAT model α, randomly
pick an assignment to a variable in B. If the assignment is
true, add the variable as is to ĉ, otherwise, negate variable
and add to ĉ. The added variable is removed from B and the
loop continues. When all possible variables have been added
to ĉ and the assertion is still SAT, return ĉ to be the empty
clause (c = true, or set of all states) in line 10.

Lemma 2. EXPANDCLAUSE expands clause c to ĉ such that
the assertion Si ∧ δ ⇒ ĉ′ is valid.

Shrink Expanded Clauses: Due to the nature of the randomized
algorithm, we may end up adding more states than required to
the expanded clauses. As a last step in repairing the frame, we
remove the excess states added from all such clauses, albeit,
maintaining the over-approximation. FuseIC3 uses UNSAT
assumptions generated in the proof for Si ∧ δ ⇒ ĉ′ to shrink
clause ĉ. The SHRINKCLAUSE algorithm tries dropping a
subset of the newly added literals from ĉ. The pseudo-code
for the algorithm is given in Fig. 6.

SHRINKCLAUSE takes as input frame S = Si, transition
relation δ = δN , non-expanded violating clause c, and the
expanded non-violating clause ĉ. Set v contains all literals
that were added to c by EXPANDCLAUSE. Lines 2–5 loop
until enough literals have been dropped from ĉ such that the
Si ∧ δN ∧ ¬c′ ∧ ¬v′ is valid. On each iteration of the loop, a
literal l to drop from v is chosen. If the assertion is UNSAT, we
can successfully drop l from v, and replace v with the UNSAT
assumptions in the query. However, if the assertion is SAT, l
is a required literal in v and we try dropping another literal.

Lemma 3. SHRINKCLAUSE removes all possible literals from
ĉ such that the assertion Si ∧ δ ⇒ ĉ′ is valid.

The violating clause may appear in future frames in R (due
to the propagation phase when checking M ). The modification
is reflected in all occurrences of the clause. All such violating
clauses in Ri+1 are repaired.

Theorem 1. FRAMEREPAIR returns repaired frame R̂i+1 such
that Si ∧ δ ⇒ R̂′i+1 is valid.

The repaired frame R̂i+1 is added to the set of frames for N
at step i+1. Therefore, Si+1 = R̂i+1, and we continue with the
normal execution of IC3. Clauses are propagated from frames
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Sj , for j ≤ i, to Si+1, which is then checked for intersection
with bad states and, if any are found, IC3 tries recursively
blocking them at earlier steps.

IV. EXPERIMENTAL ANALYSIS

We extensively experimentally analyze FuseIC3. We sum-
marize the setup used for the experiments, briefly detail our
benchmarks, and end with experimental results.

A. Setup
FuseIC3 is coded in C++ and uses MathSAT5 [11] as

the underlying SAT solver. It takes SMV models or AIGER
files as input. The IC3 part of FuseIC3 is based on the
description in [17] and ic3ia.1 We compare the performance
of FuseIC3 with typical IC3 (typ), and incremental IC3 (inc).
The algorithm for incremental IC3 is part of IBM’s RuleBase
model checker [3]. We coded inc based on the description
in [8] to the best of our understanding. All experiments
were performed on Iowa State University’s Condo Cluster
comprising of nodes having two 2.6GHz 8-core Intel E5-2640
processors, 128 GB memory, and running Enterprise Linux
7.3. Each model-checking run had exclusive access to a node.

B. Benchmarks
We evaluated FuseIC3 over a large collection of challenging

benchmarks. The benchmarks are derived from real-world case
studies and modified benchmarks from HWMCC 2015.

1) Air Traffic Controller (ATC) Models: are a large set
of 1,620 real-world models representing different possible
designs for NASA’s NextGen air traffic control (ATC) system
[19]. The set of models are generated from a contract-based,
parameterized NUXMV model. Each model is checked against
34 safety properties. The entire evaluation consists of 34
model-sets (one for each property) containing 1,620 models.

2) Selected Benchmarks from HWMCC 2015: We consid-
ered a total of 548 benchmark models from the single safety
property track [1]. Of the 548, 110 models were solved using
our implementation of IC3 within a timeout of 5 minutes.
To create a model-set, we generated 200 mutations of each
of the 110 benchmarks. The original model was mutated to
only modify the transition system, and not the safety property
implicit in the AIGER file; 1% of the assignments were
randomly modified. An assignment of the form g = g1∧g2 was
selected with probability 0.01 and changed to g = 0, g = 1,
g = ¬g1 ∧ g2, g = g1 ∧ ¬g2, g = ¬g1 ∧ ¬g2, g = g1 ∧ g2,
g = g1, g = ¬g1, g = g2, or g = ¬g2, with equal probability.
Therefore, the full evaluation consists of 110 model-sets, each
consisting of one property and 200 models.

3) Wheel Braking System (WBS) Models: are a set of
seven real-world models representing possible designs for the
Boeing AIR6110 wheel braking system [5]. Each model is
checked against ∼300 safety properties. However, the prop-
erties checked for each model are not the same. We evaluate
FuseIC3 using this benchmark to measure performance when
a model is checked against several related or similar properties.
Each model was checked using a timeout of 120 minutes.

1https://es-static.fbk.eu/people/griggio/ic3ia/

TABLE I
SUMMARY OF RESULTS FOR 34 SETS OF 1,620 MODELS EACH FOR NASA

AIR TRAFFIC CONTROL SYSTEM.

Algorithm Cumulative Time
in minutes

Median Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 2502.70 - -
Incremental IC3 (inc) 2180.57 1.29 (1.3) -
FuseIC3 1683.53 1.75 (5.48) 1.34 (3.67)

C. Results

1) Air Traffic Controller (ATC) Models: Each of the 34
model-sets were checked using a timeout of 720 minutes per
algorithm. The models in a set were checked in random order.
Table I gives a summary of the results. FuseIC3 is median
1.75× (average 5.48×) faster compared to typical IC3, and
median 1.34× (average 3.67×) faster compared to incremental
IC3. On the other hand, incremental IC3 is median 1.29×
(average 1.3×) faster than typical IC3.

Fig. 7a shows time taken by the algorithms on each model-
set. FuseIC3 is almost always faster than typical IC3, and
incremental IC3. However, for some very small instances,
typical IC3 is faster; both incremental IC3 and FuseIC3
require a certain overhead in extracting information from the
last checker run. FuseIC3 tries minimizing the time spent in
exploring the common state space between models. In terms
of the IC3 algorithm, this relates to time spent in finding bad
states and blocking them at earlier steps (blocking phase).
Fig. 7b shows time taken by each algorithm in blocking
discovered bad states. FuseIC3 spends considerably less time
in the blocking phase compared to typical IC3 and incremental
IC3. Therefore, FuseIC3 is successful in reusing a major part
of the already-discovered state space between different checker
runs, a major requirement when checking large design spaces.
Fig. 7c shows the total number of calls made to the underlying
SAT solver by each algorithm. FuseIC3 makes fewer SAT calls
and takes less time to check each model-set. For small models,
FuseIC3 makes more SAT calls compared to typical IC3.

2) Benchmarks from HWMCC 2015: Each of the 110
model-sets were checked using a timeout of 120 minutes per
algorithm. The models in a set were checked in random order.
91 of 110 model-sets were solved by all algorithms within
the timeout. Incremental IC3 solved two more model-sets
compared to typical IC3, while FuseIC3 solved five more
compared to typical IC3. Table II gives a summary of results.

Fig. 8a shows time taken by the algorithms in checking
each benchmark model-set. FuseIC3 is median 1.75× (average
3.18×) faster than typical IC3, and median 1.72× (average
2.56×) faster than incremental IC3. Significant speedup is
achieved when checking model-sets containing large models
with FuseIC3. Performance for model-sets containing small
models is similar for all algorithms. Fig. 8b shows time spent
by each algorithm in blocking predecessors to bad states.

To estimate performance of FuseIC3 on model-sets with
varying degree of overlap among models, we picked the
bobtuint18neg benchmark from HWMCC 2015. 100
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Fig. 8. Comparison between IC3 (×), incremental IC3 (+), and FuseIC3 (�) on 91 benchmarks from HWMCC 2015. Each model is converted to a model-set
containing 200 models, generated by 1% mutation of the original. A point represents cumulative time for checking all mutated versions of a model.

TABLE II
SUMMARY OF RESULTS FOR 91 OF 110 SETS OF 200 MODELS EACH FOR

SELECTED HWMCC 2015 BENCHMARKS.

Algorithm Cumulative Time
in minutes

Median Speedup

v/s typ (avg) v/s inc (avg)

Typical IC3 (typ) 1024.60 - -
Incremental IC3 (inc) 1026.30 1.04 (1.07) -
FuseIC3 545.31 1.75 (3.18) 1.72 (2.56)

model-sets with varying degrees of mutation, between 0.5%
to 50%, of the original model were generated. Each model-
set consists of 100 models each. Each set was checked
using a timeout of 60 minutes per algorithm. Model-sets
corresponding to higher mutation values time out (SAT solvers
are tuned for practical designs and random mutations create
SAT instances that don’t always correspond to real designs).
However, FuseIC3 is able to verify more models in a set for
almost all mutation percentages. Fig. 9 gives a summary of the
adjusted relative speedup between checking using FuseIC3
versus typical IC3. Even at higher mutation percentages,
FuseIC3 is significantly faster.

3) Wheel Braking System Models: A model in the design
space was checked against several properties, differently from
the other benchmarks that checked all models in a set with
the same property. Each model was checked using a timeout
of 120 minutes. The properties for each model were checked
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Fig. 9. Adjusted relative speedup between checking using FuseIC3 versus
typical IC3. 100 models are generated for every mutation percentage between
0.5% to 50% in steps of 0.5%, and are checked against the same property.

in random order. Table III gives a summary of the results.
Compared to other benchmarks, FuseIC3 achieves a smaller

speedup when checking the WBS models. Although some
properties being checked for the models are similar, i.e., the
bad states representing the negation of the property overlap,
the order in which they are checked greatly influences the
performance of FuseIC3. In the random ordering used for the
experiment, FuseIC3 is able to reuse frames without any repair
(the same model is being checked), however, it spends a lot
of time in blocking predecessors to bad states. Nevertheless, it
is faster than checking all properties on a model using typical
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TABLE III
COMPARISON BETWEEN TYPICAL IC3, INCREMENTAL IC3, AND FUSEIC3

FOR AIR6110 WHEEL BRAKING SYSTEM (TIME IS IN MINUTES).

Model

Typical IC3 Incremental IC3 FuseIC3

Time Time v/s typ Time v/s typ v/s inc

M1 4.36 5.02 0.87 3.72 1.17 1.35
M2 15.78 16.65 0.95 14.80 1.07 1.13
M3 12.43 13.48 0.92 11.24 1.11 1.20
M4 12.45 13.66 0.91 11.09 1.12 1.23
M5 15.92 17.04 0.93 14.71 1.08 1.16
M6 16.85 17.79 0.95 17.04 0.99 1.04
M7 12.95 13.67 0.95 12.12 1.07 1.13

90.73 97.31 0.95 84.72 1.11 1.20
(total) (total) (median) (total) (median) (median)

IC3. On the other hand, incremental IC3 is slower compared
to typical IC3. It is able to extract the minimal inductive
invariant (invariant finder) instantly, however, suffers from the
same problem as FuseIC3. Incremental IC3, and FuseIC3 will
benefit if similar properties are checked in order.

V. CONCLUSIONS AND FUTURE WORK

FuseIC3, a SAT-query efficient algorithm, significantly
speeds up model checking of large design spaces. It extends
IC3 to minimize time spent in exploring the state space in
common between related models. FuseIC3 spends less time
during the blocking phase (Fig. 7b and Fig. 8b) due to success
in reusing several clauses, has to learn fewer new clauses, and
makes fewer SAT queries. The smallest salvageable unit in
FuseIC3 is a clause; due to this granularity, FuseIC3 is able
to selectively reuse stored information and is faster than the
state-of-the-art algorithms that rely on reusing a coarser CNF
invariant [8]. FuseIC3 is industrially applicable and scalable
as witnessed by its superior performance on a real-life set
of 1,620 NASA air traffic control system models (achieving
an average 5.48× speedup), and benchmarks from HWMCC
2015 (achieving an average 3.18× speedup). Despite spending
significant time in learning new clauses for the Boeing wheel
braking system models, FuseIC3 is still faster than the previous
best algorithm, typical IC3, when checking properties in
random order; FuseIC3’s performance will improve if similar
properties are checked in order. We contribute to the available
benchmarks by releasing all artifacts for reproducibility.

Ordering of models and properties in the design space
improves the performance of FuseIC3, much like variable or-
dering in BDDs. Heuristics for optimizing model ordering are
a promising topic for future work. Preprocessing the models
and properties, based on knowledge about the design space,
before checking them with FuseIC3 may remove redundancies
in the design space. We plan to extend FuseIC3 to checking
liveness properties by using it is a safety checker [12]. We also
to plan to investigate extending FuseIC3 to reuse intermediate
results of SAT queries, generalized clauses, and IC3 proof
obligations across models. Finally, since checking large design
spaces is becoming commonplace, we plan to develop more
model-set benchmarks and make them publicly available.
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Abstract—We present a fully automatic algorithm for ver-
ifying safety properties of parameterized software systems.
This algorithm is based on both IC3 and Lazy Annotation.
We implemented it in Cubicle, a model checker for verifying
safety properties of array-based systems. Cache-coherence pro-
tocols and mutual exclusion algorithms are known examples
of such systems. Our algorithm iteratively builds an abstract
reachability graph refining the set of reachable states from
counter-examples. Refining is made through counter-example
approximation. We show the effectiveness and limitations of
this algorithm and tradeoffs that results from it.

1. Introduction

We describe FAR (Forward Abstracted Reachability), an
algorithm for fully automatic verification of parameterized
software systems. A parameterized system describes a fam-
ily of programs such as cache coherence protocols where the
number of processes involved can change but the algorithm
handling their behaviour is the same for all of them. Thus,
the parameter allows to talk about these algorithms without
knowing the actual number of processes that will be involved
and then to prove its safety regardless of this number.

Safety properties state that “nothing bad happens” in
our parameterized system. Verifying them can be reduced
to finding an invariant of it. Building an invariant can be
hard (and even undecidable [1]). The standard approach to
do so is to find a formula Φ such that Φ is an inductive
invariant of the system (i.e. the initial state of the system
satisfies Φ and taking a transition from a state satisfying Φ
leads to another state satisfying Φ).

In this paper we describe an algorithm for the automatic
construction of inductive invariants for array-based systems
(Section 2). This algorithm, based on both IC3 [2] and Lazy
Abstraction [3], builds an inductive invariant by unwinding
a graph (Section 3) building a forward abstract reachability
of our system. This unwinding is described as a set of non-
deterministic rules. We then provide an implementation in
Cubicle [4], [5], [6] (Section 5) of these rules and test its ef-
fectiveness on several cache coherence protocols (Section 6).

2. Array-based Systems

An array-based system is described in [7] as first-order
logic formulas on arrays. Such a system can be described
as a set of basic types, a set X of system variables asso-
ciated to type (built as usual with basic types and standard
constructions), a formula init representing the initial states
and a set ∆ of transition rules τ i(X,X ′) (X ′ is the set X
where all the variables are primed which represents the next
state reached after the application of a transition). Since we
work on parameterized programs, our arrays are indexed by
an infinite type proc.

We describe the Dekker mutual exclusion algorithm
as an array-based system. Each process has two boolean
variables, want (stating that the process wants to enter in
critical section or not) and crit (stating that the process is
in critical section or not). There is a global variable turn
of type proc that tracks which process can go into the
critical section. Since we work in the array-based systems
fragment, we represent the local variables as arrays indexed
by processes and containing booleans. The set X contains
two arrays, want[proc] : bool and crit[proc] : bool and the
global variable turn : proc. Initially, no process is or wants
to be in critical section. Three transitions can be triggered,
one to require an access to the critical section, one to enter
in it and one to exit it. According to the previous description,
we write this algorithm as in Figure 1.

Since we focus on safety problems (nothing bad
happens), we need to define what is considered as bad
states. For Dekker algorithm, these states would be defined
with the following formula :

U ≡ ∃p1, p2. p1 6= p2 ∧ crit[p1] ∧ crit[p2]

Our goal is then to prove that no state represented by U
is reachable from init (which can be formulated as : there
exists no path init = X0

p1−→ X1
...−→ . . .

pn−→ Xn = U
with pi ∈ {req, enter, exit}). To do so on parameterized
systems, one of the main algorithms came from Ghilardi et
al. with MCMT [8]. It builds the set of all reachable states by
backward reachability (starting, then, from the unsafe state)
and checks if this set contains an initial state. In this paper,
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turn : proc
crit[proc] : bool
want[proc] : bool

init : ∀p. ¬want[p] ∧ ¬crit[p]

req : ∃p. ¬want[p]
want′[p]

enter : ∃p. want[p] ∧ turn = p
crit′[p]

exit : ∃p1, p2.
crit[p1]
¬want′[p1] ∧ ¬crit′[p1]
∧turn′ = p2

Figure 1. Dekker algorithm as array-based system

we implement a different algorithm which offers a wider
range of possibilities in terms of reachabilty construction.

3. Program unwinding

This algorithm also starts from U but tries to build an
invariant of the system that does not contain it. Before going
into details, we give a brief explanation. This invariant is
iteratively built as an inductive invariant Θ that does not
contain U :

• if Θ ∧ ∆ ∧ ¬Θ′ is unsatisfiable then we found an
inductive invariant

• if Θ ∧∆ ∧ ¬Θ′ is satisfiable, our candidate invariant
is not inductive and we try to refine it until we either
discover that there is no such refinement or we find
some.

For Dekker algorithm, for example, let’s take Θ = ¬U =
∀p1 6= p2.¬crit[p1] ∨ ¬crit[p2] :

• Θ ∧ ∆ ∧ ¬Θ′ is satisfiable (if we
take, for example, the following state : ϕ1 =
crit[p1] ∧ want[p2] ∧ turn = p2 ∧ ¬crit[p2],
ϕ1 |= Θ but if we apply enter to it we obtain the
state ϕ2 = crit[p1] ∧ crit[p2] ∧ . . . and ϕ2 6|= Θ.)

• We need to create Θ′′ = Θ ∧ ρ which is a refinement
of Θ that does not contain ϕ1.

To do so, we build an unwinding of the algorithm as a
quadruple 〈V,E,W,B〉, where:

• 〈V,E〉 is a rooted graph with edges labeled by
transitions from ∆;

• W associates a formula (called world of the vertex)
to each vertex;

• B associates a formula (called bad part of the vertex)
to each vertex.

This graph contains three initial vertices :

ε : the root vertex, W(ε) = init and B(ε) = ⊥;
β : the unsafe vertex, W(β) = > and B(β) = U ;
ω : the sink vertex, W(ω) = ⊥ and B(ω) = ⊥.

We define V ε = {v ∈ V, ε
∗−→ v ∈ E} (i.e. the set

of vertices that are linked to the root) and (F |=f G) ≡
(F ∧ f |= G)

The idea behind this unwinding it that if we manage to
create a graph G of a system S = 〈init,∆〉 where every
vertex in V ε does not contain a bad part and from which no
more transitions can be taken, then the disjunction of their
worlds (Θ =

∨
v∈V εW(v)) is an invariant of the system

(init |= Θ and Θ |=∆ Θ).
We now propose a set of non-deterministic rules for

building this unwinding. Let 〈X, init,∆,U〉 be an array-
based system. Initially, G is defined as follow :

- V = {ε, ω, β}
- E = ∅

The unwinding works by the non-deterministic applica-
tion of the following rules :

Rule 1 (Extend). If ∃v ∈ V, τ ∈ ∆. W(v) |=τ > and
@v′.v τ−→ v′ ∈ E then E = E ∪ {v τ−→ β}
Rule 2 (Refine). If ∃v, v′ ∈ V, τ ∈ ∆. v

τ−→ v′ ∈ E,
B(v′) 6= ⊥, ∃ϕ.W(v) |=τ ϕ and ϕ |= ¬B(v′) then we
create a new vertex v′′ such that W(v′′) =W(v′) ∧ ϕ and
E = E ∪ {v τ−→ v′′} \ {v τ−→ v′}
Rule 3 (Propagate). If ∃v, v′ ∈ V, τ ∈ ∆. v

τ−→ v′ ∈ E,
B(v′) 6= ⊥, ∃γ. γ |=W(v), and γ |=τ B(v′) then B(v)← γ

Rule 4 (Cover). If ∃v, v′ ∈ V, τ ∈ ∆. v
τ−→ v′ ∈ E, v′′ ∈ V

such that W(v′′) |= W(v′) and W(v) |=τ W(v′′) then
E = E ∪ {v τ−→ v′′} \ {v τ−→ v′}
Rule 5 (Sink). If ∃v ∈ V, τ ∈ ∆.W(v) |=τ ⊥ and @v′.v τ−→
v′ ∈ E then E = E ∪ {v τ−→ ω}
S is safe if and only if no rule can be applied to G, an

unwinding of it and B(ε) = ⊥. Intuitively, since no more
transitions can be taken and all the vertices connected to the
root are not bad, init will never be able to lead to U .

4. Example

The example shown in Figure 2 describes the first four
runs of the unwinding on the Dekker algorithm (we decided
not to show ω since it just serves as a sink for the transitions
that can not be taken from a vertex) :

(a) initially, the only rule that can be applied
is Extend from ε (with W(ε) ≡ init ≡
∀p. ¬want[p] ∧ ¬crit[p]) with req;

(b) then we can only apply Refine because init 2req
U ≡ B(β). We create a new vertex called v1;

(c) we can chose here to apply Extend from the new
vertex with any transition. We chose to take the
transition req;

(d) W(v1) 2req B(β) and W(v1) |=req W(v1) so we
can apply the cover rule;

(e) if we keep applying these rules, we reach a fixpoint
at the third created vertex.
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> U

I ⊥

req

(a)
Extend

> U

I ⊥

¬U ⊥

req

(b) Refine

> U

I ⊥

¬U ⊥

req

req

(c) Extend

> U

I ⊥

¬U ⊥

req

req

(d) Cover

> U

I ⊥

¬U γ1
¬U ∧
¬γ1

γ2

¬U ∧ ¬γ1¬γ2 ⊥

req

req
enter

req

req

enter exit

(e) Final state

Figure 2. First four steps of the unwinding and final state of the graph (sink rules are not shown)

5. Implementation

We implemented the unwinding algorithm in Cubicle 1.
To do so we had to chose a deterministic strategy depending
on multiple parameters :

• the order in which the rules are applied;
• which vertex and transition should be taken for the

Extend rule;
• which formula ϕ should we take for the Refine rule;
• which formula γ should we take for the Propagate

rule;
• which vertex v′′ should we take for the Cover rule.

We came out with the following algorithm where we
write v = (W,B) to denote the fact that W(v) = W and
B(v) = B :

Algorithm 1 Graph unwinding - main loop
procedure FAR-CUBICLE(S = 〈init,∆,U〉)

ε← (init,⊥)
β ← (>,U)
ω ← (⊥,⊥)
V ← {ε, β, ω}
E = ∅
PUSH(Q, ε) . Q is a priority queue
while NOT_EMPTY(Q) do

v ←POP(Q)
for all τ ∈ ∆ do

if W(v) |=τ > then
E = E ∪ {v τ−→ β}
UNWIND(v τ−→ β)

else E = E ∪ {v τ−→ ω}
return safe

This algorithm picks a vertex v from a priority queue
(which initially contains only the root vertex) and for all the
transitions, adds an edge to the graph from this transition to
the sink vertex if the formula represented by v is inconsistent
with the transition or to the unsafe vertex if the transition
can be taken. If the edge goes to a vertex v′ that is not the
sink, the procedure UNWIND is called on it. This procedure
checks if B(v) 6= ⊥ or if the B(v′) = ⊥ and if both these
conditions are false it tries to close the edge. An edge is
closed if :

1. cubicle.lri.fr/far

Algorithm 2 Graph unwinding - unwinding procedure

procedure UNWIND(v τ−→ v′)
if B(v) = ⊥ ∧ B(v′) 6= ⊥ then

switch CLOSE(v τ−→ v′) do . See Algorithm 3
case Covered v”

E = E ∪ {v τ−→ v′′} \ {v τ−→ v′}
UNWIND(v τ−→ v′′)

case Bad ϕ
if v = ε then return unsafe
else
B(v)← ϕ

for all u τ ′
−→ v do

UNWIND(u τ−→ v)
case Refined v”

E = E ∪ {v τ−→ v′′} \ {v τ−→ v′}
PUSH(Q, v′′)

• W(v) |=τ B(v′). In this case, all the edges coming
to it must be unwinded again;

• there exists another vertex v′′ such that v |=τ v
′′ and

W(v′′) |= W(v′). In this case, the edge from v to
v′ is deleted and a new one from v to v′′ is created
and unwinded;

• W(v) 6|=τ B(v′). A counter example ϕ is found a
new node v′′ is created with W(v′′) ≡ W(v′) ∧ ϕ
and pushed in the queue.

If all the edges are closed and the queue is empty, the system
is safe. If the propagation of bad parts reaches the root
vertex, the system is unsafe.

Algorithm 3 Graph unwinding - closing edge procedure

1: procedure CLOSE(v τ−→ v′)
2: if ∃v′′. W(v′′) |=W(v′) ∧ W(v) |=τ W(v′′) then
3: return Covered v′′
4: else if W(v) |=τ B(v′) then
5: return Bad PRE(B(v′), τ )
6: else
7: v′′ ← (W(v′) ∧ GENERALIZE(¬B(v′)), ⊥)
8: return Refined v”

As we can see on line 5 of the CLOSE procedure, the
formula γ chosen for the Propagate rule is the pre image
of the bad formula of the vertex v′. Also, on line 7 of the
CLOSE procedure, the formula ϕ chosen for the Refine rule
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is a generalization of the negation of the bad part of the ver-
tex v′. These are, of course, implementation choices. Other
implementation could involve model finding, interpolants ...
In our case, the generalization is a naive one consisting in
taking the smallest part of the resulting formula that was
not already taken and that still satifies the conditions of the
Refine rule.

6. Benchmarks

We compared our implementation to the backward
reachability algorithm already implemented in Cubicle
(without the invariants inference implemented with BRAB
[4], [6]) and obtained the following results (the timeout
was set to 5 minutes and the α version uses an abstraction
engine related to the approximation implemented in BRAB
to get better refinement):

Protocol Cubicle FAR FAR-α
dekker 0.04s 0.04s 0.03s
mux_sem 0.04s 0.05s 0.03s
german-ish 0.06s 0.1s 0.55s
german-ish2 0.13s 0.11s 0.65s
german-ish3 1.2s 8.3s 0.65s
german-ish4 3.5s 2.5s 0.75s
german-ish5 1.9s 8.2s 0.60s
german 18s 5.8s 4.25s

szymanski_at TO 13s 2.60s
szymanski_na TO TO 16s

As we can see in this table, this algorithm is competitive
and even better when good refinements can be found.

7. Related Works

There has been a lot of research in software model
checking and Property-Driven Reachability. This type of al-
gorithm was first introduced by Bradley in [2] and McMillan
revisited his Lazy Annotation (which shares similarities with
PDR algorithms) in [9] or the recent approach from Cimatti
et al. [10] and Z3 with a PDR approach in [11] and [12].
Even though some of these tools are supposed to work on
parameterized systems, we were either not able to find them
or they were not able to prove our examples.

8. Conclusion

We presented the problem of parameterized protocol ver-
ification and gave an algorithm to automatically do it. This
new algorithm was implemented in Cubicle and successfully
applied to many cache coherence protocols.

This algorithm could be improved with a better gen-
eralisation engine (allowing to explore less vertices), an
incremental approach (the parameterized aspect of our lan-
guage makes it hard to remember the state of our SMT
solver). Other optimizations could involve a novel way of
refining our formulas (it is clear that the best refinements

are inductive invariants but it is still an open problem as
how to find these).

Some optimizations were not documented in this article
such as

• Set-theoretic test : some formulas are trivially unsat-
isfiable and don’t require call to the SMT solver;

• relevant instantiations : handling universally quan-
tified formulas can lead to multiple useless instanti-
ations that are trivially unsatisfiable or valid and do
not help the SMT solver to solve the whole formula.
This optimization allows to gain a significant time
in the SMT solver.

• selecting good bads : handling bad parts from the
ones with less processes involved allows to control
the number of processes that have to be instantiated
when checking the satisfiability of formulas. It is
mandatory, if we want to have a competitive algo-
rithm, that we handle the bad parts cleverly (this can
be done in the priority queue).
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Abstract—In this paper, we present THETA, a configurable
model checking framework. The goal of the framework is to
support the design, execution and evaluation of abstraction
refinement-based reachability analysis algorithms for models
of different formalisms. It enables the definition of input for-
malisms, abstract domains, model interpreters, and strategies
for abstraction and refinement. Currently it contains front-end
support for transition systems, control flow automata and timed
automata. The built-in abstract domains include predicates,
explicit values, zones and their combinations, along with various
refinement strategies implemented for each. The configurability
of the framework allows the integration of several abstraction and
refinement methods, this way supporting the evaluation of their
advantages and shortcomings. We demonstrate the applicability
of the framework by use cases for the safety checking of PLC,
hardware, C programs and timed automata models.

I. INTRODUCTION

Nowadays there are several model checking tools imple-
menting algorithms for different formalisms. Most tools focus
on a specific algorithm and formalism to solve a particular
verification task efficiently. However, as new tasks emerge,
more generic tools are also needed since the appropriate
formalism and algorithm are usually not known initially.

THETA1 is a generic, modular and configurable model
checking framework, aiming to support the development and
evaluation of abstraction refinement-based algorithms for the
reachability analysis of different formalisms. The main distin-
guishing characteristic of THETA is its architecture that allows
the combination of various abstract domains, interpreters, and
strategies for abstraction and refinement, applied to models of
various formalisms with higher level language front-ends.

THETA primarily aims to support researchers by providing
a framework where new components and combinations can
easily be implemented, evaluated and compared. Concrete
tools were also built for the verification of transition systems,
control flow automata and timed automata, combining different
abstract domains (including predicates, explicit values and
zones) and refinement strategies (including interpolation and
unsat cores). Measurement results show strong dependency on
the models and analysis components, motivating the need for
a configurable framework. Furthermore, we also used THETA

∗This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

1http://theta.inf.mit.bme.hu

for education at our university, where students implemented
model checkers using components from the framework.

Related tools. Abstraction refinement is a widely used
approach for model checking software. Several tools, e.g.
SLAM [1], BLAST [2] and SATABS [3] are based on pred-
icate abstraction. Lazy abstraction tools like IMPACT [4] and
WOLVERINE [5] use Craig interpolation to compute abstrac-
tions over the predicate domain without expensive post-image
computation. Some tools apply abstraction refinement over
domains other than predicates: the tool DAGGER [6] supports
refinement for octagon and polyhedra domains, and the algo-
rithm VINTA [7] applies abstraction refinement over intervals.
Frameworks CPACHECKER [8] and UFO [9] support config-
urability by the definition of abstract domains, post operators
and refinement strategies, but only targeting software models.
The LTSMIN tool supports various formalisms through its
Partitioned Next-State Interface (PINS) [10]. However, its
main focus is on symbolic and parallel model checking algo-
rithms. Our THETA framework aims to combine the concept of
configurability with formalism independence: the core analysis
algorithms can be implemented independently of the input
formalisms, and relevant combinations of them can be selected
to verify models of several input formalisms.

In this paper we focus on the architecture of THETA
(Section II) and the use cases demonstrating the efficient use
of the tools that are derived from the framework (Section III).

II. ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows the architecture of THETA. The main parts
of the framework are the formalism and language front-ends,
the analysis back-end and the SMT solver interface.

A. Formalisms and language front-ends

One goal of the THETA framework is to enable the analysis
of several formalisms. Formalisms are usually low level, math-
ematical representations based on first order logic expressions
and graph like structures. Each formalism supports higher level
languages that can be mapped to that particular formalism
by a language front-end (consisting of a specific parser and
possibly reductions for simplification of the model). Currently,
transition systems, control flow automata and timed automata
are the supported formalisms with front-ends for higher level
languages as AIGER, PLC, C programs and UPPAAL XTA
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Fig. 1. Architecture of the THETA framework.

models. Section III describes instantiations of the framework
for each of these formalisms.

B. Analysis back-end

The analysis back-end consists of three main parts: the
abstract domain, the interpreter and the abstraction refinement
loop for reachability analysis, with the interpreter being depen-
dent on the formalisms. The basis of the analysis is an abstract
domain with a set of abstract states, its bottom element and a
partial order over the states. The accuracy of a given analysis
is represented by an element of a set of precisions. Moreover,
the formalism for which the analysis is performed defines a set
of actions. Given a precision, an interpreter defines an abstract
operational semantics over the abstract domain and set of
actions. The abstract initial states are given by an init function.
For an action, the abstract successors of a state are computed
by a transfer function. An action function determines for an
abstract state a set of actions that are enabled from that state.

The reachability analysis is performed by the abstraction
refinement loop. As usual for lazy abstraction methods [4], its
central data structure is an abstract reachability tree (ART),
with nodes annotated with abstract states that represent over-
approximations of reachable states along a given path, and
edges annotated with actions. The ART is manipulated by
the two main components of the loop. Using an interpreter,
the abstractor constructs the ART w.r.t the current precision
and an abstraction strategy, i.e. when to expand a node or
cover it by an other node. If no target (i.e., unsafe) nodes
are encountered, the constructed ART serves as an evidence
for the safety of the input model. Otherwise, given a target

node, the refiner is invoked to analyze the abstract path for
feasibility. If the path is feasible, it is a counterexample to
safety. Otherwise, the refiner carries out its refinement strategy
to ensure that the analysis can continue without encountering
the same spurious counterexample again (refinement progress).
This can typically be achieved by pruning nodes and com-
puting a new analysis precision (overapproximation-driven
approach), or by uncovering nodes and strengthening labels
(underapproximation-driven approach), both of which includes
partial deconstruction of the ART.

Currently, built-in domains in THETA include predicates,
explicit values, zones and their combinations. There are also
interpreters provided for transition systems, control flow au-
tomata and timed automata. A default abstractor implementa-
tion is built-in that relies on the domain and the interpreter,
also parameterizable with a search strategy. Interpolation and
unsat core-based refinement strategies are provided for for-
malisms that are described with first order logic expressions.

C. SMT solver interface

The framework provides a general SMT solver interface that
supports incremental solving, unsat cores, and the generation
of binary and sequence interpolants. The solver interface can
be used by the analysis components. Typically, the partial order
over states and the transfer function are implemented in terms
of queries to an SMT solver. A refiner component may use
the interface to check feasibility of an abstract path and to
generate interpolants or unsat cores for abstraction refinement.
Currently, the interface is implemented by the SMT solver
Z3 [11], but it can easily be extended with new solvers.
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D. Extending and instantiating the framework

The framework can easily be extended with new formalisms
and analyses. As an example, suppose that one wants to add
support for the reachability checking of Petri nets [12]. First,
the formalism has to be implemented, which is a collection
of simple classes representing places, transitions and arcs of
Petri nets. A possible language front-end could be the standard
PNML format for Petri nets.

In order to perform reachability checking, the analysis back-
end has to be extended as well. Petri nets can be described with
first order logic formulas, for example by representing places
(marked with tokens) with integer variables and transitions as
FOL expressions adding/subtracting from places. Therefore,
some abstract domains (such as predicates and explicit values)
along with abstraction and refinement strategies (such as inter-
polation) work out of the box if the interpreter is implemented.
An action of a Petri net can be implemented as the expression
describing a transition and the action function as the collection
of all transitions. The init and transfer functions also work out
of the box for the abstract domains mentioned before.

Instantiating an executable tool from the framework (see
examples in Section III) is also straightforward. A (command
line or GUI) application has to be written that takes the
parameters (path of the input model, domain, abstraction and
refinement strategies, etc.), parses the input model using the
language front-ends and instantiates and runs the analysis.

III. USE CASES

A. THETA for transition systems

The tool THETA-STS is an instantiation of the THETA
framework for reachability analysis of (symbolic) transition
systems, based on an earlier, preliminary version [13]. As input
language, the tool supports the AIGER format (also used in
the Hardware Model Checking Competition [14]) and an in-
termediate language for describing PLC models [15]. The tool
relies on the built-in predicate and explicit value domains and
refinement strategies based on binary interpolation, sequence
interpolation and formulas from unsat cores. Some additional
utilities are also implemented, for example inferring the initial
precision and simplifying the input system.

Figure 2 (from [16]) shows a heatmap of the execution
time of 20 analysis configurations on 12 hardware (hw)
and 6 PLC models. White squares correspond to a timeout.
Configurations are abbreviated with the first letter of the
domain (predicate, explicit), the refinement strategy (binary
interpolation, sequence interpolation, unsat cores), the initial
precision (empty, property-based) and the exploration strategy
(DFS, BFS). The heatmap shows that no single configuration
can verify all models and the execution time is very diverse,
motivating the need for a configurable framework.

B. THETA for control flow automata

The tool THETA-CFA is an instantiation of the THETA
framework for the reachability analysis of control flow au-
tomata. As input language, the tool supports a subset of
C, enhanced by various size reduction techniques such as
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Fig. 2. Heatmap of execution time for transition systems (millisec., log. scale)

compiler optimizations and program slicing methods [17]. This
tool uses the same built-in abstract domains and refinement
strategies as the THETA-STS tool, only the interpreter differs.

Figure 3 (from [17]) presents a heatmap of the verification
time of 16 analysis configurations on 9 models from SV-
COMP [18], selected from those categories that are currently
supported by our C frontend. Configurations are abbreviated
with the first letter of the slicing method (none, backward,
value, thin), the compiler optimizations (true, false) and the
exploration strategy (DFS, BFS). Similarly to transition sys-
tems, different configurations are more suitable for different
input models.
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C. THETA for timed automata

The tool THETA-XTA is an instantiation of the THETA
framework for reachability checking of timed automata. As
input language, the tool supports a subset of the UPPAAL
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4.x XTA format2. The tool implements two lazy abstrac-
tion algorithms based on zone abstraction: a variant of
〈a4LU , disabled〉 [19], a non-convex lazy abstraction algo-
rithm based on LU -bounds, and an algorithm based on
interpolation for zones [20] with two different refinement
strategies (BIN and SEQ). Table I (from [20]) presents some
measurement results for the tool. Column time is the total
execution time in ms, and passed is the number of expanded
nodes in the ART. Models come from the PAT benchmarks3.

TABLE I
COMPARISON OF ALGORITHMS FOR TIMED AUTOMATA IN THETA-XTA

Model a4LU BIN SEQ
time passed time passed time passed

Critical 3 1.8 4923 1.6 3213 1.6 3157
Critical 4 65.0 130779 78.2 83686 75.2 78252
CSMA 9 6.6 30476 7.3 30476 7.9 30476
CSMA 10 21.3 78605 21.0 78605 22.8 78605
CSMA 11 61.4 198670 58.9 198670 63.8 198670
CSMA 12 167.2 493583 168.7 493583 179.1 493583
FDDI 50 1.4 402 2.0 402 2.0 402
FDDI 70 2.9 562 3.5 562 3.7 562
FDDI 90 5.9 722 6.8 722 7.1 722
FDDI 120 12.9 962 15.0 962 15.4 962
Fischer 7 1.9 7737 2.8 7737 2.8 7737
Fischer 8 5.1 25080 7.7 25080 8.7 25080
Fischer 9 21.3 81035 29.0 81035 32.4 81035
Fischer 10 94.4 260998 133.2 260998 149.7 260998
Lynch 7 2.6 9977 3.6 9977 4.0 9977
Lynch 8 7.7 30200 12.2 30200 13.9 30200
Lynch 9 32.8 92555 45.2 92555 54.2 92555

As can be seen from the data, in general, the a4LU -based
algorithm performs better in terms of execution time, but the
interpolation based algorithms might construct a significantly
smaller ART, thus easy configurability of the tool pays off.

IV. CONCLUSIONS

In this paper we introduced THETA, a configurable model
checking framework for abstraction refinement-based reach-
ability analysis for different formalisms. We described the
architecture that helps to implement, evaluate and combine
various algorithms in a modular way for different formalisms.
We also demonstrated the applicability of the framework by
use cases for the verification of hardware, PLC, software
and timed automata models. Results of the evaluation with
configuring and combining different analysis modules support
the need for a generic framework, such as THETA.

Future work. At the moment the framework focuses on
flexibility rather than performance (hence it is not yet intended
to be competitive with highly optimized implementations). We
are currently extending both the supported formalisms and
the algorithms. We are working on supporting a wider set
of elements in the C programming language and on defining
hierarchical statecharts in THETA along with an interpreter. We
are also working on increasing the number of input models
in our experiments in order to reach stronger conclusions.
This would also allow us to address the problem of selecting

2See the web help on http://www.uppaal.org for a language reference
3http://www.comp.nus.edu.sg/∼pat/bddlib/timedexp.html

the most suitable configuration for a given verification task.
Moreover, we also plan to experiment with novel, state-of-the-
art algorithms, e.g., abstractions over data variables for timed
automata.
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Abstract—We present SMT-based techniques for analyzing
networks of nonlinear hybrid systems, which interact with each
other in both discrete and continuous ways. We propose a
modular encoding method to reduce reachability problems of
hybrid components, involving continuous I/O as well as usual
discrete I/O, into the satisfiability of first-order logic formulas
over the real numbers. We identify a generic class of logical
formulas to modularly encode networks of hybrid systems, and
present an SMT algorithm for checking the satisfiability of
such logical formulas. The experimental results show that our
techniques significantly increase the performance of SMT-based
analysis for networks of nonlinear hybrid components.

I. INTRODUCTION

Formal analysis of hybrid systems can be reduced to the
satisfiability of SMT formulas over the real numbers. This
approach can combine state-of-the-art SMT techniques with
numerical methods to analyze continuous dynamics, governed
by ordinary differential equations (ODEs). The satisfiability of
these formulas are in general undecidable for nonlinear hybrid
systems, but important advances have been made by various
approaches, e.g., [1]–[6].

In principle, these methods can deal with networks of
nonlinear hybrid systems by combining the SMT encodings of
all components. Following SMT-based approaches for digital
systems, discrete communication between components, such
as synchronization or message passing, can be encoded using
first-order variables that commonly occur in the encodings of
several components. In order for this technique to work, all
interactions between components must be discrete.

However, many networks of hybrid systems also include
continuous interaction as well as discrete communication. For
example, consider the problem of controlling the temperature
of several adjacent rooms. The temperature of one room can
continuously affect the temperature of all adjacent rooms. If
we model this system as a network of several thermostat
systems, it is quite clear that such continuous interactions
cannot be captured only using discrete communication. This
kind of continuous I/O is common in control systems that
are composed of mechanically connected components; e.g,
cars [7], airplanes [8], plants [9], etc. Indeed, formal models of
hybrid systems, such as hybrid automata [10] and hybrid I/O
automata [11], can precisely specify continuous interactions.

This work was partially supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2016R1D1A1B03935275), and NSF CPS-1446675.

The analysis of networks of nonlinear hybrid systems has
not been studied much in existing SMT-based approaches.
To apply existing SMT algorithms, one may define a sound
discrete approximation of continuous I/O. But this is very
difficult for nonlinear systems because continuous I/O can
involve nonlinear functions, not just single values. Or one can
build a single hybrid component that is equivalent to the entire
network, but at the cost of the state explosion problem.

The goal of this paper is to provide an SMT technique
to analyze networks of nonlinear hybrid systems involving
continuous I/O as well as discrete I/O. The contribution of
this paper is twofold: (1) to directly provide a new modular
SMT encoding for networks of nonlinear hybrid systems with
continuous I/O, and (2) to develop an SMT solving algorithm
to check the satisfiability of such logical formulas.

The basic idea is to encode continuous interaction by means
of uninterpreted real functions, not first-order variables. We
then use universally quantified equalities over time to encode
a continuous synchronization of uninterpreted real functions.
To logically decompose continuous I/O expressed as systems
of ODEs, we make use of parameterized integration operators.
We identify a syntactic subclass of formulas that is expressive
enough to modularly encode continuous I/O.

We present a novel SMT algorithm to check the satisfiability
of the proposed class of formulas. Existing algorithms cannot
deal with uninterpreted real functions, universally quantified
equalities, and parameterized integration operators at the same
time. Our algorithm is based on an equisatisfiable process
that removes uninterpreted real functions and parameterized
integration operators. This process can easily be combined
with existing DPLL(T )-based algorithms with minimal cost.

We have implemented our algorithm in the dReal solver
[12], and performed experiments on a range of nontrivial
networks of nonlinear hybrid systems. These case studies
include both discrete and continuous interactions between
hybrid components. The experimental results show that our
techniques can greatly increase the performance of SMT-based
analysis for networks of general nonlinear hybrid systems.

The paper is organized as follows. Section II explains
networks of hybrid systems. Section III proposes a modular
encoding. Section IV presents an SMT solving algorithm.
Section V provides an overview of the case studies. Section VI
presents the experimental results. Section VII discusses related
work, and Section VIII presents concluding remarks.
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II. NETWORK OF HYBRID SYSTEM COMPONENTS

We consider a network of hybrid systems that interact with
each other in discrete or continuous ways. As shown in Fig. 1,
each component has two types of input and output; continuous
I/O (denoted by bold lines) and discrete I/O (denoted by thin
lines). A hybrid system can be specified by hybrid automata
[10]. This paper uses an extended version of hybrid automata
with explicit I/O, similar to one presented in [11].

A. Hybrid I/O Automata

In hybrid I/O automata, discrete states are given by a finite
set of modes Q, and continuous states are specified by using
a finite set of real-valued variables X = {x1, . . . , xl}. A
combined state is then a pair 〈q,v〉 of a mode q ∈ Q and
a vector v = (v1, . . . , vl) ∈ Rl of real numbers. Given
a (possibly infinite) set of actions Σ, a discrete transition
between two states 〈q,v〉 a−→ 〈q′,v′〉, identified with an action
a ∈ Σ, is specified by a jump condition jumpq,q′(v, a,v

′).
Each mode q ∈ Q of a hybrid I/O automaton defines

extra conditions to specify the continuous behavior of the
variables X in the mode q. An invariant condition invq
defines all possible values of the variables X in mode q.
A flow condition flowq defines trajectories of the variables
X—describing continuous changes of X’s values over time—
in mode q, typically using ordinary differential equations
(ODEs). An initial condition initq defines a set of initial states.

Discrete input and output of a component are identified by
using disjoint sets of input actions ΣI ⊆ Σ and output actions
ΣO ⊆ Σ. Other “local” actions in Σ \ (ΣI ∪ ΣO) are called
internal actions. Likewise, continuous input and output are
identified by using disjoint sets of input variables XI ⊆ X
and output variables XO ⊆ X , and other “local” variables in
X \ (XI ∪XO) are called internal variables.

Definition 1. A hybrid I/O automaton (HIOA) is defined as
a tuple H = (Q,X,Σ, {invq}q∈Q, {flowq}q∈Q, {initq}q∈Q,
{jumpq,q′}q,q′∈Q, (XI , XY ), (ΣI ,ΣO)).

The init , inv , and jump conditions are often written as
predicates initq(x), invq(x), and jumpq,q′(x, a,x

′) over the
variables X . The flow condition is written as a system of
ODEs of the form dx

dt = f(x, ι)(t), where the input variables
ι in XI appear as free variables in the ODEs.

A network of hybrid system components is specified by a
parallel composition H = H1 ‖ H2 ‖ · · · ‖ Hn of hybrid I/O
automata. A communication between components is specified
using I/O actions and variables. We assume that: (i) output
actions and variables of one component are not output of any
other components, and (ii) internal actions and variables of
one component are not parts of any other components.

There are two types of communications in a network H.
Consider a source component Ho and target components
Hi1 , . . . ,Him . A discrete communication is modeled by joint
synchronous actions in ΣoO∩Σi1I ∩· · ·∩ΣimI that are output of
the source and input of the targets. A continuous interaction
is modeled by shared variables in Xo

O ∩Xi1
I ∩ · · · ∩Xim

I that
are output of the source and input of the targets.

Hmain

Hleft

Hrudder

Hright

Hair

gleft (v)

grudder (v)

gright (v)

δleft

δrudder

δright

read(vψ, vφ, vβ)

Fig. 1. Controllers for turning an airplane

A discrete state of a network H is defined as a vector
(q1, . . . , qn) of modes of its components. Components in H
synchronize their discrete transitions with a joint action. When
one component performs a transition labeled with an action
a, every component that includes the action a must perform a
transition with the same action. A component can individually
perform a discrete transition with an internal action.

A continuous state of a network H is defined as trajectories
of the variables X1 ∪ · · · ∪Xn of its components. The values
of H’s variables evolve simultaneously over time according
to their flow and invariant conditions. Flow conditions of
an input variable are given by those of its connected output
variable. That is, an output variable and its corresponding input
variables must have the same value at all times.

Consequently, a network of HIOA is semantically equivalent
to a single HIOA (see [11] for a formal definition).

B. Example: Turning an Airplane

We consider a networked controller for turning an airplane,
adapted from [8], [13]. An aircraft makes a turn by controlling
two ailerons (surfaces attached to the end of the wings) and a
rudder (a surface attached to the vertical tail). As depicted in
Fig. 1, the main controller orchestrates the subcontrollers for
the ailerons and the rudder to achieve a coordinated turn. The
entire system is Hmain ‖ Hleft ‖ Hrudder ‖ Hright ‖ Hair .

A subcontroller HM for M ∈ {left , right , rudder} has
three modes acc, dec, and con . Its angle δM and the moving
rate rM changes according to the ODEs with constant cM > 0:

δ̇M = rM ,

ṙM = cM (acc), ṙM = −cM (dec), ṙM = 0 (con).

HM performs a jump transition with an input action gM (v)
to determine a next mode based on the goal angle v. The sets
of I/O variables and I/O actions are defined by: XM

O = {δM},
ΣMI = {gM (v) | v ∈ R}, and XM

I = ΣMO = ∅.
The lateral dynamics of the aircraft is modeled by Hair that

has a single mode with the nonlinear ODEs:

β̇ = Y (β, δ)/mV − r + V cosβ sinφ/g, ψ̇ = g/V · tanφ,

ṗ = (c1r + c2p)r tanφ+ c3L(β, δ) + c4N(β, δ), φ̇ = p,

ṙ = (c8p− c2r)r tanφ+ c4L(β, δ) + c9N(β, δ)

with β the yaw angle, ψ the direction, p the rolling moment,
φ the roll angle, and r the yawing moment. Y , L, and N are
linear functions of β and angles δ = (δleft , δright , δrudder ).
The sets of I/O variables and I/O actions are defined by:
Xair
I = {δ}, Σair

O = Σmain
I , and Xair

O = Σair
I = ∅.
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The main controller Hmain provides a goal angle to a
subcontroller M using a discrete transition with an output
action gM , and monitors the current position from Hair using
a discrete transition with an input action read . The component
Hmain has no I/O variables, but has the sets of I/O actions:

Σmain
I = {read(vψ, vφ, vβ) | vψ, vφ, vβ ∈ R}

Σmain
O = Σleft

I ∪ Σright
I ∪ Σrudder

I

We are interested in a reachability problem to find outputs of
Hmain to reach a goal direction in a reasonable time, while
keeping the yaw angle β close to 0 during the turn.

The continuous interaction between (Hleft , Hrudder , Hright)
and Hair cannot be specified using discrete synchronization
without I/O variables. We can eliminate I/O variables by
building a single HIOA that is equivalent to the composition
of the network, but at the cost of the state explosion problem.
For example, a single hybrid automaton for H1 ‖ . . . ‖ Hn

has total
∏n
i=1mi modes, if each Hi has mi modes.

III. SMT ENCODING OF HYBRID COMPONENTS

In this section we propose a modular method to encode
a network of hybrid system components that involve both
discrete and continuous I/O at the same time. Our technique
generalizes previous SMT-based approaches that only focus
on discrete communication using synchronous actions.

A. Encoding of Discrete Transitions

We use first-order logic formulas over the real numbers,
called LRF -formulas, along with a collection F of Type 2
computable real functions [3]. A Type 2 computable real
function can be numerically evaluated up to an arbitrary
precision, such as polynomials, exponentiation, trigonometric
functions, and solutions of Lipschitz-continuous ODEs. The
syntax is defined in the standard way, with c real number
constants, y first-order variables, and f real functions in F :

t ::= c | y | f(t1, . . . , tn)

ϕ ::= t > 0 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃y.ϕ | ∀y.ϕ.
Consider a HIOA H . As usual, a discrete transition of H

with an action can simply be encoded by using a first-order
variable w that denotes the action. Discrete synchronization
by the action is encoded by using the same variable w in the
formula for each corresponding component.

Definition 2. An LRF -encoding for a (synchronized) discrete
transition of H from state 〈q,y〉 to 〈q′,y′〉 by an action w is:

dt(q,y, w, q′,y′) ≡ (w ∈ Σ → jumpHq,q′(y, w,y
′))

∧ (w 6∈ Σ → q = q′ ∧ y = y′).

B. Encoding of Continuous Flows

The continuous behavior of one component is parameterized
by the trajectories of its input variables, which are composed
of the trajectories of the corresponding output variables in
other components. Unlike actions, these (potentially nonlinear)
trajectories cannot be encoded as first-order variables in LRF ,
because they are actually real-valued functions.

We use an uninterpreted real function symbol R → R to
represent a trajectory for each input variable. Consider a flow
condition for mode q, expressed as a system of ODEs:

[
dx
dt = fq(x,o, ι)(t), do

dt = gq(x,o, ι)(t)
]

with x the internal variables, o the output variables, and ι
the input variables. Mathematically, these ODE variables in
the terms fq(x,o, ι)(t) and gq(x,o, ι)(t) denote unary real
functions R→ R over time t.

Given function symbols ȯ1, . . . , ȯl to denote the derivatives
of o = (o1, . . . , ol), and function symbols ẋ1, . . . , ẋn to
denote the derivatives of x = (x1, . . . , xn), we can express
the trajectories of x and o as the LRF -formula

∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq(x,o, ι)(u), gq(x,o, ι)(u)].

The trajectories of the input variables ι (that appear as free
variables in fq and gq) are then defined by using output
derivatives of other components.

Using these I/O derivative symbols, we can express the
continuous change of H’s states from initial values y0 to new
values yt for duration t as the LRF -formula:

yt = y0 +
∫ t
0
[ẋ, ȯ, ι̇] ds

This LRF -formula is parameterized by the internal derivatives
ẋ = (ẋ1, . . . , ẋn), the output derivatives ȯ = (ȯ1, . . . , ȯl), and
the input derivatives ι̇ = (ι̇1, . . . , ι̇m).

The ODE solution term y0+
∫ t
0
[ẋ, ȯ, ι̇] ds can be considered

as a computable real function F (y0, t) in the collection F ,
provided that fq , gq , and the ODEs for the input variables
are all Lipschitz-continuous [14], [15]. The extra derivative
function symbols are also in the collection F . In sum, an
encoding of continuous flows is defined as follows:

Definition 3. An LRF -encoding for a continuous flow of H
from y0 to yt in mode q for duration t, that involves I/O
variables (ι,o) and satisfies the invariant condition invHq ,
where F (y0, t) denotes y0 +

∫ t
0
[ẋ, ȯ, ι̇] ds, is:

ct(q,y0,yt, t | ι,o,x) ≡ yt = F (y0, t)

∧ ∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq, gq](u)

∧ ∀u ∈ [0, t]. invHq (F (y0, u)).

We use different uninterpreted functions for variables in
different components, even if they are “shared” variables
in a network of HIOA. The use of the same uninterpreted
functions for different components may cause unintended
semantic effects, as explained in Sec. IV-A below. This is not a
strict restriction, because we can always use “syntactic copies”
to enforce that input variables ι and output variables o follow
the isomorphic system of ODEs f up to renaming, by means
of connection formulas between ι and o as follows.

Definition 4. An LRF -encoding of connections between input
variables ι and output variables o is as follows (it includes
internal variables x and x′, since o may depend on x):

conn(ι,o,x,x′) ≡ (∀u ∈ [0, t]. [ȯ, ẋ](u) = f(ȯ,x)(u))

↔ (∀u ∈ [0, t]. [ι̇, ẋ′](u) = f(ι̇,x′)(u)).

182

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



C. Encoding of Bounded Reachability
For a network of HIOA H1 ‖ · · · ‖ HN , the reachability

up to the k-th discrete step—that involves continuous I/O as
well as discrete synchronization—can be encoded in LRF as
follows. This formula is defined as just a conjunction of N
subformulas, each of which encodes the reachability of each
individual component Hj up to the k-th discrete step.

Definition 5. An LRF -encoding for the k-step reachability of
a network of HIOA H1 ‖· · ·‖ HN is the LRF -formula of size
O(
∑N
j=1 k · |Qj |2) (∃-quantified at the top):

N∧

j=1




initj
m
j
0

(yj
0
0) ∧ ct(mj

0,yj
0
0,yj

t
0, t0 | ι

j
0,o

j
0,x

j
0)

∧ ∧k
i=1

[
dt(mj

i−1,yj
t
i−1, wi,m

j
i ,yj

0
i ) ∧

ct(mj
i ,yj

0
i ,yj

t
i, ti | ι

j
i ,o

j
i ,x

j
i )

]




∧ goal(m1
k, . . . ,m

N
k ,y1

t
k, . . . ,yN

t
k)

∧ ∧k
i=0 conn(ι

1
i , . . . , ι

N
i ,o

1
i , . . . ,o

N
i ,x

1
i , . . . ,x

N
i )

For each i-th discrete step of duration ti, component Hj

is in mode mj
i , and the values of Hj’s variables begin with

yj
0
i and end with yjti. At the first step (i = 0), the initial

values yj00 of Hj’s variables satisfy the initial condition. To
begin the (i + 1)-th step, every component synchronizes its
transition with the same action wi. For the k-th step, the goal
formula holds for Hj’s final state. The connection formulas
conn link input and output variables.

D. Example
Consider the airplane controller example in Sec. II-B. For

a subcontroller M , an LRF -encoding of a continuous flow
from initial values (δ0M , r

0
M ) to new values (δtM , r

t
M ) with the

invariant condition −45 < δM < 45 is the formula below.
(δtM , r

t
M ) = (δ0M , r

0
M ) +

∫ t

0
[δ̇M , ṙM ] ds

∧



(qM = acc → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , cM ]) ∧
(qM = dec → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM ,−cM ]) ∧
(qM = con → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , 0])




∧ ∀u ∈ [0, t]. − 45 < π1

(
(δ0M , r

0
M ) +

∫ u

0
[δ̇M , ṙM ] ds

)
< 45.

The last line expresses the invariant condition −45 < δM < 45
using the solution term (δ0M , r

0
M ) +

∫ u
0

[δ̇M , ṙM ] ds and the
projection function π1(a, b) = a.

For the airplane component Hair , an LRF -encoding of its
continuous flow is simply the single ODE solution term:

(βt, ψt, φt, pt, rt, δt) = (β0, ψ0, φ0, p0, r0, δ0) +
∫ t
0
F (s) ds,

that is parameterized by the component Hair ’s input variables
δair = (δairleft , δ

air
right , δ

air
rudder ), where

F (s) =




Y (β, δair )/mV − r + V/g · cosβ sinφ
g/V · tanφ
p
(c1r + c2p)r tanφ+ c3L(β, δair ) + c4N(β, δair )
(c8p− c2r)r tanφ+ c4L(β, δair ) + c9N(β, δair )

δ̇air




The behavior of the input variables δair is given by connection
formulas such as: (∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , cM ]) ↔
(∀u ∈ [0, t]. [δ̇airM , ṙairM ](u) = [rairM , cM ]), where variable rairM
is a “copy” of the internal variable rM of M .

E. The Correctness of the Encoding

Our modular encoding is correct in the sense that it is
equisatisfiable to the encoding of the composition, which is
a single hybrid automaton (see [16] for the proof).

Theorem 1. Given a network of HIOAH = H1 ‖ · · · ‖ Hn, its
modular encoding (of size O(k

∑N
j=1 |Qj |2)) and the encoding

of its composition (of size O(k
∏N
j=1 |Qj |)) are equisatisfiable.

IV. SMT ALGORITHM FOR HYBRID COMPONENTS

We syntactically identify a generic class of LRF -formulas
that involve universal quantification for uninterpreted real
functions. This class includes LRF -formulas for networks of
hybrid I/O automata in Def. 5. We present an SMT procedure
for checking the satisfiability of these LRF -formulas. The
proofs of lemmas and theorems in this section are in [16].

A. Syntactic Classification

We explicitly decompose a collection F as F ′ ∪ G. A
collection G is composed of uninterpreted unary differentiable
functions R → R to denote variables x1, . . . , xl in ODEs
and their derivatives ẋ1, . . . , ẋl (including I/O variables and
I/O derivatives), whereas F ′ includes only interpreted real
functions. For each pair (x, ẋ) in G, the function ẋ ∈ G is
a derivative of the function x ∈ G.

We explicitly take into account parameterized integration
operators over ODE variables x ∈ G and derivatives ι̇ ∈ G:

y0 +

∫ t

0

[f(x, ι)(s), ι̇(s)] ds,

specifying solution functions of parameterized ODE systems
of the form d

ds [x, ι] = [f(x, ι)(s), ι̇(s)] with initial values y0

over time t. As mentioned, we can define the behavior of each
input derivative ι by universally quantified LRF′∪G -formulas
of the form ∀u ∈ [0, t]. ι̇(u) = g(z)(u), where z ∈ G denote
unary function symbols for ODE variables.

We identify a subclass of LRF′∪G -formulas that allows a
reduction to LRF′ without extra uninterpreted real functions in
G. We can apply any (existing) algorithms for LRF′ -formulas
after the reduction. As a matter of fact, the entire class
of LRF′∪G -formulas is too expressive to have any kinds of
efficient decision procedures. For example, control problems
of nonlinear systems are undecidable in general [17], but can
be written as LRF′∪G -formulas.1

We require that each uninterpreted function symbol in G
only occurs in a single integration term. Otherwise, a “shared”
function symbol in different terms leads to an unintended
semantic restriction that all the integration terms have the same
solution function. The decomposition using parameterized
integration in Sec. III-B is therefore no longer equisatisfiable
to the original formula. This is why we encode variables in
different components as different functions.

1Consider a nonlinear system ẋ = f(x,u) with initial values x0 and
controls u. The controllability to xt can be expressed as the satisfiability of
xt = x0 +

∫ t
0 f(x,u) ds with uninterpreted real functions u.
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For example, consider the LRF′∪G -formula that involves the
ODE dx

ds = x with different initial values 1 and 2:

x1 = 1 +
∫ t
0
x(s) ds ∧ x2 = 2 +

∫ t
0
x(s) ds ∧ t = 1,

which is satisfiable with x1 = e and x2 = 2e. Now let us
replace the term x(s) with an uninterpreted function ẋ(s):

x1 = 1 +
∫ t
0
ẋ(s) ds ∧ x2 = 2 +

∫ t
0
ẋ(s) ds ∧ t = 1

∧ ∀u ∈ [0, t]. ẋ(u) = x(u).

This formula is not satisfiable, because there are no single
interpretations of ẋ and x that denote solution functions of
dx
ds = x for both initial values 1 and 2 at the same time.

We restrict our attention to G with the following constraints.
Every uninterpreted function x ∈ G that occurs in the same
integration term has the same domain [0, tx]. Each derivative
ẋ ∈ G is bounded by a finite set of Lipschitz-continuous
functions Gx = {g1(z), g2(z), . . . , gm(z)}. This boundedness
constraint for ẋ ∈ G can be expressed as the LRF′∪G -formula:
boundGx(ẋ) ≡ ∨

g(z)∈Gx ∀u ∈ [0, tx]. ẋ(u) = g(z)(u).

Definition 6. An LRF′∪G -formula for networks of hybrid I/O
automata has the form: ∃y. ϕ ∧ ∧ẋ∈G boundGx(ẋ), where:
• each subformula of ϕ is quantifier-free or containing only

universally quantified subformulas over time;
• each uninterpreted function in G appears in integration

terms, universally quantified formulas over time of the
form ∀u ∈ [0, tx]. ẋ(u) = g(z)(u), or formulas of the
negated form ∃u ∈ [0, tx]. ẋ(u) 6= g(z)(u);

• each uninterpreted function in G appears in at most
one integration term (but the same integration term can
appear in a formula many times).

The formula in Def. 5 is in the syntactic class of Def. 6, if
every input variable corresponds to some output variable.

B. LRF′ -Reduction of LRF′∪G -Formulas

A key part of our algorithm is the LRF′ -reduction that
removes uninterpreted functions in G from LRF′∪G -formulas,
summarized in Alg. 1. For a conjunction µ of LRF′∪G -literals
that satisfy the boundedness constraint and the syntactic
restriction in Def. 6, the LRF′ -reduction procedure builds an
LRF′ -formula that is equisatisfiable to the conjunction µ.

Definition 7. An LRF′∪G -literal is an atomic LRF′ -formula, a
universally quantified formula ∀u ∈ [0, tx]. ẋ(u) = g(z)(u),
or a negation of these LRF′∪G -atoms.

Without loss of generality, we assume that for each derivative
ẋ ∈ G, the conjunction µ includes a universally quantified
LRF′∪G -literal of the form ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) from
the boundedness constraint boundGx(ẋ).

The LRF′ -reduction begins with choosing a universally
quantified LRF′∪G -literal ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) for
each derivative ẋ ∈ G (line 2). We replace every occurrence
of derivative ẋ in parameterized integration terms by the term
g(z)(u) (line 3). This procedure preserves the satisfiability of
the formula as stated in Lemma 1, since each uninterpreted
function in G appears in at most one integration term.

Algorithm 1: LRF′ -reduction for LRF′∪G -formulas.

Input: A conjunction µ = l1 ∧ · · · ∧ lm of LRF′∪G -literals
Output: An equisatisfiable LRF′ -formula

1 for each ẋ ∈ G inside µ’s integration terms do
2 pick a literal l = ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) in µ;
3 replace each ẋ by g(z) in µ’s integration terms;
4 for each literal l′ in µ including ẋ other than l do
5 if l′ = ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u) then
6 combine ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u) with µ;
7 else
8 combine ∃u ∈ [0, tx]. g(z)(u) 6= g′(z)(u) with µ;
9 return µ;

Lemma 1. Given a conjunction µ of LRF′∪G -literals including
∀u ∈ [0, tx]. ẋ(u) = g(z)(u), the formula µ′ obtained from
µ by replacing each occurrence of ẋ in integration terms by
g(z) is equisatisfiable to the conjunction µ.

As a result, every parameterized integration term in the
conjunction µ becomes concrete solution LRF′ -term without
free ODE variables. That is, each integration term is now
considered as a computable real function in F ′.

We add extra constraints to ensure the consistency between
the chosen LRF′∪G -literals and the other LRF′∪G -literals in µ
(line 4). For each pair of LRF′∪G -literals in µ, we must ensure
that they are satisfiable at the same time. For example, we
need the constraint ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u) for a
universally quantified literal ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u) in
µ. These new constraints are often not LRF′ -formulas, since
they can still include ODE variables (e.g., z).

We express these constraints in LRF′ by adding extra
ODEs to corresponding integration terms. For a constraint
∀u ∈ [0, tx]. g(z)(u) = g′(z)(u), we define a new ODE
dw
ds = g′(z)(s) − g(z)(s) with a fresh variable w. If the
constraint is true, the value of the variable w is always 0;
that is, the invariant condition ∀u ∈ [0, tx]. w(u) = 0 must
hold. We formally define this process as follows.

Definition 8. For constraints ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u)
or ∃u ∈ [0, tx]. g(z)(s) 6= g′(z)(s), the LRF′ -reduction of
integration F (y0, t) ≡ y0 +

∫ t
0
f(z)(s) ds is the term:

F̂ (y0, t) ≡ [0,y0] +
∫ t
0
[g′(z)(s)− g(z)(s), f(z)(s)] ds,

and the LRF′ -reductions of the constraints are respectively:

∀u∈ [0, tx]. π1(F̂ (y0, u)) = 0, ∃u∈ [0, tx]. π1(F̂ (y0, u)) 6= 0.

This process also preserves the satisfiability of the formula
as stated in Lemma 2, because every corresponding integration
term of a constraint is identical by assumption.

Lemma 2. A conjunction µ with an extra constraint is
equisatisfiable to the formula µ′ obtained from µ by replacing
corresponding integration terms by their LRF′ -reductions and
replacing the constraint by its LRF′ -reduction.
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The time complexity of the entire LRF′ -reduction process
is O(n2), where n denotes the number of LRF′∪G -literals in
the conjunction µ.2 The correctness of our LRF′ -reduction
procedure follows from the fact that each LRF′ -reduction step
in Alg. 1 preserves the satisfiability.

Theorem 2. Given a conjunction µ that meet the boundedness
constraint and the syntactic restriction in Def. 6, Algorithm 1
generates an LRF′ -formula that is equisatisfiable to µ.

C. Checking Satisfiability Using LRF′ -Reduction

We consider the satisfiability of LRF′∪G -formulas of Def. 6.
We apply the LRF′ -reduction process to have equisatisfiable
LRF′ -formulas without extra function symbols in G, and then
employ an existing algorithm to check LRF′ -satisfiability as a
subroutine. Our algorithm terminates if the LRF′ -satisfiability
subroutine is terminated. This provides a theory solver for
LRF′∪G , by means of LRF′ -reduction and an LRF′ -solver.

Algorithm 2: SMT procedure for LRF′∪G -formulas.

Input: An LRF′∪G -formula ∃y. ϕ ∧ ∧ẋ∈G boundGx(ẋ)
Output: Unsat, or Sat with a satisfiable assignment

1 while ∃ a propositionally satisfiable set L of literals do
2 φ ← LRF′ -reduction(

∧
l∈L l);

3 if φ is Sat by LRF′ -satisfiability solving then
4 return Sat and a satisfiable assignment of y;
5 learn the conflicts between LRF′∪G -literals;
6 return Unsat;

Algorithm 2 summarizes our algorithm. We employ the
DPLL(T ) framework to obtain a propositionally satisfiable
set of literals by using Boolean satisfiability solving (line 1).
The formula is unsatisfiable if no propositionally satisfiable set
exists (line 6). Otherwise, each set imposes a conjunction of
LRF′∪G -literals. Since we only consider formulas in the class
of Def. 6, the conjunction satisfies the boundedness constraint.

We apply the LRF′ -reduction procedure in Alg. 1 to obtain
an equisatisfiable LRF′ -formula φ (line 2). We use an SMT
algorithm for LRF′ -formula as a subroutine (line 3). If the
resulting formula φ is satisfiable, then the original formula is
also satisfiable (line 4).3 If φ is not satisfiable, conflict clauses
can be used by SAT solving for the next iteration based on
conflict-driven clause learning (line 5).

D. δ-Complete SMT for LRF′∪G -Formulas

Our algorithm is best suited for nonlinear hybrid systems
where continuous I/O cannot be encoded as discrete actions.
For example, δ-complete SMT can be applied to check the
satisfiability of LRF′ -formulas up to a given precision δ > 0,
called δ-satisfiability [3]. The satisfiability of LRF′ -formulas
is in general undecidable for nonlinear real functions, but the
δ-satisfiability of LRF′ -formulas is decidable.

2There can be many identical integration terms for each step, but the
replacements can be performed in constant time using subformula sharing.

3Since the LRF′ -reduction does not alter first-order variables, satisfiable
assignments for µ and φ have the same values for the first-order variables.

Finding conflict LRF′∪G -literals is very important for the
performance of DPLL(T ) and conflict-driven clause learning,
but this process is nontrivial for δ-complete SMT. The reason
is that δ-consistency actually depends on the value of δ. For
example, LRF′∪G -literals ∀u ∈ [0, 0.5]. ẋ(u) = 1 + 1

2u and
∀u ∈ [0, 0.5]. ẋ(u) =

√
u+ 1 are inconsistent up to precision

δ = 0.01, but consistent up to different precision δ = 0.1.
To facilitate the process of finding conflict LRF′∪G -literals,

we use uniqueness lemmas for incompatible LRF′∪G -literals.
Consider two LRF′∪G -literals ∀u ∈ [0, tx]. ẋ(u) = g(z)(u)
and ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u). If we know in advance
that two functions g and g′ are not equal, we add the formula
¬[∀u∈ [0, tx]. ẋ(u) = g(z)(u)∧ ∀u∈ [0, tx]. ẋ(u) = g′(z)(u)]
and the consistency checking can be performed at line 1.

For the reachability of networks of hybrid I/O automata,
we apply a heuristic specialized for the encoding in Def. 5.
Since each mode q can correspond to only one flow condition,
if a formula ∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq, gq](u) for one
continuous output is true, the truths of other continuous output
formulas are not relevant. In Alg. 1, we choose one universally
quantified LRF′∪G -literal for each mode, and disregard extra
consistency checking in line 4 in this case.

V. CASE STUDIES

This section shows a number of examples of networks
of hybrid system components, besides the airplane example.
They include discrete and continuous interactions between
components, and involve nontrivial nonlinear ODEs.

A. Driving Simple Cars.
A number of cars are running in sequence, while each car

follows the behavior of the car in front (the first car moves
according to its own scenario). The position (xi, yi) and the
direction θi of each car i of length Li depends on its speed
vi and steering angle φi, given by the nonlinear ODEs [18]:

ẋi = vi cos θi, θ̇i = vi/Li · tanφi,

ẏi = vi sin θi, φ̇i = −ki(φi − φi−1),

To keep a safe distance, each car has three modes acc, dec, and
keep for acceleration, deceleration, and following the speed of
the front car, respectively: v̇i = −Ki(vi− vi−1) if qi = keep,
v̇i = C if qi = acc, and v̇i = −C if qi = dec. The goal is to
find a mode change schedule for driving cars safely.

B. Network of Thermostat Controllers.
A number of rooms are interconnected by open doors

(Fig. 2). The temperature xi of each room i is separately
controlled by each thermostat, depending on both the heater’s
mode qi ∈ {mon,moff} and the temperatures of the adjacent
rooms. The value of xi changes according to the ODEs:

dxi
dt

=

{
Ki

(
hi − (cixi − di

∑
j∈Ai xj)

)
if qi = mon

−Ki

(
cixi − di

∑
j∈Ai xj

)
if qi = moff,

where Ai is the set of the adjacent rooms, and Ki, hi, ci, di
depend on the size of the room, the heater’s power, and the
size of the open doors. The goal is to keep each temperature
in a desired range, while the outside temperatures change.
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Hi Hi+1

Fig. 2. Connected rooms

pump k tank k

pump k+1 tank k+1

Fig. 3. Connected water tanks

C. Network of Water Tanks.

A number of water tanks are connected by pipes (Fig. 3),
adapted from [9]. The water level xi of each tank i is
separately controlled by its pump, depending on the pump’s
mode mi ∈ {mon,moff} and the levels of the adjacent tanks.
The value of xi changes according to the nonlinear ODEs:

Aiẋi = (qi + a
√

2g
√
xi−1)− a

√
2g
√
xi if mi = mon

Aiẋi = a
√

2g
√
xi−1 − a

√
2g
√
xi if mi = moff

(x0 = 0 for the leftmost tank 1), where Ai, qi, a depend on
the size of the tank, the power of the pump, and the width of
the pipe, and g is the standard gravity constant. The goal is
to keep each water level in a desired range.

D. Multiple battery Usage.

Given a number of fully charged batteries, a controller
switches load between them to achieve longer lifetime out of
the batteries, adapted from [19]. Each battery i has three modes
switchedOn , switchedOff , and dead . The battery charge
dynamics is expressed by the ODEs:

(on)
ḋi = L/c− kdi
ġi = −L,

(off)
ḋi = −kdi
ġi = 0,

(dead)
ḋi = 0

ġi = 0,

with di its kinetic energy difference, gi its total charge, L its
load, and c ∈ [0, 1] its threshold. If gi > (1− c)di, battery i is
dead. Otherwise, it can be either on or off. When k batteries
are on, load to each battery is divided by k. A goal is to find
a switching schedule to achieve a desired lifetime.

VI. EXPERIMENTAL RESULTS

We have implemented our algorithm in version 2 of the
dReal solver [12]. It can decide the δ-satisfiability of a wide
range of LRF′ -formulas (containing universal quantification
over time).4 We base our implementation on dReal, since the
tool supports nontrivial nonlinear ODEs in our case studies.5

However, in principle our techniques can be combined with
any other SMT-based approaches for hybrid systems.

We have compared the performance of our algorithm for the
LRF′∪G -encoding with one by a non-modular LRF′ -encoding.
Because our examples involve continuous I/O that cannot be
encoded by discrete actions, no modular LRF′ -encoding is
possible. Therefore, we use an LRF′ -encoding of a single
hybrid automaton that is equivalent to the composition, which
has been studied in many approaches [1]–[5], [14], [20].

4dReal uses interval constraint propagation (ICP) to numerically evaluate
ODE integration functions up to a precision δ > 0 [14].

5For example, many analysis tools for nonlinear hybrid systems only
support polynomials or linear ODEs, not nonlinear ODEs.

The experimental results are summarized in Fig. 4. The
case studies and the experimental results are available in [16].
We have performed reachability analysis for the five case
studies up to bound k = 5. We consider two variants for each
example, with double or triple components (for the airplane
example, nonlinear ODEs or linear ODEs). We consider both
sat (reachable) and unsat (unreachable) cases using different
goals. All experiments were conducted on Intel Xeon 2.6 GHz
with 512 GB memory. We set a timeout of 12 hours.

The results show that our approach with the new modular
LRF′∪G -encoding significantly outperforms the old approach
with the non-modular encoding. For example, the analysis
with the non-modular LRF′ -encoding for three interconnected
thermostats did not terminate within 12 hours for bound k = 2,
whereas the same analysis by our algorithm with the modular
LRF′∪G -encoding gave the result less than 15 seconds.

According to the results, the performance improvement
tends to be more apparent for bigger models and for the
unsat cases. For the sat cases, it is possible that a satisfiable
assignment can be found in an early stage of DPLL(T ), e.g.,
the sat case of two batteries where the difference is small.
In a bigger model the size of the generated formula becomes
larger, and thus the benefit of using the modular encoding is
clearly more explicit (e.g., the cases of three batteries).

This performance improvement is due to the fact that
the modular encoding allows a much compact size of the
formulas, and a more efficient ODE solving by decomposition
of complex systems of ODEs. Also, conflict-driven clause
learning can be fully exploited for continuous connections in
this way, because conflicts caused by continuous I/O can be
detected and then learned in our algorithm.

VII. RELATED WORK

One of the early studies on SMT-based analysis of nonlinear
hybrid systems is [21], which proposes constraint solving
algorithms for nonlinear reachability problems. There are
several approaches that explicitly formulate analysis problems
of nonlinear hybrid systems as SMT formulas over the real
numbers, such as MathSAT/HyCOMP [5], [6], hydlogic [4],
iSAT/HySAT [1], [2], and dReal/dReach [12], [20].

But a modular SMT encoding of networks of nonlinear
hybrid systems has not been much investigated, which is what
we aim to improve in this paper. All of these techniques
assume that interactions between components can be specified
through discrete synchronization (e.g., using joint actions).
Hence, continuous interactions between components, which
occur frequently in many networks of hybrid systems as shown
in Sec. V, cannot be properly dealt with in a modular way.

In iSAT-ODE [1], the syntax allows ODE fragments to occur
positively in formulas, and thus the encoding of Def. 6 can be
expressed in principle. But a modular encoding has not been
studied for iSAT-ODE, and the tool does not support it either.
Our work formally identifies a generic class of formulas that
strictly includes one supported by iSAT-ODE. Our algorithm is
based on equisatisfiable LRF′ -reduction, whereas iSAT-ODE
uses a specialized algorithm that extends DPLL.
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Fig. 4. Running time (in seconds) of k-step reachability analysis (solid lines for the new approach and dashed lines for the non-modular approach)

In addition to SMT-based approaches, there are many other
approaches to analyze nonlinear hybrid systems by calculating
a set of reachable states, e.g., [22], [23]. Our technique and
such reachable-set computation techniques focus on different
aspects of hybrid system analysis. Reachable-set computation
can be used as an ODE solver in Alg. 2, while our technique
addresses higher-level composition and modular analysis.

VIII. CONCLUSIONS

We have presented new SMT-based techniques for analyzing
networks of nonlinear hybrid systems. We have shown that
continuous interactions between hybrid components, which
cannot be captured by discrete communication in general, can
be decomposed and modularly encoded as SMT formulas.
Since existing SMT algorithms cannot deal with the modular
encoding, we have presented a new SMT solving algorithm,
which can greatly increase the performance of SMT-based
analysis for networks of nonlinear hybrid systems.

Future work will include investigating approximation and
decomposition methods to achieve further scalability when
analyzing networks of nonlinear hybrid systems.
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Abstract—Many critical systems are based on the combination
of components from different physical domains (e.g. mechani-
cal, electrical, hydraulic), and are mathematically modeled as
Switched Multi-Domain Linear Kirchhoff Networks (SMDLKN).
In this paper, we tackle a major obstacle to formal verification of
SMDLKN, namely devising a global model amenable to verification
in the form of a Hybrid Automaton. This requires the combination
of the local dynamics of the components, expressed as Differential
Algebraic Equations, according to Kirchhoff’s laws, depending on
the (exponentially many) operation modes of the network.

We propose an automated SMT-based method to analyze
networks from multiple physical domains, detecting which modes
induce invalid (i.e. inconsistent) constraints, and to produce a
Hybrid Automaton model that accurately describes, in terms of
Ordinary Differential Equations, the system evolution in the valid
modes, catching also the possible non-deterministic behaviors. The
experimental evaluation demonstrates that the proposed approach
allows several complex multi-domain systems to be formally
analyzed and model checked against various system requirements.

I. INTRODUCTION

Complex critical systems are often formed by the interaction
of components from multiple physical domains (e.g. electrical,
hydraulic, and mechanical). An example from aerospace is a
landing gear system [1], depicted in Fig. 1, where the pressure
applied by a hydraulic circuit (including valves and pumps) op-
erates moving components from the hydro-mechanical domain
(e.g. a cylinder). Basic components (e.g. valves, accumulators,
and tanks) have multiple operation modes and exhibit hybrid
dynamics. These dynamics include continuous behaviors, typi-
cally described by Differential-Algebraic Equations (DAE) as-
sociated to the modes, and instantaneous changes (or switches)
among modes. The connection of basic components into com-
posite systems is often modeled as Switched Multi-Domain
Linear Kirchhoff Networks (SMDLKN) [2]. Each combination
of the components modes determines a (global) mode of the
network. For each global mode, the continuous dynamics is
represented by the system of DAE obtained by joining the
equations that characterize each component in the respective
mode with the equations that correspond to the Kirchhoff’s
connection laws.

In this paper, we investigate methods for the formal analysis
of SMDLKN, tackling two key challenges. The first challenge
is to convert a DAE-based network description into a for-
malism based on Ordinary Differential Equations (ODE) and

Fig. 1. Landing Gear System with N = 2 hydraulic cylinder lines (LGS[N ]).

that is amenable to formal verification. The existing formal
verification tools for hybrid systems [3], [4], [5] take as input
hybrid automata and, in most cases, require a description of the
continuous dynamics in the form of ODE. Obtaining an ODE
from a DAE is possible with a process called reformulation [6].
One could thus conceive an approach that iterates over the net-
work modes, reformulates for each of them the corresponding
DAE into an ODE, and recombines the resulting ODE into an
automaton. Unfortunately, this iterative approach is unfeasible
in practice: the number of modes of a switched network is
exponential in the number of components.

The second challenge stems from the fact that the reformula-
tion cannot always map a DAE onto an ODE. In fact, a DAE is a
relational characterization deriving from a constraint-based de-
scription, while an ODE is in essence a functional description.
Thus, under certain conditions, a DAE may be inconsistent (i.e.
infeasible from the physical standpoint) or under-constrained
(i.e. some physical quantities are undetermined). Unfortunately,
inconsistencies and under-specifications may be hidden in the
(exponentially many) modes of the network, and may be hard
to spot.

In this paper, we propose a general method to reformulate
SMDLKN into hybrid automata with ODE dynamics. In order
to deal with multi-domain networks, we propose a purely
algebraic, general argument, which guarantees the existence
of the reformulation, generalizing the Implicit Function The-
orem [7] for linear systems. The method is able to synthesize
the modes free from inconsistencies and under-specifications,
and to present them in the form of diagnostic information.

We adopt an approach based on Satisfiability Modulo The-
ories (SMT) [8] to reason about the algebraic representation
of DAE-based networks. We build on the ability of modern
SMT solvers to carry out quantifier elimination and to deal with
huge sets of assignments to discrete variables. We exploit the
algebraic nature of the problem, in particular the linearity prin-
ciple holding for the DAE associated to each network modes,
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to aggressively simplify the expensive quantifier elimination
steps.

We perform an experimental evaluation on several multi-
domain scalable real-world benchmark applications. The pro-
posed optimizations substantially increase the scalability of the
procedures, allowing us to validate and reformulate SMDLKN
featuring millions of modes. We verify the hybrid automata
resulting from our procedures by means of some existing SMT-
based verification tools (e.g. HYCOMP [5]).

The rest of the paper is organized as follows. Section II
provides the necessary background notions. Section III defines
the validation and reformulation problems for SMDLKN, Sec-
tion IV presents the proposed symbolic algorithms. Section V
discusses the related work. Section VI presents the experimen-
tal evaluation. We conclude in Section VII.

II. BACKGROUND

A. Notation

|X| denotes the cardinality of the set X . Given a set of real
variables X , the notation ~X refers to the vector that contains
all the variables in X ordered lexicographically. R, R≥0, B
denote the set of Real numbers, non-negative Real numbers,
and Boolean. If X is a set of variables, then X ′ and Ẋ are the
sets obtained by replacing each element with its primed and
dotted version, resp.

We use the standard notions of theory, satisfiability, validity,
and logical consequence. We restrict to formulas interpreted
with the Theory of Linear Real Arithmetic (LRA) [8]. Given
a first-order logic formula ψ and a set of variables X , ψ(X)
denotes that X is the set of free variables in ψ. ϕ |=T ψ
denotes that the formula ψ is a logical consequence of ϕ in
the theory T ; when clear from context, we omit T and simply
write ϕ |= ψ. An assignment µ for a set of variables X is the
set {x 7→ c | x ∈ X and c is a constant}, µ|X is the projection
of all the assignments in µ only onto the variables contained
in X , and µ(x) is the value assigned to x in µ. Abusing
the notation, we interchange the linear system notation (e.g.
~X = ~B~Y , where | ~X| = n × 1, | ~B| = n × m, |~Y | = m × 1)
with the conjunction of predicates in LRA corresponding to the
matrix product (e.g.

∧n
i=1

~X[i] =
∑m
j=1( ~B[i][j]~Y [j])). Given

two vectors (resp. matrices) A and B, A · B denotes their
vertical (resp. horizontal) concatenation.

B. Linear Systems

The linear system ~A ~W = ~b is homogeneous if ~b = ~0, and,
in that case, it admits at least the solution ~̄W = ~0.

Given a solvable linear system ~A ~W = ~b, its general solution
is ~̄W = ~̄Wp + ~̄Wh, where ~̄Wp is a particular solution of the
inhomogeneous system ~A ~W = ~b and ~̄Wh is the homogeneous
solution of the homogeneous system ~A ~W = ~0. The existence
of the particular solution ~̄Wp guarantees the existence of at
least one solution ~̄W .

Lemma 1 (Linearity [9]): Let ~A ~W = ~b1, ..., ~A ~W = ~bn be
n distinct linear systems and z1, ..., zn ∈ R n real variables.
The systems ~A ~W = ~b1, ..., ~A ~W = ~bn are all solvable iff the

system ~A ~W = ~b1 z1 + ... +~bn zn is solvable for all values of
the variables z1, ..., zn.

C. Hybrid Automata

Hybrid automata (HA) [10] represent a system with contin-
uous and discrete dynamics. We use a symbolic representation
of hybrid automata, where the discrete locations and transitions
are represented by means of SMT formulae [11].

A HA is a tuple H = 〈V,X, Init, Invar, Trans, F low〉
where 1) V is the set of discrete variables; 2) X is the set
of continuous variables; 3) Init(V,X) represents the set of
initial states; 4) Invar(V,X) represents the set of invariant
states; 5) Trans(V,X, V ′, X ′) represents the set of discrete
transitions; 6) Flow(V, Ẋ,X) is the flow condition. We assume
that all the formulas Init, Invar, Trans and Flow are
quantifier-free and linear.

In the above definition, Flow may either define a system of
Differential-Algebraic Equations (DAEs) or Ordinary Differen-
tial Equations (ODEs). We say that the automaton has an ODE
dynamics if, for each assignment µ to V , Flow is equivalent to
a system of ODEs (i.e. ~̇X = ~A ~X). Otherwise, the automaton
has a DAE dynamics.

A state of a hybrid automaton is an assignment to the
variables V ∪ X , and a run is a sequence of states such that
the first state is in the initial states, every state belongs to the
invariant, and each pair of consecutive states either satisfies
Trans or the solution to the differential equations described
in the Flow condition. The semantics of the HA is defined by
the runs that it accepts. Two hybrid automata H1 and H2 are
equivalent if they accept the same runs.

D. Switching Multi-Domain Linear Kirchhoff Networks

Definition 1 (Network component): A component ci is a tuple
〈Bi, Ri, Ti, invari, f lowi, inputi, transi〉 where:
• Bi : set of discrete variables representing the modes.
• Ri : set of continuous variables representing the physical

quantities of the component. We partition the set of
continuous variables in three disjoint sets of state (Xi),
input (Ui) and output (Yi) variables.

• invari : 2Bi → 2Pred : invariant conditions, where Pred
is a set of predicates over the variables Ri.

• inputi : 2Ui → 2Fi : input binding assigning a continuous
function of time (Fi = {f(t)|f is continuous}) to each
input variable in Ui.

• flowi : 2Bi → 2Peq : flow condition, where Peq is a
set of homogeneous linear equalities with variables from
Xi, Ui, Yi, Ẋi.

• transi(Bi, Ri, B′i) : mode transition condition that repre-
sents the mode transitions (with guards) that can happen
in the component.

Definition 2: A Switched Multi-Domain Linear Kirchhoff
Network (SMDLKN) N is a tuple 〈C,K〉, where C is a set of
components and K is a set of equalities among continuous
variables of the components, that represents the Kirchhoff
conservation rules (i.e. the set of connection constraints).

189

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



We extend the notation used to specify the set of com-
ponent variables to a network N , defining the sets B :=⋃
ci∈C Bi, R :=

⋃
ci∈C Ri, . . . . Let V = B ∪ R be the set

of all the variables of a network. A state of the network is
given by an assignment µ to all the variables V . We refer to
each possible (complete) assignment µb ∈ 2B to all the discrete
variables B as a mode of the network. Every different network
mode induces a continuous dynamics described by a DAE.

Definition 3 (Differential-Algebraic Equation of a mode):
The DAE DAE(µb) of a mode µb is defined as the set of
constraints:

DAE(µb) :=
⋃
ci∈C flowi(µb|Bi) ∪K (1)

DAE(µb) can be equivalently represented as a linear system:

~M ~̇X + ~N ~X + ~O~Y + ~P ~U = ~0 (2)

for some coefficient matrices ~M ∈ Rl×|X|, ~N ∈ Rl×|X|,
~O ∈ Rl×|Y |, ~P ∈ Rl×|U |, and a positive integer l equal to
the number of system constraints.

Definition 4 (Network semantics): The semantics
of the network N is the hybrid automaton
HN = 〈VH , XH , Init, Invar, Trans, F low〉 where

VH := B XH := X ∪ U ∪ Y Init(VH , XH) := True

Invar(VH , XH) :=
∧

µb∈2B

(µb →
∧

ci∈C
invari(µb|Bi))

Trans(VH , XH , V
′
H , X

′
H) :=

∧

ci∈C
transi ∧

∧

x∈X
(x′ = x)

Flow(VH , ẊH , XH) :=
∧

µb∈2B

(µb → DAE(µb)) ∧
∧

ci∈C
inputi(Ui)

III. VALIDATION AND REFORMULATION PROBLEMS

Given a network N = 〈C,K〉, our first goal is to automat-
ically check if it contains inconsistencies, which represent an
unwanted condition in the real system modeled by the network.

Definition 5: A mode µb of a network N is consistent if,
for every possible assignment to the state (X) and input (U )
variables, the linear system DAE(µb) has at least a solution.
An inconsistent mode in the network represents an undesired
condition in the physical system that must be avoided. Consider
the electrical circuit of Fig. 2, where the voltages VC1

and VC2

across the capacitors C1 and C2 are state variables, and the
current IB imposed by the current generator B is the input
variable (we use I and V to refer to currents and voltages,
and we use the component’s name as subscript to identify
the current or voltage of that component). For the sake of
brevity, all the electrical parameters take value one and have
been omitted from the following formulas. The DAE associated
to the discrete mode where both the switches S1 and S2 are
open is IB = IR, IR = IS1 + IS2 , IS1 = 0, IS2 = 0, IC1 =
V̇C1

, IC2
= V̇C2

. The mode is not consistent when IB 6= 0.
Clearly, inconsistent modes in the design are undesirable, since
the behavior of the real system would violate some physical
laws. Thus, checking if a mode is consistent is a fundamental
step in the validation of N .

Our second goal is to verify safety properties on N . As
explained in the introduction, a requirement imposed by the

Fig. 2. Schematic of a simple electrical circuit.

symbolic verification tools for hybrid systems (e.g. HYCOMP
[5]) is to express the continuous dynamics of N as ODEs.
This means, for every discrete mode of the network, being
able to rewrite the DAE DAE(µb) as a system of Ordinary
Differential Equations: ~̇X = ~A ~X + ~B~U , where ~A ∈ R|X|×|X|,
and ~B ∈ R|X|×|U |. This amounts to find a function that, for
every possible values of the state and input variables, returns
one and unique value for the first derivative variables Ẋ .
Consistency is a necessary condition to ensure the existence
of the ODE function, while the other necessary condition is
the determinicity of the values assigned to Ẋ .

Definition 6: A mode µb of a network N is deterministic if,
for every possible value of the state X and input variables U ,
the linear system DAE(µb) admits at most one solution of the
first derivative Ẋ .

In the example of Fig. 2, the DAE of the discrete mode where
both the switches S1 and S2 are closed is IB = IR, IR =
IS1

+ IS2
, IC1

= IS1
, IC2

= IS2
, IC1

+ IC2
= IB , IC1

=
V̇C1

, IC2
= V̇C2

. In this DAE, the values of the currents IC1

and IC2
are not uniquely identified when fixing a value of the

input IB (e.g. if IB = 3 then the only constraints for IC1 and
IC2 is that IC1 + IC2 = 3), and hence also the values of V̇C1

and V̇C2
is not. Due to this non-determinism, the above DAE

cannot be rewritten as an ODE.
Definition 7: A mode µb of a network N is valid if it is both

consistent and deterministic. The network N is valid if all the
modes µb ∈ 2B are valid.

Definition 8 (Validation problem): Given a network N , the
validation problem consists of deciding if N is valid.

Remark 1: We note that a mode is valid if it is associated to
a index-1 DAE, while it is invalid for higher-index DAEs.

Definition 9 (Reformulation problem): Given a valid network
N , the reformulation problem consists of obtaining a hybrid
automaton H with ODE dynamics that is equivalent to HN .
The reformulated automaton represents the same discrete
modes as the network N , but its continuous dynamics is
expressed as a system of ODEs. Such representation exists
since the network is valid.

In the electrical circuit in Fig. 2, the mode where the switch
S1 is closed and S2 is open has the DAE IB = IR, IR =
IS1 , IS1 = IC1 , IC1 = V̇C1 , 0 = IS1 , IS2 = IC2 , IC2 = V̇C2 .
The mode is valid, and the ODE representation of the DAE is
V̇C1

= 0VC1
+ 0VC2

+ 1IB , V̇C2
= 0VC1

+ 0VC2
+ 0IB .

IV. SYMBOLIC VALIDATION AND REFORMULATION

A. Basic Validation and Reformulation

Our technique performs the following steps to produce a
symbolic hybrid automaton HN amenable to verification from
the network N = 〈C,K〉:

1) Check if all the modes of N are consistent. If it is the
case, we proceed to the next step.
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2) Check if all the modes of N are deterministic. If it is the
case, N is valid and we proceed to the reformulation.

3) Reformulate all the modes of N and define HN .
In the case N is not consistent, our approach finds all

the non-consistent modes, that can be used by the designer
to fix the network. While we restrict the presentation to the
case where N is consistent, our approach also performs a
partial reformulation, that reformulates the DAEs only for
the consistent modes. The partial network is necessary in the
common scenario where a discrete controller is composed with
the network with the goal of keeping the network outside the
non-consistent states. In this scenario, our approach allows us
to verify if such controller is correct.

Validation and reformulation steps can be done for each
mode µb ∈ 2B of N . However, this is not feasible since the
number of modes is exponential in the number of the discrete
variables of N . To scale and analyze real networks, we use
a symbolic approach. In this section, we present a symbolic
validation and reformulation for multi-domain networks. The
idea is to express the validation and reformulation problems as
a first-order logic formula.

a) SMT encodings of the network DAEs: We represent all
the DAEs of the network N as the quantifier-free formula:

ψDAE := (
∧

ci∈C

∧

µb∈2Bi
(µb → flowi(µb))) ∧

∧

k∈K
k (3)

ψDAE predicates over the same variables of the network, so
we reuse the same notation introduced in Sec. II-D for the
network variables, and contains the Boolean variables B, and
the Real variables X,U, Y, Ẋ . The validation and reformulation
problems only consider the algebraic relationships among the
variables defined by the DAE, while they disregard their
dependence on time. Thus, the derivative variables in Ẋ are
treated as Real, and not Continuous, variables. Note that the
provided encoding enumerates the components local modes in
place of the network global modes, thus preventing the blow-up
of the formula ψDAE.

Lemma 2: µ is a satisfying assignment of ψDAE iff µ|R is a
solution of DAE(µ|B)
We provide the proofs of the lemmas and theorems in an
extended version of the paper available at http://es.fbk.eu/
people/sessa/paper/fmcad17/main.pdf

b) Checking the network for consistency: All the modes
of N are consistent iff the following formula is valid:

ψcon(B) :=∀X,U.∃Y, Ẋ.ψDAE(B,X,U, Y, Ẋ)

ψcon represents the set of all the consistent modes.
c) Checking the network for determinicity: All the modes

of N are deterministic iff the following formula is valid:

ψdet(B) := ∀X,U, Ẋ1, Ẋ2.

((∃Y.ψDAE(B,X,U, Y, Ẋ1)∧
∃Y.ψDAE(B,X,U, Y, Ẋ2))→ Ẋ1 = Ẋ2)

ψdet represents the set of all the deterministic modes.

d) Reformulating the network: We reformulate a valid
network N into the hybrid automaton Hr

N = 〈V r,
Xr, Initr, Invarr, T ransr, F lowr〉. Hr

N is defined as the
hybrid automaton HN in the Definition 4, except for Invarr

and Flowr. The invariant condition is given by Invarr :=
ψY ∧

∧
ci∈C

∧
µb∈2Bi (µb → invari(µb)), while Flowr :=

ψẊ ∧
∧
ci∈C inputi(Ui). The formula ψẊ is the reformulation

of the variables Ẋ , while ψY is a relation that represents the
values of the output variables Y w.r.t. the state X and input
U variables. While we can compute the relation for ψY as
∃Ẋ.ψDAE(B,X,U, Y, Ẋ), finding the ψẊ is a more difficult
task that requires to solve a quantified formula expressed with
non-linear arithmetic terms (that synthesize the coefficients
of the ODE). We know that such formula cannot be solved
efficiently. We do not try to compute it and in our experiments
we try to compute ∃Ẋ.ψDAE(B,X,U, Y, Ẋ). This formula
does not reformulate the system into an ODE, but the time
necessary to solve it provides a lower bound for a more
complex formula (i.e. with more quantifiers and over non-linear
arithmetic predicates).

B. Optimized Validation and Reformulation

We improve the basic validation and reformulation pro-
cedures by applying an extension of the implicit function
theorem [9]. Given a system of linear equalities, the theorem
gives the necessary and sufficient conditions that allow us to
express the values of a subset of the system variables (the
dependent variables) as a function of the remaining variables
(the independent variables). For our application, the linear
system is the DAE of a mode, the dependent variables are the
derivatives Ẋ , and the independent variables are the state X and
input U . Our problem is slightly more complex, since the DAE
also contains the output variables Y . One option is to consider
them as dependent variables, requiring to find a function that
expresses the value of all the variables in Y . However, this
limits the applicability of our approach: while we have to
express Ẋ as a system of ODEs, the underlying verification
tool does not impose any restriction on the output variables Y
that, for example, can assume a value non-deterministically. For
this reason we extend the implicit function theorem as follows.

a) Implicit Function Theorem:
Theorem 1 (Implicit Function Theorem): Let m, n, l be

positive integers. Let F : Rm+n → Rl be a homogeneous
implicit linear function F ( ~W, ~Z) := ~A ~W + ~B ~Z = ~0, where
~W ∈ Rm×1, ~Z ∈ Rn×1, ~A ∈ Rl×m, and ~B ∈ Rl×n. Let ~bi be
the i-th column vector of the matrix ~B, where i ∈ {1, ..., n}.
Let wj be the j-th variable of ~W, where j ∈ {1, ...,m}. The
following two conditions hold:

1) consistency condition: for all 1 ≤ i ≤ n, the linear system
~A ~W = ~bi is solvable, and

2) determinicity condition: the linear system ~A ~W = ~0 does
not admit any homogeneous solution ~̄Wh such that its j-th
component wj is different from zero

iff there exists a unique linear function fj : Rn → R1 such
that wj = fj(~Z) and F (w1, ..., fj(~Z), ..., wm, ~Z) = ~0.
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The condition (1) guarantees that the system ~A ~W = − ~B ~Z
admits at least one solution ~̄W for every assignment to the vari-
ables ~Z, reducing the problem to a finite number of n checks;
the condition (2) guarantees that, for every assignment to the
variables ~Z, every solution ~̄W admits a unique assignment to
its j-th component wj .

Consider the DAE DAE(µb) of the mode µb and its matrix
representation ~M ~̇X + ~N ~X + ~O~Y + ~P ~U = ~0 (see Equation 2).
One can directly apply Theorem 1, just by noticing that
DAE(µb) is indeed a linear homogeneous implicit function
F ( ~W, ~Z), where ~W := ~̇X · ~Y , ~Z := ~U · ~X , ~A := ~M · ~O, and
~B := ~P · ~N . If the first condition of Theorem 1 holds for all the
columns ~bi of the concatenated coefficient matrix ~B := ~P · ~N ,
then µb is consistent, while if the second condition holds for
all ẋ ∈ Ẋ , then µb is deterministic. Then, if both conditions
hold, the mode µb is valid.

b) Validation: Our goal is to check the validity of the
network avoiding the universal quantification on the state and
input variables introduced in the formulas in Section IV-A. We
achieve this by directly checking the conditions of Theorem 1.
The consistency condition (1) of the Theorem 1 is encoded as:

ψcon(B) :=
∧
zi∈U∪X ∃Ẋ, R.

(
ψDAE

[
δ
~U · ~X
zi /~U · ~X

])

where δ
~U · ~X
zi represents the vector of size |~U · ~X|, whose

elements are identically zero except for the one corresponding
to zi. The formula ψcon (B) represents all the consistent modes.
The determinicity condition (2) is encoded in the formula:

ψdet (B) :=¬∃Ẋ, R.
(
ψDAE

[
~0/~U

] [
~0/ ~X

]
∧
(
~̇X 6= ~0

))

The formula ψdet (B) represents all the deterministic modes
of N . We notice that the effect on ψDAE of the X and U
substitutions is equivalent to symbolically “turning on and off“
a subset of the columns of the coefficient matrix ~B := ~P · ~N in
order to symbolically check the conditions of the Theorem 1.

Lemma 3: A network N is consistent iff for all µb ∈ 2B ,
µb |= ψcon(B), and is deterministic iff for all the modes µb ∈
2B , µb |= ψdet(B)

c) Reformulation: The algorithm PERVARIABLEREF
(Fig. 3) synthesizes the formulas ψẊ and ψY used in the refor-
mulated automaton Hr

N , by using Theorem 1 and Lemma 1.
In the algorithm, we use the SMT solver primitives push,

assert, isSat, pop, reset (see e.g. [12]), getModel, to get a
satisfying assignment to all the free variables of the formula,
and quantify to eliminate the quantifiers from the formula.

PERVARIABLEREF invokes the REFORM procedure (Fig. 5)
on each variable ẋ ∈ Ẋ (Line 3), computing the reformulation
Refẋ of the variable ẋ and the formula ψY,ẋ. In the algorithm,
we compute ψY by directly substituting in ψDAE the variables
Ẋ with their reformulated value. Since the reformulation of a
variable ẋ ∈ Ẋ depends on the discrete modes, we store this
value in a variable ẋs (we add a the set of variables Ẋs = {ẋs |
ẋ ∈ Ẋ}). ψY,ẋ represents the values that Ẋs takes depending
on the discrete state of the network. At Line 6, the algorithm
constructs ψY , that encodes the reformulation values for Ẋs

and the ψDAE formula where all the Ẋ variables have been
substituted with the Ẋs variables.

REFORM works under the validity assumption, that ensures
the existence of a reformulation, and uses the linearity Lemma 1
to synthesize the reformulation. According to Lemma 1, we
know that, for a mode µb ∈ 2B and a variable ẋ, the
function fẋ(~U · ~X) such that ẋ = fẋ(~U · ~X) is defined as
fẋ(~U · ~X) := ~̄W j

p1 z1 + ... + ~̄W j
pn zn, where j is the index

corresponding to the variable ẋ in the vector ~W := ~̇X · ~Y ,
~̄W j
pi is the element corresponding to ẋ in the i-th particular

solution ~̄Wpi . Thus, we can synthesize the coefficients of the
function fẋ(~U · ~X) by computing all the n particular solutions
of the system and taking their j-th element. Fig. 5 shows the
reformulation procedure for a single variable ẋ: each execution
of the loop at Line 4 finds a mode µb ∈ 2B (Line 5) for
which the ẋ reformulation is still unknown. Then (Line 6) the
algorithm computes the coefficients D of the ẋ reformulation
in µb. The procedure computes (Line 7) the cluster β of all
the modes that share the same coefficients D, and hence the
same reformulation, for ẋ. At Line 8, we prune the search space
removing β. Eq is created (Line 9) by computing the product of
the coefficients row vector D and the variables column vector
~U · ~X . At Line 10, we accumulate the reformulation (one
for each cluster) in the returned formula Refẋ. At Line 11,
we construct ψY,ẋ that constraints the values of the additional
variable ẋs. REFORM terminates when the reformulation of ẋ
is known for all the modes µb ∈ 2B .

GETCOEFF is shown in Fig. 6. For each variable zi ∈ U∪X ,
the condition built at Line 4 reduces the term ~B(~U · ~X) of
the ψDAE formula to the column vector ~bizi = ~bi1 = ~bi that
corresponds to the i-th iteration. This formula is asserted in the
solver at Line 5. At Line 6, the algorithm finds a particular
solution µ

′
to the system ~A ~W = −~bi. Then (Line 7) we assign

the value µ
′
(ẋ) of the ẋ element of the solution µ

′
to the i-th

reformulation coefficient D[i].
The procedure GETEQMOD (Fig. 4) builds the condition

γ that is satisfiable in every µb ∈ 2B that shares the same
reformulation coefficients for ẋ. In Line 7, we symbolically
compute the set of equivalent modes β.

Theorem 2 (Correctness of the reformulation): Given a valid
network N , the hybrid automaton Hr

N is equivalent to the
hybrid automaton HN that defines the network semantics.

V. RELATED WORK

Multi-Domain Linear Kirchhoff Networks are widely used
in various engineering applications [13], [14], [15]. Different
tools support the acausal modeling phase [16], [17], also for
networks with discrete switches. The main analysis tools are
based on numerical simulation and use numerical integration.
Although simulation provides high scalability and enables the
analysis of complex dynamics [6], [18], [19], a preliminary
validation of the network modes is not provided. Therefore, a
hidden inconsistent mode can be discovered only if the user
designs a simulation trace that is able to reach it. Furthermore,
numerical simulators (e.g. [17]) restrict the use of components
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PERVARIABLEREF (ψDAE, X , U ):
1. (ψẊ , ψY ) := (True, True)
2. for each ẋ ∈ Ẋ:
3. (Refẋ, ψY,ẋ) := REFORM (ψDAE, X , U , ẋ)
4. ψẊ := ψẊ ∧ Refẋ
5. ψY := ψY ∧ ψY,ẋ
6.ψY := ψY ∧ ψDAE[Ẋs/Ẋ]

7.return (ψẊ , ψY )

Fig. 3. Reformulation algorithm for N .
GETEQMOD (ψDAE, X , U , ẋ, D):
1.eqSolver.reset()
2.γ := True
3. for each zi ∈ U ∪X:
4. rhszi := zi = 1 ∧∧

l∈(U∪X)\{zi} l = 0

5. γzi := ẋ = D[i] ∧ rhszi
6. γ := γ ∧ ∃R, Ẋ.(ψDAE ∧ γzi )
7.β := eqSolver.quantify(γ)
8.return β

Fig. 4. Find the cluster of modes that share the
same coefficients D for ẋ.

REFORM (ψDAE, X , U , ẋ):
1.Refẋ := True

2.ψY,ẋ := True

3.solver.assert(True)
4.while solver.isSat():

# Get a fresh mode
5. µb := solver.getModel()

# Get the row vector of coeff. that
# contributes to ẋ in µb

6. D := GETCOEFF (ψDAE, X , U , ẋ, µb)
# Get the cluster of modes that share the
# same coeff.

7. β := GETEQMOD (ψDAE, X , U , ẋ, D)
# Prune the cluster of modes from the search

8. solver.assert(¬β)
# Build the reformulation equation

9. Eq := ẋ = D ( ~U · ~X)
10. Refẋ := Refẋ ∧ (β → Eq)
11. ψY,ẋ := ψY,ẋ ∧ β → ẋs = D(~U · ~X)

12.return (Refẋ, ψY,ẋ)

Fig. 5. Reformulation of a single variable ẋ.

GETCOEFF (ψDAE, X , U , ẋ, µb):
# D row vector of coeff. w.r.t. U ∪X

1.coeffSolver.assert(ψDAE ∧ µb)
2.for each zi ∈ U ∪X:
3. coeffSolver.push()

# build the rhs corresponding to zi
4. rhszi := zi = 1 ∧∧

l∈(U∪X)\{zi} l = 0

5. coeffSolver.assert(rhszi )
# get a system solution

6. µ′ := coeffSolver.getModel()
# µ′(ẋ) is the coeff. w.r.t. zi

7. D[i] := µ′(ẋ)
8. coeffSolver.pop()
9.return D

Fig. 6. Computes the ref. coefficients D of ẋ.

equipped with ideal behaviors, leading to the model pollution
due to parasitic effects, that are hard to quantify and deviate
the simulation results from the intended nominal behavior. In
the following, we focus on works based on formal methods.

The closest related work is [20], that presents a method
to convert Switched Electrical Linear Kirchhoff Networks
(SELKN) into hybrid automata. The work proposed here is
more general than [20] in three respects. First, we are able to
deal with multi-domain networks, enabling mechanical, electri-
cal and hydraulic domains, and their combination, whilst [20]
is restricted to electrical networks. Second, the method in [20]
is only able to produce a hybrid automaton if the electrical
network fulfills the conditions of existence and determinism
in all the modes and for all the variables, while here we
analyze SMDLKN with non-deterministic output variables as
well. Both extensions are made possible by the adoption of
a theoretical settings that is significantly more general than
the domain-specific topological approach on the network graph
used in [20]. We remark that all the experiments presented in
the next section are based on benchmarks that are out of reach
for the method in [20]. In [21], a framework for generating
hybrid automata benchmarks from a hydraulic domain is pre-
sented. This work is only seemingly related to ours. The domain
knowledge in [21] (e.g. that a pump cannot draw a constant flow
from an empty tank) appears to be hard-coded in the generation
scripts; in our case, the detection of these conditions and the
generation of the hybrid automata are direct consequence of
the algebraic approach applied to the network description. As
discussed in the experimental evaluation, our approach is able
to deal with a significantly larger class of benchmarks than
those in [21], and also to automatically identify invalid modes
in the network, reasoning on its algebraic properties.

Most of the formal verification tools are unable to deal with
DAE. An exception is KEYMAERAX [22], a theorem prover for
hybrid systems represented with Differential-Algebraic Equa-
tions. In principle, the KEYMAERAX proof system can support
the proof of safety properties over SMDLKN, by means of
compositional reasoning. Key differences with our approach are

that KEYMAERAX is not fully automatic, and has no specific
methods to address the validation problem.

The existing tools for formal verification of hybrid sys-
tems [23] do not directly consider Multi-Domain Linear Kirch-
hoff Network, but work on hybrid automata [10]. Tools like
SpaceEx [3] or Flow* [24] work on an explicit representa-
tion of the system and hence they suffer from the explosion
in the number of modes of the system. Other tools [25],
[5], [26], [27] reason on the symbolic representation of the
system. HYBRIDSAL [25] and HYCOMP[5] analyze linear
hybrid systems whose continuous dynamics is specified with
a linear ODE. DREACH [26], [27] can be used to either
perform Bounded Model Checking or apply induction to verify
a system expressed with ODEs. From a DAE-based network,
our reformulation step produces this kind of formal models.

Other verification techniques focus on analog-mixed-signals
circuits [28], [29], [30], [31], [32]. They take the hybrid
automata representation of the electrical circuit, so do not face
the validation and reformulation problems. Additionally, they
do not consider multi-domain networks and perform an analysis
explicit in the modes that might exponentially blow-up.

Other approaches exist to generate a formal representation
from Simulink and other causal component-based modeling
languages [33], [34]. This causal semantics considers systems
represented as a connection of input-output functional blocks,
posing a major obstacle to the modeling of SMDLKN. Our work
differs from those approaches since we natively accept the more
suitable acausal component-based modeling, that, on the other
side, requires to tackle the reformulation problem.

VI. EXPERIMENTAL EVALUATION

Setup: We implemented the proposed approach using the
PYSMT [35] library and the MATHSAT5 [12] SMT-solver. At
the core, we use the symbolic model checker HYCOMP [5].
The resulting workflow takes as input a SMDLKN and a safety
property, and performs validation (VAL), reformulation (REF),
and verification (VER). The validation and the reformulation
come with two variants, basic (BAS) and optimized (OPT). BAS
refers to the algorithms of Section IV-A, while OPT refers to
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Fig. 7. Wheel Braking System, Arch.2, with N braking lines (WBSA2[N ])

those of Section IV-B. We run the experiments on a 3.5 GHz
cpu with 16GB RAM, with time out (TO) set to 3600s for
VAL, 43200s for REF, and 18000s for VER. The tools and
the benchmarks are available at http://es.fbk.eu/people/sessa/
attachment/fmcad17/fmcad17.tar.bz2.

Benchmarks: We consider five scalable benchmarks: two
variants of the Wheel Braking System (WBS) from the SAE
standard AIR6110 [36], the Landing Gear System (LGS),
and two variants of a hydraulic tank network (WW) inspired
from [21], for a total of 29 instances. The WBS benchmarks,
WBSA2[N ] and WBSA4[N ], are parameterized w.r.t. the num-
ber N of braking lines (see Fig. 7). The benchmarks differ in
the position of the hydraulic accumulator line. Fig. 1 shows
(part of) the Landing Gear System (LGS[N ]) from [1], which
is parameterized w.r.t. the number N of cylinder lines. The
WWLIN[N ] and WWRING[N ] benchmarks represent networks
of N hydraulic tanks connected either linearly or in a ring
through channels, composed by pipes and valves. The WW
benchmarks are originally proposed in [21], with a hand-
crafted technique meant for the automatic generation of hybrid
benchmarks that abstracts away the mutual interactions among
the liquid levels stored in the tanks. On the contrary, our work
aims at faithfully representing the physics of the real system.
Our SMDLKN-based models capture the physical dynamics of
the (bidirectional) flow through the channels, and naturally rep-
resents the global interaction of the interconnected components,
retaining the compositional structure of the physical system.

The features of the benchmarks are described in the extended
version of the paper. The models contain tens of boolean
variables and hundreds of real variables, resulting in up to 2
millions of modes. None of the benchmarks considered in this
evaluation can be analyzed with the approach presented in [20].
There are several reasons for this. First, all the benchmarks
are out of the electrical domain. Even if [20] deals with some
simple hydraulic models by means of the hydraulic-electrical
analogy, the cylinder component used in the LGS does not fit
in the domain analogy. Second, [20] cannot deal with non-
deterministic output variables. Our WBS benchmarks yield
under-specified output variables that were not present in the
much simpler and less complete model used in [20]. Finally,
the WW benchmarks contain some inconsistent modes, and the
method in [20] requires consistency for all the modes.

Also, note that our modeling of the WBS benchmarks is
different than the model presented in [37], which is an abstract,
discretized and causal model of the system suitable to perform a
formal system safety assessment analysis. Instead, in our WBS
model we capture the real continuous physics of the system.

Validation: The results of the evaluation are summarized
in Tab. I. First, we consider the runtime of the basic (BAS)

and the optimized (OPT) encodings for validation. We see that
OPT solves all the 29 instances, while BAS times out on the
10 biggest instances. Focusing on the instances solved by both
encodings, OPT outperforms BAS by two orders of magnitude
and scales much better w.r.t the benchmark size. Noteworthy,
the OPT method validates the two millions of modes of the
WBS[5] instances within 327 and 252 seconds, respectively.
These results provide a clear evidence that the BAS encodings
is infeasible for real life systems, while OPT offers an efficient
solution to solve the problem.

All the WBS and LGS benchmarks have only consistent
modes. This does not hold for the WW benchmarks, where a
tank cannot accept incoming [respectively, provide outgoing]
liquid in mode full [resp., empty]. Notice that the full and
empty modes can be seen as hazardous configurations of the
network, when an actuator must pump in/out a fluid. Our
validation approach is able to detect and report such bad
configurations, and allows us to generate models under the
assumption that the invalid modes are not entered (e.g. by the
preventive action of a supervisory controller).

VAL REF VER
BAS OPT BAS OPT OPT

LGS[2] 1 0 187 1 1
LGS[3] 5 1 TO 5 1
LGS[4] 29 3 TO 21 1
LGS[5] 204 9 TO 90 7
LGS[6] 1567 25 TO 449 9
LGS[7] TO 73 TO 3091 14
LGS[8] TO 215 TO 30269 30
WBSA2[2] 10 0 TO 3 0
WBSA2[3] 395 5 TO 19 4
WBSA2[4] TO 37 TO 204 74
WBSA2[5] TO 327 TO 5554 2630
WBSA4[2] 9 0 TO 3 0
WBSA4[3] 360 4 TO 22 5
WBSA4[4] TO 30 TO 223 131
WBSA4[5] TO 252 TO 5892 10970
WWLIN[2] 0 0 8 0 0
WWLIN[3] 0 0 1072 1 0
WWLIN[4] 2 0 TO 3 2
WWLIN[5] 21 0 TO 8 5
WWLIN[6] 166 1 TO 19 33
WWLIN[7] 1670 3 TO 53 62
WWLIN[8] TO 5 TO 419 343
WWRING[2] 0 0 39 0 0
WWRING[3] 4 0 TO 3 1
WWRING[4] 74 1 TO 10 6
WWRING[5] 1300 3 TO 30 28
WWRING[6] TO 7 TO 89 78
WWRING[7] TO 15 TO 369 848
WWRING[8] TO 27 TO 2465 MO

TABLE I
VALIDATION, REFORMULATION AND VERIFICATION TIME [S].

Reformulation: We consider the runtime for the BAS
reformulation lower bound, and the OPT reformulation. The
BAS encodings cannot deal with the benchmarks, whereas the
OPT encodings successes in reformulating all the instances.
Again, this happens because the OPT encodings exploits the
properties of the algebraic structure of the problem to mitigate
the computational complexity of the quantifier elimination
in the computation of the derivative variables reformulation.
Additionally, the variable substitution of the first derivative
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reformulation into the network DAE formula completely avoids
the need for the quantifier elimination step in the reformulation
of the output variables.

We notice that the reformulation of the WW benchmarks
is restricted to the valid modes, while considering the non-
valid modes as a macro error state of the network. The ability
of representing these non-valid modes in the reformulated
hybrid automaton is crucial when considering the functional
verification of the network composed with a controller designed
to prevent the reachability of hazardous configurations.

Verification: For both WBS benchmarks we consider
the property P1: when the selector valve is closed, a brake
command cannot actuate any brake. Consistently with the SAE
standard AIR6110 [36], that describes such design flaw, P1 is
violated for WBSA2[N ] and is verified by WBSA4[N ]. For the
LGS, we consider the (false) property L1: the first cylinder
cannot reach its end-of-stroke. For both WW benchmarks, we
consider the (false) property W1: the level of the first tank
cannot exceed a given threshold, that is violated closing all the
valves connected to the first tank.

The verification on the hybrid automata from the OPT
reformulation completes within the time out on all the bench-
marks, returning the expected results, except for WWRING[8]

that experienced a memory out (MO). Finding the violation
in WBSA2[N ] is slightly faster than proving the property in
WBSA4[N ]. Overall, these results provide empirical evidence
of the applicability of our approach in the formal verification
of real world hybrid system represented as a SMDLKN.

VII. CONCLUSION

We presented an SMT-based method for the formal anal-
ysis of Switching Multi-Domain Linear Kirchhoff Networks
(SMDLKN), that is able to automatically validate and reformu-
late a SMDLKN into a symbolic Hybrid Automaton, amenable
to be formally verified with the existing model checkers.
The approach covers networks spanning multiple physical
domains and exhibiting non-deterministic behaviors, achieving
substantial improvements over a pure SMT-based approach by
leveraging general results in linear algebra. We implemented
and evaluated the SMT-based procedures to validate and refor-
mulate the network, demonstrating the potential of complete
verification workflow on real-world systems.

We plan to extend the approach to incorporate networks with
discontinuous state variables [38], produce a network of HA
instead of a monolithic HA, and extend the analysis towards
the safety assessment for the generation of Fault Trees.
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X: an axiomatic tactical theorem prover for hybrid systems,” in CADE,
2015.

[23] R. Alur, “Formal verification of hybrid systems,” in EMSOFT 2011, 2011.
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[29] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques,” in FMCAD 2004, 2004.

[30] G. Frehse, B. H. Krogh, R. A. Rutenbar, and O. Maler, “Time domain
verification of oscillator circuit properties,” Electr. Notes Theor. Comput.
Sci., vol. 153, no. 3, pp. 9–22, 2006.

[31] H. L. Lee, M. Althoff, S. Hoelldampf, M. Olbrich, and E. Barke,
“Automated generation of hybrid system models for reachability analysis
of nonlinear analog circuits,” in ASP-DAC 2015, 2015.

[32] Y. Zhang, S. Sankaranarayanan, and F. Somenzi, “Piecewise linear
modeling of nonlinear devices for formal verification of analog circuits,”
in FMCAD, 2012, pp. 196–203.

[33] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step towards
verification and synthesis from simulink/stateflow models,” in HSCC
2011, 2011, pp. 317–318.

[34] S. Minopoli and G. Frehse, “SL2SX Translator: From Simulink to
SpaceEx Models,” in HSCC 2016, 2016, pp. 93–98.

[35] M. Gario and A. Micheli, “pySMT: a Solver-Agnostic Library for Fast
Prototyping of SMT-Based Algorithms,” in SMT Workshop, 2015.

[36] SAE International, “AIR 6110 - Contiguous Aircraft/System Develop-
ment Process Example,” 2011.

[37] M. Bozzano and et al., “Formal design and safety analysis of AIR6110
wheel brake system,” in CAV, 2015.

[38] A. Massarini and et al., “Analysis of networks with ideal switches by state
equations,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 1997.

195

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



Automatic Verification of Application-Tailored OSEK Kernels

Hans-Peter Deifel, Merlin Göttlinger,
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Abstract—The OSEK industrial standard governs the design
of embedded real-time operating systems in the automotive
domain. We report on efforts to develop verification methods
for OSEK-conformant compilers, specifically of a code gen-
erator that weaves system calls and application code using
a static configuration file, producing a stand-alone applica-
tion that incorporates the relevant parts of the kernel. Our
methodology involves two verification steps: On the one hand,
we extract an OS–application interaction graph during the
compilation phase and verify that it conforms to the standard,
in particular regarding prioritized scheduling and interrupt
handling. To this end, we generate from the configuration
file a temporal specification of standard-conformant behaviour
and model check the arising formulas on a labelled transition
system extracted from the interaction graph. On the other
hand, we verify that the actual generated code conforms to the
interaction graph; this is done by graph isomorphism checking
of the interaction graph against a dynamically-explored state-
transition graph of the generated system.

1. Introduction

Embedded real-time control systems are special-purpose
systems dedicated to specific, predefined tasks [1], [2].
Already now, a typical (in particular, non-autonomous) car
contains up to a hundred such systems. Hence, both the
hardware and the system software of each embedded control
system need to be tailored to its specific needs in order to
keep per-unit hardware costs as low as possible [3]. The
OSEK-OS standard [4] fulfils these demands for tailorabil-
ity and has been (together with its superset AUTOSAR-
OS [5]) the dominant industry standard for event-triggered
automotive real-time operating systems (RTOSs) for the last
decades. What sets OSEK apart from the common POSIX-
like operating systems is that it is completely statically
configured. For a specific automotive application, all system
objects (tasks, interrupt-service routines, resources, etc.) and
their configurations have to be declared at compile-time
in a domain-specific language, the OSEK Implementation
Language (OIL) [6]. From this specification, an application-
specific, highly optimized RTOS instance is derived by means
of a generator.

In
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Application code
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Application code
(machine code)

Interaction model
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Regular compiler

desired verification
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syscalls at run time

Application specific OSEK specific Verification Generation flow

Figure 1: System generation and verification. We use the
static state-transition graph (SSTG), a byproduct of the
OSEK system generator, as an intermediate representation
for our desired kernel verification.

However, with the advent of autonomous driving fea-
tures, the industry is facing new challenges with respect
to functional safety; the highest safety level ISO 26262
ASIL D demands the employment of a certified RTOS, such
as RTA-OS (ETAS), MICROSAR OS (Vector), or tresos Safety
OS (EB) (vendors named in parentheses). These certified
operating systems offer significantly less tailorability and
thus induce higher per-unit costs. The certification of the
development process of the RTOS kernel is already extremely
expensive, so vendors shy away from the even higher costs
of certifying a kernel generator.

Taking a step back, we argue that application developers
do not need a kernel that behaves correctly in all imaginable
situations. However, they are very interested in a kernel that
always behaves correctly for their specific application and
all of their kernel-usage patterns. Therefore, we replace the
isolated certification of the generator with a per-instance
verification of the resulting kernel binary and thus formulate
our verification goal: For a given application, the generated
kernel binary must expose the specified behavior when
executed together with our application. This bypass of the
generator in the verification process allows all kinds of highly
specialized system optimizations.

We achieve the desired verification (see Figure 1) by
introducing an kernel–application interaction model: Our
toolchain considers not only the OIL-specified system object
instances but also how these system objects actually interact
with each other via the syscall interface according to the
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TASK(Low) {
if (test()) {
ActivateTask(High);

}
TerminateTask();

}

TASK(Med) {
TerminateTask();

}

TASK(High) {
TerminateTask();

}

void ISR() {
ActivateTask(Med);

}

Figure 2: Example System – Source Code

OSEK semantics [7]. We enumerate the application-specific
kernel’s state space, the static state-transition graph (SSTG),
which is calculated and used by the system generator.
The SSTG acts as an intermediate representation of kernel
behavior and is the central data structure for our strategy.
First, we statically verify (vertically, according to Figure 1)
that the SSTG actually conforms to the OSEK standard. To
this end, we formalize key aspects of the standard in CTL
and model check the SSTG against this specification; this
is feasible because the SSTG is of moderate size thanks to
tailoring. Second, we dynamically verify the system against
the SSTG (horizontally, according to Figure 1). To this end,
we probe the system to explore a dynamic state-transition
graph (DSTG) and check that it is isomorphic to the SSTG.
We report on experiments with this methodology, both on
systems from a standard test suite and on the control software
of a quadrotor copter.

2. Background and Context

We give a brief overview of the single-core OSEK real-time
operating system standard. Moreover, we describe the static
state-transition graph (SSTG), which the dOSEK generator
(dOSEK = dependable OSEK, our implementation of the
OSEK standard) uses as an intermediate representation to
model all possible interactions between application and
kernel.
2.1. OSEK in a Nutshell. The tailored embedded systems
that we are concerned with here are woven from application
code and a tailored kernel instance. Kernel and application
interact at runtime, typically subject to requirements on
real-time performance. Depending on the current OS state,
the kernel selects a control flow that is currently ready
and dispatches it for execution. The application’s control
flows, as the kernel’s counterpart, manipulate the OS state by
invoking system services that influence the system behaviour
(Table 1 gives a short overview). OSEK offers two main
control flow abstractions: interrupt-service routines (ISRs)
and tasks (i.e. threads). ISRs are activated by the hardware
and fall into two classes: category-1 ISRs, which are not
allowed to call system services; and category-2 ISRs, which
are synchronized with the kernel. Tasks have a statically
assigned priority, are allowed to use all system services, and
are invoked according to a strict fixed-priority preemptive
scheduling policy. On each new activation, tasks start from
the very beginning and run until (self-)termination. Each task
is configured to be either nonpreemptive (enforcing run-to-

completion semantics) or fully preemptive. Preemption points
can be either synchronous, for example caused by an explicit
activation of a higher priority task (ActivateTask), or
asynchronous, if a higher priority task is activated inside an
ISR. Periodically or aperiodically recurring task activations
can be triggered by means of statically configured alarms,
which are driven by a hardware timer.

Inter-task synchronization is realized by resource objects.
Based on a stack-based priority-ceiling protocol, OSEK re-
sources ensure mutual exclusion while preventing deadlocks
and priority inversion. Through the acquisition of a resource,
a task raises its dynamic priority to the ceiling priority of
the resource – the highest static priority of all tasks that can
obtain the resource, according to the OIL file.

Figure 2 shows a small example system that consists of
three tasks and one ISR. These coordinate their execution
with the help of the OS, which is activated through system
service invocations (syscalls). Figure 3a depicts the same
system as read in by the dOSEK generator.

2.2. Generating a System. A dOSEK kernel instance is
generated from two inputs (see also Figure 1): The appli-
cation’s OIL file specifies the employed RTOS objects (i.e.,
the tasks Low, Med, High and the ISR ISR in our example).
The application’s source code (Figure 2) specifies how these
system objects interact according to the OSEK semantics.

Internally, we structure the application code into a set
of control-flow graphs (CFGs) consisting of atomic basic
blocks (ABBs) (Figure 3a). An ABB [7], [8] is a control-flow
superstructure that subsumes one or more traditional basic
blocks (BBs) forming a single-entry single-exit region; it has
exactly one distinguished entry BB and one exit BB. The
construction (see [7] for a detailed description) results in
one ABB-graph for each task within the application code.
By construction, every ABB either contains a single syscall
or only computation code that does not interact with the
OS (no syscalls). From the kernel’s point of view, an ABB
executes atomically, but can be interrupted by ISRs.

At build time, the dOSEK generator computes a state
transition graph (STG) from the ABB graphs of the individ-
ual tasks and the system configuration (OIL). (We formally
define STGs in Section 2.3.) This STG is the static state-
transition graph (SSTG) already mentioned in the introduc-
tion. Starting with an initial global system state, derived from
the OIL file, the generator enumerates all reachable system
states explicitly (Figure 3b). Every state carries the currently
running task, a block that is executed in this state (e.g.
state A executes ABB1), and other relevant scheduling data,
like the list of activated tasks. A state transition is caused
by either a computation block, a system call block, or an
interrupt request. For the associated post-state, the currently
running task and the currently executed block are calculated
according to the OSEK scheduling semantics. The SSTG
subsumes the interwoven application–kernel behaviour and
includes all possible scheduling sequences an OSEK kernel
exposes for the given application. Since computation blocks
do not perform syscalls, their execution does not influence
future scheduling decisions, and is therefore represented
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Figure 3: Example system

TABLE 1: Excerpt of system services provided by the OSEK-OS API.

System Service Arguments Brief Description

ActivateTask TaskID Task TaskID is activated. If the current task is preemptible, immediate rescheduling takes place.
TerminateTask – The current task terminates itself and immediate rescheduling takes place.
GetResource ResID Acquires the resource identified by ResID.
ReleaseResource ResID Leaves the critical region associated with the resource ResID. The dynamic priority of the calling task

is changed and a reschedule takes place for preemptible tasks.

by ε-transitions. For instance, ABB1 is computational and,
therefore, the transition between states A and D becomes an
ε-transition.

Thus computed, the SSTG has node identities represent-
ing the current global system state, while the edges of the
SSTG are either ε-transitions or labelled with the system calls
triggering the respective state transitions. System call labels
can be either system calls in the proper sense, interrupts
(which are triggered by the hardware outside the system),
interrupt returns (irets), or the idle system call. The idle
system call is executed from an idle state when no other task
is ready for execution. This ensures that all maximal paths
in the SSTG are infinite. The latter three types of system
call labels are artificially added by the generator and only
model the implicit state transitions of an OSEK system; they
are not explicitly named in the OSEK specification.

From the SSTG information, the dOSEK system genera-
tor (Figure 1) produces a kernel binary that is optimized for
the actual application usage patterns. Optimizations include,
for example, the avoidance of scheduler invocations for
system call sites that have a known scheduling outcome.

2.3. State Transition Graphs. Our verification method is
concerned with properties of and relations between STGs,
which in process-theoretic parlance are essentially determin-
istic labelled transition systems. That is, given a set A of
labels a state transition graph consists of a set S of states
and a set T ⊆ S ×A× S of labelled transitions. We write
s
a−→ t for (s, a, t) ∈ T . The transition relation is required to

be deterministic (but may be, and typically is, partial), that

is, whenever s a−→ t and s a−→ t′ then t = t′. We occasionally
consider state transition graphs with ε-transitions; these
additionally admit transitions of the form s

ε−→ t where ε is a
special label not contained in A. For ε-transitions, we do not
require determinism. For example, the graph from Figure 3b
is nondeterministic at state A w.r.t. ABB1-transitions, which
are replaced by ε-transitions as explained in Section 2.2.

To STGs with ε-transitions, we apply the usual process
of ε-elimination, i.e. we insert an a-transition from state s
to state t whenever t is reachable from s by first performing
any number of ε-transitions (possibly none) and then an
a-transition. We then remove all unlabelled transitions, and
all states that become unreachable as a result. In general,
this will produce a nondeterministic STG; we will explain
in Section 3.2 why the particular STGs that appear in
our verification framework do remain deterministic after
ε-elimination.

3. The Formal Verification Method

Our formal verification methodology comprises a vertical and
a horizontal verification process (cf. Figure 1). The central
data structure for our verification is the SSTG (Section 2.2).
In the vertical verification, we check that the SSTG adheres
to key aspects of the behaviour specified by the OSEK
standard, in particular regarding prioritized scheduling and
interrupt handling. To this end, we formalize the correspond-
ing parts of the OSEK standard in CTL and model check the
SSTG against the arising temporal specification (Section 3.1).
In the horizontal verification, we then ensure that the actual
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generated code conforms to the originally projected system-
wide control flow; this is achieved by graph isomorphism
checking of the SSTG against a judicious abstraction of the
code, viz. another STG called the dynamic state-transition
graph (DSTG) (Section 3.2).

3.1. Vertical Verification. We next describe how we for-
mally verify that the static state transition graph (SSTG)
complies with the OSEK specification. To this end, we
generate a NuSMV-model and CTL formulas that formalize
(parts of) the OSEK specification. Our formalization currently
covers the standard roughly up to conformance class ECC1,
with the exception of alarms and resource management. As
input for our generator we use the (ε-eliminated) SSTG and
the OIL specification, which specifies all tasks and interrupts
with their respective priorities, as well as all events and
resources of the system.

The SSTG already resembles a NuSMV-model, except
that NuSMV-models do not have edge labels. Thus, we need
to convert the edge labels into state labels, and our generator
does that by pushing labels along the arrows into the next
state. This leads to a multiplication of states by the number of
different labels of incoming edges. Of course, this conversion
produces a nondeterministic model, however with a unique
edge between two states as every syscall has a unique effect
on the current state. In more detail, our NuSMV-model has
as global state variables (a) the variable syscall that contains
the name of the system call (i.e. the label of the edge) that
took the system into the current state, (b) a variable state
carrying the current state in form of the node id from the
SSTG, and (c) variables for all other parts of the global
system state. Note that the values of the latter variables are
already determined uniquely by the node id; we included
them merely to make the CTL formulas and counterexample
traces more readable.

All OS objects, i.e. tasks, ISRs, events, and resources are
realized by means of NuSMV-modules, which are instantiated
as specified in the OIL specification of the system. They
do not carry internal state but are merely used to group
related variables for readability in formulas and error traces.
For example, the state and (dynamic) priority of a task t
are referred to by t.state and t.priority. The actual state is
fed into the instances through global variables that form
parameters of the modules. The next value of state at any
state is chosen nondeterministically as one of the successor
nodes of the current SSTG node (given by the current value
of state). The next(syscall) is then uniquely determined by
the current value of state and the value of next(state).

Some variables, for example the resource priorities, are
not explicitly contained in the OIL file and thus have to be
calculated according to the OSEK specification. The latter
demands that resource priorities are at least the maximum
priority of all tasks using the resource but are lower than
the priority of every task not using the resource but having
higher priority than the ones using the resource. To avoid
priority collisions between tasks due to resource occupation,
we scale all priorities by a factor of two and calculate the
resource priorities as the maximum of all the priorities of

MODULE main()
VAR
...
syscall : { Start, ..., TerminateTask, ...,

ActivateTask_High, ..., interrupt_37, ... };
running : { Idle, Low, Med, High, ISR };
state : { ABB_67_0, ..., ABB_4_0, ..., ABB_23_0, ABB_24_0,

ABB_25_0, ..., ABB_63_0, ... };
...

ASSIGN
init(syscall) := Start;
next(syscall) := case
((state = ABB_67_0) & next((state = ABB_4_0))) :

ActivateTask_High;
((state = ABB_67_0) & next((state = ABB_23_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_24_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_25_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_63_0))) :

TerminateTask;
...
next(TRUE) : syscall;

esac;
init(running) := Low;
next(running) := case
next((... | (state = ABB_4_0))) : High;
next((... | (state = ABB_23_0) | (state = ABB_24_0) |

(state = ABB_25_0) | ...)) : ISR;
next((state = ABB_63_0)) : Idle;
...
next(TRUE) : running;

esac;
init(state) := ABB_67_0;
next(state) := case
...
(state = ABB_67_0) : {ABB_4_0, ABB_23_0, ABB_24_0,

ABB_25_0, ABB_63_0};
...

esac;
...

CTLSPEC ...

Figure 4: Slice of the NuSMV-model for the graph in Fig. 3

the tasks using the resource plus one. This does not affect
the scheduling behaviour and ensures that there can never
be a situation where multiple tasks of the same dynamic
priority are ready to run at the same time.

Figure 4 shows a slice of the NuSMV-model generated
from the SSTG for the example system from Figure 2
(depicted in simplified form in Figure 3(b)). We include
only the variables state, syscall and running and
only the transitions from the starting state ABB_67_0,
which corresponds to state A. The transition to ABB_4_0
corresponds to the transition A

ε−→ B
ABB 2−−−→ C and the one to

ABB_63_0 corresponds to the transition to the final state
with label ABB3. The remaining three transitions essentially
correspond to A → K but take into account that in reality
an interrupt in the program of Figure 2 may happen before
test() is executed or at the two points after the branch
(i.e. just before ActivateTask(High) or just before
TerminateTask()).

We verify that the SSTG adheres to the OSEK spec-
ification by model checking the NuSMV-model generated
from the SSTG against the CTL formulas generated from
the OIL file according to the OSEK specification. The latter
arise by instantiating formula patterns that are parametric in
the OIL configuration. Figure 5 shows an example formula,
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to be discussed shortly. Additional formulas specify that
transitions of event states, resource states and interrupt states
are correct, that ISRs may only perform their allowed system
calls etc.; see the full version [9] for details. We frequently
need to quantify over finite sets that are obtained from
the OIL specification or are specified by OSEK (Table 2);
such quantifiers are just expanded into finite conjunctions or
disjunctions.

The formula in Figure 5 expresses that the scheduling
for a task t is correct, i.e. each transition made in the SSTG
is legal, and every transition required by the specification
is in fact made by the system. Note that the transitions
from Waiting and Suspended directly to Running are not
technically legal according the OSEK specification; but
the required intermediate state where the task in question
would be Ready is not observable to the application, and
we therefore opt to allow the direct transitions. The formula
is instantiated for every task, and, in a slightly modified
version, for every ISR, as interrupt scheduling is to some
extent left up to the implementation. The formula is structured
into four subformulas ψ1, . . . , ψ4, each handling the allowed
state transitions from one of the four possible starting states.
To make this rather large formula readable we employ the
following abbreviations for subformulas and properties:

– t.isHighestPriority specifies that control flow t wants to
run, e.g. has state Ready or Running, and has higher
priority than every other control flow that currently wants
to run.

– t.isWaitingFor(e) states that the task t is waiting for the
event e to occur.

– allOthersPreemptible(t) states that all tasks currently
ready, other than t, are preemptible. Note that this formula
needs to be used together with t.isHighestPriority to
ensure that no interrupt is currently running and is needed
altogether because when checking the starting transition
of a non-preemptible task t, knowing t.isHighestPriority
alone is not enough. For example, before the transition,
t.isHighestPriority would always be false, since t was
suspended, and after the transition, t would have already
received the ceiling priority of the internal scheduler
resource due to being non-preemptible.

– othersWillPreempt(t) denotes that task t will be pre-
empted by another control flow due to witnessing a
scheduling system call. This happens only if another
control flow s currently has the highest priority, and if s
is not an ISR, then t also has to be preemptible.

– waitSc(t) formalizes that task t is waiting for at least one
event that is not set.

Note that the parameter e in t.isWaitingFor(e) is realized
in our NuSMV-model as follows: For every task, an array
containing the states of all its events is generated. The
parameter e then simply is an index into this array.

Formula ψ1 handles the case where t was previously
suspended. Here, the only way for t to start up again is by
a system call from the set Act (with a transition to Ready
or Running depending on what else is currently running). In
the case where t was previously Running, ψ2 captures the

TABLE 2: Finite sets used in the OSEK formalization.

Set Name/Description

SC Scheduling calls, i.e. system calls that lead to a
(re-)scheduling of tasks

Act(r) System calls that activate the control flow (i.e. task or
ISR) r

E(t) Events of task t
TSC(r) Terminating system calls, i.e. system calls that would

lead to the termination of r
NPTasks Non-preemptible tasks, i.e. tasks that cannot be pre-

empted by higher priority tasks
RPreempt(r) Control flows that could preempt r

TASK(Low) {
print_state_hash(at: ABB1, next: interrupt);
trigger_interrupt();
if (read_decision(0)) {
print_state_hash(at: ABB2, next: ActivateTask);
ActivateTask(High);

}
print_state_hash(at: ABB3, next: TerminateTask);
TerminateTask();

}

Figure 6: Example system – generated mockup for task Low

possible transitions:
(1) There is another control flow that will preempt t

(othersWillPreempt(t)) due to a system call that causes
rescheduling, and t will become Ready.

(2) t issues a system call from the set TCS(s) signalling its
termination, and becomes Suspended.

(3) t waits for one of its events. If the event is not set, t
becomes Waiting.

In the case where t was previously Ready, ψ3 formulates
that t will either remain Ready, or become Running if it
has the highest priority. Finally, in the case where t was
previously Waiting, ψ4 expresses that t keeps Waiting until
one of the events it was waiting for is set and then becomes
either Ready or Running, depending on whether it currently
has the highest priority.
3.2. Horizontal Verification. To increase trust in the cor-
rectness of the actual generated code, we complement
the verification that the SSTG complies with the OSEK
specification (Section 3.1) with a verification procedure
ensuring that the the generated code agrees with the SSTG.
To this end, we extract a normalized STG, the dynamic state
transition graph (DSTG), from the actual binary. Interestingly,
while one might expect the notion of agreement of the DSTG
with the SSTG to be based on classical process-algebraic
notions of equivalence such as bisimilarity [10], it turns out
that the normalization process in fact guarantees agreement
of the two STGs up to isomorphism. We therefore base our
verification procedure on isomorphism checking, not only
because we thus obtain stronger correctness guarantees but
also because isomorphism checking of deterministic systems
is computationally cheap, and in fact can be performed on-
the-fly.

In more detail, we extract the DSTG by executing and
probing the generated system binary with all possible syscall
sequences that can originate from the given application. In
order to facilitate exploration of the state space, we transform

200

ISBN: 978-0-9835678-7-5. Copyright owned jointly by the authors and FMCAD, Inc.



AG((t.state = Suspended→ ψ1) ∧ (t.state = Running→ ψ2) ∧ (t.state = Ready→ ψ3) ∧ (t.state = Waiting→ ψ4)), where

ψ1 ≡ (allOthersPreemptible(t)→ AX (syscall ∈ Act(t)→ (t.state = Running↔ t.isHighestPriority)))

∧ (¬allOthersPreemptible→ AX (syscall ∈ Act(t)↔ t.state = Ready))

∧ AX((t.state = Suspended→ ¬syscall ∈ Act(t))

∧ AX((t.state = Ready ∨ t.state = Running)→ syscall ∈ Act(t)))

ψ2 ≡AX((t.state = Ready↔ othersWillPreempt(t)) ∧ (t.state = Suspended↔ syscall ∈ TSC(t)) ∧ (t.state = Waiting↔ waitSc(t)))

ψ3 ≡ (allOthersPreemptible(t)→ AX (syscall ∈ SC→ (t.state = Running↔ t.isHighestPriority))) ∧ AX (t.state = Running ∨ t.state = Ready)

ψ4 ≡
∧

e∈E(t)

(
t.isWaitingFor(e)→ ((allOthersPreemptible(t)→ AX (e.set→ (t.state = Running↔ t.isHighestPriority)))

∧ (¬allOthersPreemptible(t)→ AX (e.set→ t.state = Ready))

∧ AX ((t.state = Waiting ∧ ¬e.set) ∨ t.state = Running ∨ t.state = Ready))
)

allOthersPreemptible(t) ≡ ∧ot∈NPTasks\{t} ot.state 6= Running

othersWillPreempt(t) ≡ syscall ∈ SC \ (TSC(t) ∪WaitCalls) ∧∨or∈RPreempt(t)\{t} or.isHighestPriority

waitSc(t) ≡ ∨e∈E(t) ¬e.set ∧ t.isWaitingFor(e)

Figure 5: Example CTL formula

the tasks’ ABB graphs (see Section 2.2) into a mock-up, a C-
program that omits the processing logic of the application and
retains only the control flow, and then run an external search
procedure on the mock-up that traverses the state space depth-
first. We generate the mock-up (see Figure 6 for a partial
mock-up of the running example) in two steps: (1) We use
tools from the dOSEK framework to generate function-local
ABB graphs from the generated LLVM code. (2) From these
ABB graphs, we generate C-code that emulates the control
flow, i.e. performs function and system calls as specified.
Additionally, the mock-up:
• outputs node identifiers containing the identifier of the

current ABB, as well as a hash of the actual current
operating system state, where the latter includes the
program counter;

• outputs identifiers for system calls containing the name
of the system routine as well as the call site;

• optionally triggers any enabled interrupts;
• reads decisions on branching (including whether to trigger

an interrupt) from standard input.
The mock-up is linked with the specialized kernel produced
for the actual application by the dOSEK generator. It is
then used by the Dynamic State Explorer (DSE), a search
procedure that generates the space of reachable states depth-
first, steering the mock-up through the state space by feeding
input to it in order to determine branching. The result of the
search procedure is an STG. More precisely, some transitions
in the STG are labelled with system calls as indicated above,
and some are unlabelled, i.e. the STG includes ε-transitions;
the latter correspond to internal transitions between compu-
tational ABBs. The ε-transitions are nondeterministic, since
we omit the processing logic in the mock-up, so any form
of conditional branching in the original application turns
into nondeterminism; also, we cannot foresee external input.
This STG is then subjected to ε-elimination as described in
Section 2.3. We thus generate an STG with only labelled
transitions; it is this STG that we refer to as the dynamic
state transition graph (DSTG). The DSTG, as well as the
SSTG, is deterministic, since every non-ε label is a tuple
(call site, syscall type) and as such deterministically changes
the system state. The same holds for interrupts, even though

these are nondeterministic with regard to the activation time:
Every interrupt transition label contains the interrupt number
and, therefore, exactly describes its influence on the OS state,
just like every other syscall-induced transition.

We check the DSTG for isomorphism with the SSTG.
This is computationally unproblematic: since both LTS are
deterministic after ε-elimination, we only need to check
that both sides allow for the same transition labels, and
then propagate this property to the states reached by the
corresponding transitions. The reason that both graphs are
isomorphic is that the states of the DSTG are identified by
the hash value over the OS state, which is also reflected in
the fields of every SSTG node.

4. Experiments

4.1. Positive Tests. To evaluate our verification method, we
have run experiments on a number of OSEK systems. These
systems stem from a test suite originally designed for the
dOSEK implementation. In total, we have fully verified 58
test systems. We have selected eight systems that highlight
key properties targeted in the verification (Table 3). The test
cases “copter” and “copter-small” are the control software
of a quadrotor copter and a simplified version thereof that
arises by removing one asynchronous signal. For each of
the systems, we list the number of system objects of the
relevant types, i.e. interrupts, tasks (including the idle task),
events, and resources specified in the OIL file.

Table 3 shows key parameters and the performance of
the model checking tool on those systems. To qualify the
generated NuSMV-model, we give the number of reachable
states as well as its diameter (i.e. the length of the longest
loop-free path). On a 2.4 GHz Intel Core i7-5500U machine
with 8 GB of memory, the smaller experiments were com-
pleted within a fraction of a second. Only the verification of
the two copter examples took longer, but finished in under
three minutes.

For the horizontal verification, we probed the same
58 OSEK systems in two generator configurations (with
and without system call site specialization) and established
isomorphism with the respective SSTG in all cases. For most
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TABLE 3: Performance of vertical verification.

Name ISRs/Tasks/
Events/Res

Reachable
states

Diameter User time
(sec)

Memory
(MB)

bcc1-resource1j 0/6/0/4 26 16 0.10 27
bcc1-sse1c 0/6/0/4 24 14 0.08 28
ecc1-bt1g 0/6/2/2 10 10 0.05 24
ecc1-event1e 0/4/4/2 13 13 0.11 29
bcc1-isr2d 1/4/0/2 21 10 0.07 23
timing-abcomp 1/3/2/2 77 13 0.14 27
copter-small 3/11/0/3 1366 29 19.44 250
copter 4/12/0/3 4458 32 147.15 829

systems, the horizontal verification took less than 1 second.
Only for the copter, the probing took 2.13s (0.81s for copter-
small) and the isomorphism checking 0.17s (0.04s). When
developing the hash function, we have probed examples with
over 400.000 states in under 4 minutes.
4.2. Negative Tests and Fault Injection. For the vertical
verification, we have performed negative tests by introducing
faults into systems to check that these are correctly identified
by our verification tool chain. To this end we have imple-
mented a modified dOSEK generator that injects various
types of faults into the input for our verification method.
One can select between (a) mutations in the SSTG and (b)
mutations in the input OIL specification. For (a), there is a
random choice of either adding an edge or merging two states,
and for (b), there is a random choice of either exchanging
the priorities of two tasks or toggling the preemptability or
the auto-start flag.

It should be noted here that not all faults introduced in this
random way will necessarily lead to actual errors, e.g. when
the change to the configuration does not influence the actual
interaction between application and OS, or when additional
transitions are actually valid. In our experiments, additional
edges mostly did lead to errors and were detected by the
formal verification; in some cases, additional edges produced
legal transitions or violated parts of the specification not
currently reflected in our formalization, e.g. that a task is
not allowed to release resources it has not currently reserved.
Merging graph nodes almost always produced errors caught
by the verification, except in cases where the net effect would
have been produced by ε-elimination anyway.

For the vertical verification, we injected 188 different
faults into the test cases; this did not change the performance
of the formal verification significantly compared to the
unmodified test cases (Table 3). 177 faults lead to errors
and were detected by the vertical verification. The other 11
faults were manually verified to be benign in the given usage
pattern (a more detailed discussion can be found in the full
version [9]). For the horizontal verification, we inserted 81
OIL-level faults: 61 lead to detected errors, while the other
faults were manually checked to be benign.
4.3. Lessons Learned. Summing up the experience gained,
it seems possible to achieve a fair degree of coverage in
the verification of key aspects of the OSEK specification
in tailored systems. (Unbounded) CTL model checking is
feasible as the reachable part of the abstracted state space
that we use remains within tractable range even for fairly

large systems such as the quadrotor copter controller (with
fewer than 4.5k states after abstraction); as stated above
we attribute this fact to OS tailoring. Without wishing to
get involved in the long-lasting linear-vs-branching-time
war (e.g. [11]), we note that at the scale of our examples,
LTL model checking does appear to reach the frontier of
feasibility. For example, while in CTL, the copter-small
example (Table 3) was discharged in under twenty seconds
using less than 300 MB of memory, on the LTL correspondent
of essentially the same specification we stopped the model
checker after 30 minutes at 3.5 GB of allocated memory. This
may be due to the higher formula complexity of LTL model
checking (PSPACE instead of PTIME). A clear disadvantage
of CTL, on the other hand, is that counterexamples are
less informative, and typically stop at the first nested path
quantifier.

Another somewhat surprising aspect is the fact that the
notion of correspondence between the SSTG and the DSTG
has turned out to be isomorphism of STGs. Actually getting
this insight to work in full has required a somewhat laborious
tuning process regarding the hashing of the OS state in
the exploration of the DSTG, and in fact maintaining the
tool chain in the future might be easier if one replaces
isomorphism with strong bisimilarity.

5. Related Work

Our work is set in the highly active area of software
model checking; see [12] for an (admittedly dated) overview.
Our method exploits the high degree of predictability of
scheduling afforded by OSEK, and in particular avoids the
state space explosion caused by thread interleaving [13].
The static generation of state transition graphs from code
in a somewhat similar style as featured in our approach has
been used, in combination with LTL model checking, in the
verification of event-condition-action systems [14].

The OSEK standard has been the subject of formal veri-
fication efforts to some degree. Waszniowski [15] modelled
OSEK using timed automata within the UPPAAL model
checker, and performed schedulability analyses. Huang et
al. [16] modelled OSEK in CSP to verify various properties
such as deadlock freedom. In this model, the internal applica-
tion structure is not considered, and interrupts are excluded
entirely. Vu et al. [17], [18] formalize the OSEK standard
in Event-B and then verify designs of full OSs against
the formalization. Where applications are considered [19],
[20], these are verified in connection with an OS model
rather than the actual OS implementation. In contrast, our
approach avoids the verification gap between OS model and
OS implementation by verifying the entire system composed
of application and OS. This is made possible by focusing
on the part of the OS behaviour actually relevant for the
application at hand, instead of attempting to verify the full
OS. We are thus able to a) work on the actual implementation,
and b) fully model check the entire application/OS system
including interrupts (expressly not covered in cited work on
verifying OSEK applications).
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Zhang et al. [21] formalize the OSEK standard in the
K framework, along with the OIL and the programming
language for applications. This is then used for test case
generation and to verify applications by symbolic execution
within the model. Interrupts are not considered.

Tigori et al. [22] use reachability checking of extended
finite automata to remove dead code in tailored OSEK sys-
tems; the automata models involved are produced manually,
while we generate STGs during code generation and from
the actual code, respectively. Also, verification of OSEK
adherence in [22] is by standardized testing, while we model-
check the formalized standard.

On an entirely different scale, Klein et al. [23] formally
verified the seL4 microkernel for functional correctness, in
a project of 25 person years, and Sewell et al. [24] extended
this verification from the C-Code level to the binary.

6. Conclusions

We have presented a framework for the fully automatic
lightweight verification of tailored embedded systems fol-
lowing the OSEK industrial standard. Specifically, we have
introduced a vertical verification process whereby the stat-
ically generated control flow of the tailored system is
checked for conformance with the standard, and a horizontal
verification method that ensures agreement between the static
control and the actual generated code. Initial experiments
run on a benchmark suite and on the control software of
a quadrotor copter show promising results regarding the
feasibility of full verification of key aspects of task interaction
in OSEK systems, and in particular show that even substantial
examples generate moderate-sized control flow graphs that
allow fully-fledged model checking. The key to keeping
state spaces small was to exploit OS tailoring as well as the
particularities of scheduling in the OSEK standard. While
our experiments indicate that dynamic exploration of control
flow graphs scales up well, static methods that reconstruct
the control flow from the compiled binary [24] may serve
as a complementary approach in the future.

In further work, we plan to build more comprehensive
coverage of the OSEK standard and to develop methods
for validating our formalization of the standard against the
informal specification, possibly building on previous work
in this direction [17]. Also, we will apply our approach
of model checking compiler-generated control flow graphs
to application-specific verification goals beyond standard
conformance.
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Abstract—Latency is a major issue in the design and validation
of a Network-on-Chip (NoC). Various techniques for establish-
ing latency bounds exist. Formal and mathematical methods,
such as network calculus, can be used to analyze an NoC model.
Simulation-based methods can be used to estimate latency
bounds by exploring reachable states. Both have their advan-
tages and disadvantages. This paper presents an approach that
finds a middle ground between these two worlds. Our approach
is based on simulation of high-level formal models. In contrast
to traditional formal methods for worst-case latency, we do
not require error-prone manual computation or the absence of
cycles. In contrast to traditional simulation-based methods, we
leverage the high level of abstraction to explore up to billions of
states within a couple of hours. We apply our approach on an 8
core case study where a simple cache protocol runs on top of a
ring-based Spidergon architecture. We show that deadlocks or
starvations are easily found, and that for live networks a worst-
case bound estimation can be produced within reasonable time.

1. Introduction

Worst-case latency is a capricious matter: even a minor
detail in the semantics of a minor element in a network may
drastically impact whether some intricate and unexpected
worst-case scenario can occur or not. Therefore, simula-
tion is often done cycle-accurately and at a low level of
abstraction (e.g., RTL). Cycle-accurate RTL simulation is a
major research area in NoC validation [1], [2], [3]. However,
finding the intricate scenario that causes worst-case latency
can be tricky and may require simulation of many clock
cycles.

This paper presents an approach that is based on the sim-
ulation of formal models of communication interconnects.
Our approach is high-level: we purposefully do not simulate
RTL but do simulation on a high level of abstraction. This
enables fast simulation of large systems, e.g., an 8 core
Spidergon with each core running a cache coherence proto-
col. Our approach is formal: the semantics of our model
are completely formally defined in the Isabelle theorem
prover. This enforces that each individual building block
has concrete and executable semantics, and that the abstract
blocks in our model can be extracted from RTL using the
techniques described in [4], or that RTL can be generated

from them. Finally, the building blocks of our model are
generic: with various case studies we show that we can
simulate routers, queues, virtual channels, credit-counters
and state automata.

Simulation requires dealing with traffic patterns.
Latency-Rate (LR) servers are a commonly accepted model
of traffic injection and consumption [5] and are a basic
concept in the network calculus [6]. The second part of
our contribution consists of novel implementations for sim-
ulating network calculus traffic patterns in amortized cost
O(1) per clock cycle. We use these algorithms to generate
randomized traffic patterns – adhering to network calculus
constraints – guided by heuristics that may quickly lead to
a worst-case. All algorithms, models and Isabelle proofs are
available online at http://www.cs.ru.nl/∼freekver/fmcad17/.

Motivating example. Consider, e.g., Figure 4 from [7].
It presents a formal model of two communicating agents
P and Q initiating requests and answering with responses.
Each message type has its own virtual channel and a credit-
based flow control ensures that a maximum number of
packets can be en route at once. A packet that arrives at the
opposite agent experiences a nondeterministic delay before
it is sent back to its source.

The model can have a deadlock if the amount of credits
is oversized, i.e., if sufficiently many packets can be injected
to fill the cycle between the queues. That amount has to be
at least k + 2 for such a deadlock to happen. However, for
this deadlock to occur, a specific traffic pattern is necessary
where the sources inject packets sufficiently fast, the sinks
consume packets sufficiently slow, and the nondeterministic
delay is sufficiently long.

Even though that deadlock is reachable for such a traffic
pattern, for many traffic patterns it is not. If the sources
are bounded in their injection rate, if the sinks minimally
provide some service rate, and if the nondeterministic delay
is bounded, can the deadlock still occur? Our methodology
can be used to show – for example – that the deadlock may
occur in a setting where the sizes of the ingress queues are 2,
the credit-counters are oversized to 4, the delay is maximally
10 clock ticks, the sinks are eager, and the sources inject
packets at a maximum rate of 1 packet every 10 clock ticks.
If we take the exact same setting but lower the maximum
delay to 9 clock ticks, then the deadlock does not occur, even
though the credit-counters remain oversized. In that case, the
maximum latency is 23, i.e., once a packet has been injected
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it will maximally require 23 clock ticks before it arrives as
a response at the sink. Both dx queues account for a clock
tick. The packet waits 9 clocks ticks in iq1 behind another
packet. In the 11th clock cycle, the packet has reached the
front of iq1. It waits for 10 clock ticks: 9 due to the delay,
1 due to the fact that if in the last clock cycle a packet
is injected, the merge may add 1 clock tick to that delay.
This sums to 23: since the sinks are eager a packet will not
experience any delay in its final ingress queue.

To summarize, the queue sizes, the ratio between the
speeds of the sources, sinks and delays and the arbitration
policy of the merges can be such that the credit-counters are
actually not necessary, since the deadlock they are meant to
prevent cannot occur anyway. A minor change in any of
these elements can, however, significantly increase latency
or cause a deadlock.

We have simulated 108 clock cycles (about 5.5 · 107

packets) with random traffic that adheres to these constraints
without finding this scenario. The scenario does not occur
either when traffic is regular, e.g., when the sources inject
exactly each 10th clock tick. However, by simulating a high-
level formal model of the example and using traffic patterns
guided by some simple heuristics, we were able to find it
within a couple of hours.

2. Executable communication interconnect
modeling

We model communication networks formally, i.e., in
such a way that the semantics are defined mathematically,
and executable. An example of a language that allows formal
and executable modelling is xMAS [7]. Figure 1 presents
an example of an xMAS primitive: the join. This primitive
blocks its incoming packets until at both inputs a packet has
arrived, at which point it will use function f to produce a
packet at the output. The language xMAS provides various
primitives such as merges (for arbitration), switches (for
routing), sources and sinks.

a

f
c

b

(a) The xMAS join

c·irdy = a·irdy ∧ b·irdy
c·data = f(a·data, b·data)
a·trdy = c·trdy ∧ b·irdy
b·trdy = c·trdy ∧ a·irdy

(b) Formal semantics

Figure 1. Example of an xMAS primitive

Our modelling language is basically a generalization of
xMAS. Even though xMAS is executable, the primitives
are too fine-grained for efficient execution. For example, a
simple XY router takes about 17 primitives and modelling
virtual channels is inelegant [8]. Moreover, modelling, e.g.,
cache protocols with xMAS is infeasible.

In our generalization, we model communication net-
works using generic building blocks. Blocks can be fine-
grained primitives, such as arbiters or joins, but can also
be abstract statefull blocks such as routers, credit-counters
or a cache protocol. Each block is efficiently executable. A

communication network is then modelled as a composition
of executable building blocks.

We use Isabelle/HOL [9] to define the notion of “build-
ing block”, and how a communication network is composed
out of these blocks.

2.1. Definition of a generic building block

A communication network consists of blocks with an ID
of type ′block connected by a set of channels with IDs of
type ′chan1. Each channel has an initiator and a target, and
three wires, irdy, trdy and data. An irdy wire indicates the
initiator is ready to transmit data, a trdy wire indicates the
target is ready to receive, and the data wire is used for data
transmission. We use c·w to denote wire w of channel c.

datatype ′chan wire = irdy ′chan | trdy ′chan | data ′chan

The wires can have either Boolean values (in case of
irdy/trdy), a data value, or be undefined. We use the term
color to refer to the data, in the same fashion as colored
Petrinets. We assume the existence of type ′color that rep-
resents the set of colors.

datatype ′color wire-value = B bool | C ′color | Undef

A block assigns wire values to certain wires: the irdy and
data wires of its outgoing channels, and the trdy wires of
its incoming channels. It does so, based on the wire values
of its environment: the trdy wires of its outgoing channels,
and the irdy and data wires of its incoming channels. A
valuation is used to store wire values. It is a set of pairs of
wires and wire values.

type-synonym ( ′chan, ′color) val =
( ′chan wire × ′color wire-value) set

A block is defined by two functions. The first function, eval,
takes as input the current internal state of the block and a
valuation. It computes new values for wires and adds these
to the given valuation. For example, in case of a join (see
Figure 1b), if the given valuation contains values for wires
a·irdy and b·irdy, then the semantics of the join are able to
compute a new value for wire c·irdy, and that value is added
to the valuation. The second function, tick, provides the set
of possible next internal states, given the current internal
state of the block and the current valuation. In case of a
stateless block, this function can return the empty set.

record ( ′chan, ′color, ′istate) block =
eval :: ′istate ⇒ ( ′chan, ′color) val ⇒ ( ′chan, ′color) val
tick :: ′istate ⇒ ( ′chan, ′color) val ⇒ ′istate set

The complete state σ of the communication network is then
simply a map of blocks to their internal state. Note that the
wires are not part of the state: they are combinatorial.

type-synonym ( ′block, ′istate) state = ′block ⇒ ′istate

1. Types preceded by an apostrophe are polymorphic, e.g., we allow any
set of block IDs and any set of channel IDs.
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2.2. Composition of building blocks

To build a network out of these blocks, one has to
connect them using channels. A properly composed network
should satisfy various properties, such as: two channels may
not be connected to the same input of a block, there may be
no combinatorial cycles, there may be no dangling channels,
and for each wire it should be possible to derive a unique
and properly typed wire value. Moreover, the algorithm for
computing a valuation for the current state can be quite
contrived: it should start with blocks that can provide wire
values solely based on their current internal state (such as
queues, sinks and sources) and then propagate these values
to other blocks. That propagation is both forward (in case
of irdy/data wires) and backwards (in case of trdy wire).
Proving termination of this propagation is not possible in
the generic case: for example, if there is a combinatorial
cycle, then this propagation will not terminate.

We will show that all these problems can be dealt with
at once, by formalizing the derivation of wire values as a
least fixed point.

From now on, we assume the existence of a function block
that provides the set of blocks (modelled as a map of block
IDs to blocks). Moreover, we assume that for each block b,
derivation of the wire values is monotonically increasing.
This ensures that the valuation can only increase, i.e., if
more wire values are known, then more new wire values can
be computed. This assumption is formulated by requiring
for each block b and for each internal state x of that block,
monotonicity of its eval function. We use an Isabelle locale
to introduce a context in which such a function block exists.

locale monotone-blocks =
fixes block :: ′block ⇒ ( ′chan, ′color, ′istate) block
assumes mono (eval (block b) x)

We now define a function deriveWires that computes, given a
state σ, a valuation for all wires. This valuation is computed
by the following least fixpoint:

deriveWires σ ≡ µZ · eval (block b) (σ b) Z ⊆ Z

The valuation derived from a state σ is thus the smallest
valuation Z such that Z contains all wire values computed
by any block b given its current internal state (σ b).
We can now formally define the step function of a compo-
sition of building blocks. It is nondeterministic and returns,
given the current state σ, a set of next states.

definition step ::
( ′block, ′istate) state ⇒ ( ′block, ′istate) state set
where step σ ≡
{σ ′ . ∀ b . σ ′ b ∈ tick (block b) (σ b) (deriveWires σ)}

For all blocks b, function tick is used to compute the next
internal state of that block. Function tick is given the current
internal state of that block (σ b) and the current valuation of
wires (deriveWires σ). State σ′ is a next state if and only if
all blocks b have “ticked”, i.e., moved to some next internal
state.

An Executable Communication Interconnect Model (ECIM)
is defined as a set of blocks, connected in such a way that
in each state there is a unique valuation for all wires. This
assumption at once takes care of all issues mentioned at
the beginning of this section. For example, it eliminates
combinatorial cycles, since such a cycle would prevent func-
tion deriveWires to assign a value to the wires participating
in that cycle. We extend the existing locale by adding the
assumption that for each wire w there should be a unique
value v derived by function deriveWires.

locale ECIM = monotone-blocks +
assumes ∃ ! v . (w, v) ∈ deriveWires σ

Within the ECIM context we can formulate an LTL logic
and prove all kinds of sanity theorems, such as:

1) If each block is persistent (e.g., will maintain a high
irdy signal once it is set, until a transfer occurs [10])
then the network as a whole is persistent.

2) If each block is correctly typed, e.g., does not assign
colors to irdy/trdy wires, then this property holds al-
ways globally.

3) Each xMAS primitive is an ECIM building block. We
provide a shallow embedding of a DSL that can be
used to model xMAS-like primitives into ECIM.

4) Block- and idle equations [10] can be proven correct,
e.g., the incoming channel of a queue is permanently
blocked if and only if the queue is full and its outgoing
channel is permanently blocked.

2.3. Some ECIM building blocks

Routing Logic

Arbitration

i0
i1
i2
i3

o0

o1

o2

LI LO

(a) Router

GetX!

LI LO

PutX!

DataX?

WBAck?

I M

M II

M

(b) IO Automaton

a

b

c

d

k

(c) Credit-counter

out

0

1

2

3

4
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(d) Source

in

0

1

2

3

4

0 5 10 15 20

(e) Sink

Figure 2. ECIM Building Blocks

Figure 2 shows some of the ECIM blocks that we use.
First, we supply a router that has n inputs and m outputs.
Based on a given routing logic, incoming messages will
either be forwarded to some output, or – if they have arrived
at their destination – be sent to the local out-port. Injection
of messages can occur via the local in-port. The router
is statefull: both the queues and the arbiter who resolves
contention are part of the state.
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Secondly, an IO automaton can be used to model proto-
cols. Injection of a message (!) causes the LO·irdy to be set
to high and LO·data to be set to, e.g., a GetX. Consumption
of a message (?) is done by setting LI ·trdy high whenever
LI ·data is, e.g., a DataX.

A credit-counter can be used to limit the amount of
incoming packets “between” channels b and c. It is statefull,
since it stores some integer less than k that indicates the
number of counted messages.

Finally, sources and sinks can be used to generate traffic
patterns. The next section discusses their implementation.

For all these blocks, we have implemented monotonic
eval functions that determine when they consume and inject
messages. Also, for each statefull block, we implement a
tick function.

3. ECIM simulator

Assuming we have an ECIM built of efficiently ex-
ecutable blocks, a simulation algorithm is easily defined.
We have implemented the pseudo code of Algorithm 3 in
Java. The current state σ is an object with a method step.
Each block is an object that implements a tick function
that computes a next state. After each step, the clock is
incremented.

function σ.STEP
deriveWires
for all block b do

b.tick
end for
t++

end function

Figure 3. ECIM simulation

In order to simulate a communication network, how-
ever, it is additionally required that traffic patterns can be
efficiently simulated. For the case of average case latency
analysis, one might use Poisson distributions to simulate
random injections at sources and random consumptions at
sinks. This has several major drawbacks when worst-case
latency is considered. Firstly (regarding the sources) this
does not accurately reflect the burstiness present in common
traffic patterns, such as multimedia components [11]. Sec-
ondly, even with a low Poisson rate, the network might be
flooded with traffic, even though the behavior of the source
would not allow this. Thirdly (regarding the sinks) this does
not provide a lower bound to the amount of consumptions:
it theoretically allows for sinks to be dead for any period of
time, thereby producing any worst-case latency as long as
simulation is continued sufficiently long.

To this end, we use concepts of the network calculus
to provide simulations for worst-case latency analysis [5],
[6], [12]. We provide an efficient implementation to simulate
linear arrival curves. Such curves are widely used to model
traffic flows in a network and provide bursty traffic. For
the sinks, we provide an efficient implementation of linear

service curves to model the consumption behavior of sinks.
Service curves (or LR servers) model an extensive class of
network servers.

We only provide the definitions of the network calcu-
lus that are relevant to our simulator; for an introduction
and more in-depth details, see [6], [12]. Network calculus
concerns flows of traffic in the network. An input flow is
characterized by function R(t) which returns, given the
current time t, the total cumulative amount of incoming
traffic in the interval [0, t]. An output flow is characterized
by cumulative function R∗(t). We use fnc to denote the
noncumulative version of a cumulative function f , i.e.,:

f(t) =
∑

t′≤t

fnc(t
′)

3.1. Source simulation with linear arrival curves

An arrival curve can be defined by a function α that
provides an upperbound to the amount of traffic.

Definition 1. A source injects traffic adhering to arrival
curve α, if and only if, for any time slot t:

∀0 ≤ s ≤ t ·R(t)−R(s) ≤ α(t− s)

A linear arrival curve is defined by a natural number
burst b and a real number arrival rate r: α(t) = rt + b.
Here b is a measure of burstiness, i.e., the amount of traffic
that can be injected at once, and r is a maximally sustainable
injection rate.

We provide an implementation that simulates linear
arrival curves in time O(1) (see Figure 4). In this algorithm,
we use the following variables:

Rt the cumulative flow up to the current time slot
(note that we only need to store the total flow up
to the last time slot, and not per time slot).

Rtnc the non-cumulative flow in the current time slot,
i.e., the number of injections

Mt the current minimum value of α(t−s)+R(s) for
all s < t

Require: t > 0 −→Mt = min
s<t

[α(t− s) + R(s)]

1: function COMPUTEARRIVAL
2: if t == 0 then
3: Rtnc ← 0
4: else
5: choose Rtnc ≤ ⌊Mt + r⌋ −Rt
6: end if
7: Rt += Rtnc
8: Mt← t == 0 ? b : min(Mt + r, b + Rt)
9: t++

10: return Rtnc
11: end function
Ensure: Mt = min

s<t
[α(t− s) + R(s)]

Figure 4. Simulation for linear arrival curves
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After each call of function computeArrival, variable Rtnc
provides the number of packets that can be injected by
the source in the current time slot. At Line 5, this value
is computed by randomly choosing a value bounded by
the current minimum value of α(t − s) + R(s), plus the
rate, minus the current cumulative flow. Line 7 then updates
variable Rt, so that it contains the current cumulative flow.
Line 8 recomputes variable Mt, to preserve the invariant that
variable Mt stores the minimum value of α(t− s) + R(s)
for all s < t when t is incremented at Line 9.

We prove correctness of this algorithm, by showing that
Definition 1 holds invariably.

Theorem 1. Let R(0) = 0 and let R(t + 1) be the value
of variable Rt after the tth call of function computeArrival.
At any time slot t, we have:

∀0 ≤ t′ ≤ t ·R(t)−R(t′) ≤ α(t− t′)

The proof is omitted, but an Isabelle formalization can
be found online.

3.2. Sink simulation with linear service curves

Service curves model a server that provides a minimal
amount of service. When incoming traffic arrives at a sink,
the service curve may model a delay before packets are
consumed, but eventually the sink will provide a service with
some rate (as long as there is sufficient incoming traffic). A
linear service curve β is defined by a natural number delay
d and a real number service rate r:

β(t) =
0 t ≤ d
r(t− d) t > d

The definition of a service curve is based on the notion of
min-plus convolution.

Definition 2. Let f and g be two weakly increasing func-
tions. The min-plus convolution of f and g, notation f ⊗ g,
is defined as:

(f ⊗ g)(t) = inf
0≤s≤t

[f(s) + g(t− s)]

Definition 3. A sink consumes traffic adhering to service
curve β for the cumulative input flow R, if and only if, for
any t:

R∗(t) ≥ (R⊗ β)(t)

Our algorithm is based on Propositions 1.3.1 and 1.3.2
from [6]. We here provide a corollary of these propositions:

Lemma 1. Assume β is convex. There exists a weakly
increasing function τ :: N 7→ N such that for any time
slot t:

R∗(t) ≥ R(τ(t)) + β(t− τ(t))

It is crucial that function τ is weakly increasing, and we
leverage that fact to compute a lower bound for the service
for the current time slot in amortized time O(1).

Remark. For some service curves, the value of τ is com-
putable: for a constant rate server without delay, and for
strict service curves (modelling work-conserving sinks), the
value of τ is the beginning of the last busy period. For linear
service curves with delay that does not hold; the value of τ
is unknown [6]. In the proof of Theorem 2 we will prove
that in each time slot, only under a certain condition is it
necessary to search for a new value for τ , and that the size
of the range in which we have to search is constant.

In the algorithm, we use the following variables:

τ the current value such that τ < t and R(τ) +
β(t− 1− τ) is minimal

Rshifted a linked list storing values of function R, in
such a way that R(t) = Rshifted(t − τ). The
last value in this list always stores the total cu-
mulative input flow R(t), the first value stores
R(τ). Lemma 1 shows that we can forget any
value prior to τ .

Rt∗ the cumulative output flow up to the current
time slot, i.e., the total number of consump-
tions

Rt∗nc the non-cumulative output flow, i.e., the num-
ber of consumptions in the current time slot

Function computeService takes as input the current non-
cumulative amount of incoming traffic in the current time
slot t. It first stores that value in list Rshifted , by adding a
new value to the end of that list (Lines 2 to 6). Then, we
determine the value of the min-plus convolution by finding
a value τ ′ for which R(τ ′)+β(t−τ ′) is minimal. Currently,
variable τ stores the value for which R(τ) + β(t − 1 − τ)
is minimal. Only if t − τ > d (Line 8) it is necessary to
search for a new value for τ ′. The search can be limited to
a certain range (Lines 9 to 13). Otherwise, τ ′ remains the
same as τ , since R(τ) + β(t− τ) remains minimal.

If a new value for τ is found, we pop the elements in list
Rshifted until we have reached that value (Lines 15 to 18).
Line 19 then computes the minimum amount of service
that is to be provided in the current time slot. The ac-
tual service is then some random value greater than that
amount, but bounded by the amount of incoming traffic
(Lines 20 and 21). Finally, the current cumulative amount
of outgoing traffic (i.e., the total cumulative amount of
consumptions) is updated, and the clock is increased.

We prove correctness of this algorithm, by showing that
Definition 3 holds invariably.

Theorem 2. Let R∗
nc(0) = 0 and let R∗

nc(t+1) be the value
of variable Rt∗nc after the tth call of function computeSer-
vice. At any time slot t, we have:

R(t) ≥ R∗(t) ≥ (R⊗ β)(t)

Proof: We first prove that for any n, the postcondi-
tion holds after the nth call of the algorithm:

R(τ) + β(t− 1− τ) = min
s<t

[R(s) + β(t− 1− s)]
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Require: R(τ)+β(t−1− τ) = min
s<t

[R(s)+β(t−1−s)]

1: function COMPUTESERVICE(int Rtnc)
2: if t == 0 then
3: Rshifted .add(Rtnc)
4: else
5: Rshifted .add(Rtnc + Rshifted .last())
6: end if
7: τ ′ ← τ
8: if t− τ > d then
9: for s ← t− d to t do

10: if f(s) ≤ f(τ ′) then
11: τ ′ ← s
12: end if
13: end for
14: end if
15: while τ ̸= τ ′ do
16: Rshifted .removeF irst()
17: τ++
18: end while
19: min ← max(0, f(τ)−Rt∗)
20: max ← Rshifted .last()−Rt∗

21: choose Rt∗nc st.: min ≤ Rt∗nc ≤ max
22: Rt∗ += Rt∗nc
23: t++
24: return Rt∗nc
25: where
26: f(x) = Rshifted [x− τ ] + β(t− x)
27: end function
Ensure: R(τ)+ β(t− 1− τ) = min

s<t
[R(s)+ β(t− 1− s)]

Figure 5. Simulation for linear service curves

The proof is by induction over n. For the base case, after
the 0th call of the algorithm, we have τ = 0 and t = 1 and
the property holds trivially.

For the inductive case, the induction hypothesis is the
precondition. We show that at Line 18, the algorithm has
found a value for τ such that:

R(τ) + β(t− τ) = min
s≤t

[R(s) + β(t− s)]

This implies that after incrementing time t (Line 23), the
postcondition holds.

Assume there exists some τ ′ ≤ t, such that (A):

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ)

We first assume the case where (B): t − τ > d (Line 8).
Assume (C): t− τ ′ > d. Then:

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ) (A)
R(τ ′) + β(t− τ ′ − 1) + r < R(τ) + β(t− τ) (C)
R(τ ′) + β(t− τ ′ − 1) + r < R(τ) + β(t− τ − 1) + r (B)
R(τ ′) + β(t− τ ′ − 1) < R(τ) + β(t− τ − 1)

The induction hypothesis then implies that τ ′ = t. This
implies that d < 0, and thus assumption (C) is false. This
implies that t − τ ′ ≤ d. Hence: t − d ≤ τ ′ ≤ t. Thus, in

Case Latency Time (µs) #cycles #packets
A 14 1.5 109 3.0 · 108

B 23 23 109 1.8 · 108

C ∞ 110 < 103 N/A
D ∞ 200 < 104 N/A
E 91 187 107 1.5 · 106

TABLE 1. SIMULATION RESULTS.

case (B), only this range of values has to be searched for
candidates for a new value of τ (if any).

Now we consider the case where (B) is false. By
Lemma 1, we have (D): τ ′ ≥ τ . Then:

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ) (A)
R(τ ′) < R(τ) ¬(B) ∧ (D)

However, since R is weakly increasing, this is a contradic-
tion. Hence, if (B) is false, then (A) is false, meaning that
there exists no τ ′ such that R(τ ′) + β(t − τ ′) < R(τ) +
β(t− τ). Hence R(τ)+β(t− τ) = min

s≤t
[R(s)+β(t− s)].

From this inductive proof, the theorem follows. It has
been proven that at Line 18, the algorithm has found a value
for τ such that R(τ) + β(t − τ) is minimal ∀τ ≤ t. Thus,
the number of consumptions in the current time slot Rt∗nc is
minimally that value minus the current cumulative incoming
traffic, and maximally the current backlog.

4. Experimental results

We present 5 case studies. All results (see Table 1) have
been obtained on a 1,6 GHz Intel Core i5 (4 cores). For
each case study we have twice run 4 simulations in parallel.
Column “Latency” shows the measured maximum latency.
Column “Time” shows the average time of simulating 4
clock cycles on 4 cores in microseconds. The last two
columns show the number of clock cycles and the number
of packets per simulation.

A) Source, queue, queue, sink. Figure 6 shows the first
80 clock cycles of in- and output flows for a simple example
with one source, two consecutive queues q0 and q1 (resp.
sizes 5 and 10) and a sink. In this example, the sink has a
delay of 4 but is eventually sufficiently fast to consume the
injected input flow (i.e., the service curve “overtakes” the
arrival curve). We have modelled a sink that can consume
from q1 more than one packet per clock tick, so that there
is no gap between the intended output flow and the actual
output flow. The source injects at most 1 packet per clock
tick and can thus lag behind the intended arrival flow. The
maximum measured latency in the first 80 clock ticks is 9,
measured between clock ticks 9 to 18.

We have run eight simulations of 109 clock ticks (tak-
ing about 25 minutes per four) and measured a maximum
latency of 14 (see Table 1).

B) Two agents. Section 1 presents the “two agents” ex-
ample of Intel. We have modelled the xMAS example using
more abstract ECIM blocks such as counters and delays. We
enabled the following heuristic: let the sources and sinks
remain irregular but maximize the nondeterministic delay.
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Figure 6. Source with α(5, 0.3), two queues, and a sink with β(4, 0.4)

All 8 simulations found a worst-case scenario that causes
the 23 latency. On average, the worst-case scenario is found
after about 300 million clock cycles. If the nondeterministic
delay is increased to 10, simulation quickly finds a deadlock.

Spidergon case study. Figure 7 presents a Spidergon archi-
tecture with 8 nodes [13]. Packets consist of 2 bits that store
a message type (GetX, DataX, PutX, or WBAck) and 3 bits
that store the address of a node. The routing logic is across
first meaning that if the shortest route to a packet requires
an across channel, that channel is taken first. At each router,
whenever two packets compete for the same output, a FIFO
arbiter decides which packet can proceed and which not.

The protocol is a simple directory-based MI cache proto-
col. Caches 0 to 6 inject GetX messages to request exclusive
access to a cache block. A GetX packet is accompanied
by the address of the node that injects it. Its destination is
always 7 and thus need not be stored in the packet. After
injection of a GetX, a cache waits for data in state I M .
When a DataX is received, the cache moves to the M state
where is has exclusive access to that block. To write back
data, a PutX is injected, again accompanied with the address
of the injecting node, and the cache moves to state M I .
Once a WBAck is received, the cache returns to state I .

Nodes 0 to 6 run this protocol; node 7 is a directory. It
has two states I and M . In state I , upon receiving a GetX
from node n, it injects a DataX with as destination n and
moves to state M . In state M , upon receiving a PutX from
node n, it injects a WBAck with destination n and returns
to state I .

Finally, as shown in Figure 7, the cache protocol is con-
nected to a source and a sink. Injection of GetX and PutX
is done only when the source has a high irdy signal. We
set the injection rate of the source to a Poisson distribution
with λ = 0.25. This models that on average it takes 4 clock
ticks for a cache to inject a packet. Dually, consumption of
a packet is done only when the sink has a high trdy signal.
We have set the sink to a linear service curve with d = 4
and r = 0.5, modelling that consumption of a packet can
maximally be delayed 5 clock ticks, but after 6 clock ticks
minimally one packet is consumed.

Note that this routing logic for the Spidergon architec-
ture suffers from a routing deadlock. If simultaneously each
node n injects packets destined for n + 2 mod 8, then the
clockwise circle becomes full and a circular wait occurs. The
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protocol prohibits that injection pattern and therefore – in
this setup – no routing deadlock can occur. Moreover, there
is no protocol deadlock. However, cross-layer deadlocks
may occur.

We measure the latency for a round trip of a GetX to
return back to its source as a DataX. Note that this means
that the measured latency includes cases where the GetX
has to wait since another cache is currently owner. We
modelled three cases C, D, and E described below. For the
first two cases, runs are found in which the latency grows
– seemingly – to infinity, i.e., for a long period of time
the latency grows linearly with time. For the third case, the
maximum measured latency is 91.

C) With deadlock. Consider the case where (at least)
two caches inject a GetX, say caches n and m. The directory
receives 7 packets and is only able to accept the first one,
say from node n. It injects a DataX and moves to state
M . The cache receives the data, and moves to state M as
well. The only way progression is possible, is when cache
n moves to state M I by injecting PutX. However, the
local queue from router 7 to the directory currently stores
a GetX packet from cache m. Since queues are FIFO, the
PutX cannot overtake the GetX and a cross-layer deadlock
occurs.

D) Recycling packets: no deadlock, but starvation.
The deadlock can be prevented by recycling packets: when-
ever a protocol cannot consume a packet it will be recycled
to the end of the queue. This allows packets that can
be consumed to overtake others. Indeed, this prevents the
deadlock, if the size of the local queue from the router to the
node is large enough. Worst case, that queue contains a PutX
from the current sharer and 6 other GetX packets. Therefore
the size of the queue has to be 8 to prevent the deadlock.
Recycling, however, does introduce a starvation scenario.
Since the packets in the local queue are no longer handled in
FIFO order, it might be the case that a GetX is continuously
overtaken by other GetX packets. This starvation scenario
occured on average within 10.000 clock cycles.

E) Adding a VC: no deadlock or starvation. The
starvation can be resolved by splitting the local queue of the
directory into two virtual channels: one for GetX packets
and one for the others. Moreover, GetX packets are not
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recycled, and thus handled in FIFO order. This resolves both
the deadlock and the starvation. Note that to prevent both
the deadlock and the starvation, only one virtual channel
is required: the remainder of the network needs none. The
size of the virtual channel should be sufficient to store six
packets.

5. Related work

Simulation of NoCs is an extensive research area: vari-
ous cycle-accurate tools exist that target heterogeneous and
generic NoC architectures. BookSim [2] is a detailed, router-
based simulator for NoCs, whose underlying network model
has been validated to RTL implementations. OMNeT++ [1]
is a framework where generic and high-level blocks can be
simulated. It has been used to simulate among others the
Spidergon architecture [14]. Generally, these tools generate
synthetic traffic patterns. In contrast, our approach allows
modelling of the cache coherence protocol deployed by the
nodes, to more accurately model realistic traffic patterns.
Also, we simulate a formal model, which has been defined
in such a way that blocks can be derived from Verilog, or
each block can be used to generate Verilog [4].

Zhao and Lu use network calculus to analyse xMAS
models and use RTL simulation to verify tightness of their
bounds [15]. In [12], Zhao uses the tool Simulink of Math-
Works to simulate xMAS. Zhao derives Verilog from xMAS
and uses that to find a worst-case latency bound for the two
agents example. The presented results show simulation of
about 10.000 packets. Since we simulate a high-level model
instead of Verilog, we are able to simulate significantly more
packets.

Salamat et al. use Noxim [3] to analyse both latency- and
fault-tolerance of a 3D chip architecture [16]. Noxim takes
more properties into account such as a power and thermal
model. In contrast, our approach solely focusses on worst-
case latency, which allows for more efficient execution.

6. Conclusion

This paper presents an approach for finding worst-case
latency estimates based on simulation of formal models.
The models – whose semantics have been formalized in
Isabelle/HOL – consist of generic building blocks. Each
block is high-level and therefore efficiently executable. The
formal semantics ensure that the blocks can be implemented
in Verilog, or that they can be extracted from Verilog.

We use novel implementations of simulating latency-rate
servers to generate bursty traffic patterns. We implement
some simple heuristics aimed at finding the worst case, such
as maximizing delays whenever possible. We did, however,
find that for some examples irregular traffic was necessary to
get to the worst-case scenario, and that only after simulation
of millions of packets the worst case was found.

In the near future, we aim to address the gap between the
Isabelle model and the implementation, by using Isabelle’s
code generation to generate an implementation from the

model. We expect this will impact performance, but it will
enable a formally verified simulator for NoCs, where the
model that is simulated can be used for theorem proving or
model-based testing.
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Abstract—We study verification problems for autonomous
swarms of mobile robots that self-organize and cooperate to solve
global objectives. In particular, we focus in this paper on the
model proposed by Suzuki and Yamashita of anonymous robots
evolving in a discrete space with a finite number of locations
(here, a ring). A large number of algorithms have been proposed
working for rings whose size is not a priori fixed and can be
hence considered as a parameter. Handmade correctness proofs
of these algorithms have been shown to be error-prone, and recent
attention had been given to the application of formal methods
to automatically prove those. Our work is the first to study the
verification problem of such algorithms in the parameterized case.
We show that safety and reachability problems are undecidable
for robots evolving asynchronously. On the positive side, we show
that safety properties are decidable in the synchronous case,
as well as in the asynchronous case for a particular class of
algorithms. Several properties on the protocol can be decided
as well. Decision procedures rely on an encoding in Presburger
arithmetics formulae that can be verified by an SMT-solver.
Feasibility of our approach is demonstrated by the encoding of
several case studies.

I. INTRODUCTION

We consider sets of mobile oblivious robots evolving in a
discrete space (modeled as a ring shaped graph). For our
purpose, rings are seen as discrete graphs whose vertices
represent the different positions available to host a robot, and
edges model the possibility for a robot to move from one
position to another. Robots follow the seminal model by Suzuki
and Yamashita [23]: they do not remember their past actions,
they cannot communicate explicitly, and are disoriented.

However, they can sense their environment and detect the
positions of the other robots on the ring. If several robots share
the same position on the ring (forming a tower, or multiplicity
point), other robots may or may not detect the tower. If robots
have strong multiplicity detection, as assumed in this paper,
they are able to count the exact number of robots on a given
position.

Robots are anonymous and execute the same deterministic
algorithm to achieve together a given objective. Different
objectives for ring shaped discrete spaces have been studied
in the literature [17]: gathering – starting from any initial
configuration, all the robots must gather on the same node,
not known beforehand, and then stop [18], exploration with
stop – starting from any initial configuration, the robots reach

This work has been partly supported by the ANR research program PACS
(ANR-14-CE28-0002)
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Fig. 1

a configuration where they all are idle and, in the meanwhile,
all the positions of the ring have been visited by a robot [16],
exclusive perpetual exploration – starting from any tower-free
configuration, each position of the ring is visited infinitely
often and no multiplicity point ever appears [6], [11].

Each robot behaves according to the following cycle: it takes
a snapshot of its environment, then it computes its next move
(either stay idle or move to an adjacent node in the ring), and
at the end of the cycle, it moves according to its computation.
Such a cycle is called a look-compute-move cycle.

Since robots cannot rely on a common sense of direction,
directions that are computed in the compute phase are only
relative to the robot. To tell apart its two sides, a robot
relies on a description of the ring in both clockwise and
counter-clockwise direction, which gives it two views of the
configuration. There are two consequences to this fact. First,
if its two views are identical, meaning that the robot is on an
axis of symmetry, it cannot distinguish the two directions and
thus either decides to stay idle, or to move. In the latter case,
the robot moves becomes a non-deterministic choice between
the two available directions. Second, when two robots have
the same two views of the ring, the protocol commands them
to move in the same relative direction, but this might result in
moves in actual opposite directions for the two robots. Such a
symmetrical situation is pictured in Figure 1.
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Existing execution models consider different types of syn-
chronization for the robots: in the fully synchronous model
(FSYNC), all robots evolve simultaneously and complete a
full look-compute-move cycle. The semi-synchronous model
(SSYNC) consider runs that evolve in phases: at each phase,
an arbitrary subset of the robots is scheduled for a full look-
compute-move cycle, which is executed simultaneously by
all robots of the subset. Finally, in the asynchronous model
(ASYNC), robots evolve freely at their own pace: in particular,
a robot can move according to a computation based on an
obsolete observation of its environment, as others robots
may have moved in between. Algorithms in the literature
are typically parameterized by the number of robots and/or
number of positions in the ring. In this work we focus on
formally verifying algorithms parameterized by the number of
ring positions only, assuming a a fixed number of robots.

A. Related work

Designing and proving mobile robot protocols is notoriously
difficult. Formal methods encompass a long-lasting path of
research that is meant to overcome errors of human origin. Un-
surprisingly, this mechanized approach to protocol correctness
was successively used in the context of mobile robots [7], [13],
[5], [2], [20], [9], [4], [22], [3].

When robots are not constrained to evolve on a
particular topology (but instead are allowed to move
freely in a bidimensional Euclidian space), the Pactole
(http://pactole.lri.fr) framework has been proven useful.
Developed for the Coq proof assistant, Pactole enabled the
use of high-order logic to certify impossibility results [2] for
the problem of convergence: for any positive ε, robots are
required to reach locations that are at most ε apart. Another
classical impossibility result that was certified with Pactole
is the impossibility of gathering starting from a bivalent
configuration [9]. Recently, positive certified results for SSYNC
gathering with multiplicity detection [10], and for FSYNC
gathering without multiplicity detection [3] were provided.
However, as of now, no Pactole library is dedicated to robots
that evolve on discrete spaces.

In the discrete setting that we consider in this paper, model-
checking proved useful to find bugs in existing literature [5],
[14] and assess formally published algorithms [13], [5], [22].
Automatic program synthesis (for the problem of perpetual
exclusive exploration in a ring-shaped discrete space) is due
to Bonnet et al. [7], and can be used to obtain automatically
algorithms that are “correct-by-design”. The approach was
refined by Millet et al. [20] for the problem of gathering in
a discrete ring network. As all aforementioned approaches
are designed for a bounded setting where both the number of
locations and the number of robots are known, they cannot
permit to establish results that are valid for any number of
locations.

Recently, Aminof et al. [22] presented a general framework
for verifying properties about mobile robots evolving on graphs,
where the graphs are a parameter of the problem. While our
model could be encoded in their framework, their undecidability

proof relies on persistent memory used by the robots, hence is
not applicable to the case of oblivious robots we consider here.
Also, they obtain decidability in a subcase that is not relevant
for robot protocols like those we consider. Moreover, their
decision procedure relies on MSO satisfiability, which does not
enjoy good complexity properties and cannot be implemented
efficiently for the time being.

B. Contributions

In this work, we tackle the more general problem of verifying
protocols for swarms of robots for any number of locations.

We provide a formal definition of the problem, where the
protocol can be described as a quantifier free Presburger
formula. This logic, weak enough to be decidable, is however
powerful enough to express existing algorithms in the literature.
Objectives of the robots are also described by Presburger
formulae and we consider two problems: when the objective
of the robots is a safety objective – robots have to avoid the
configurations described by the formula (SAFE), and when it
is a reachability objective (REACH). We show that if REACH
is undecidable in any semantics, SAFE is decidable in FSYNC
and SSYNC. We also show that when the protocol is uniquely-
sequentializable, safety properties become decidable even in
the asynchronous case.

Finally, we show practical applicability of this approach
by using an SMT-solver to verify safety properties for some
algorithms from the literature.

Hence, we advocate that our formalism should be used when
establishing such protocols, as a formal and non-ambiguous
description, instead of the very informal and sometimes
unclear definitions found in the literature. Moreover, if totally
automated verification in the parameterized setting seems
unfeasible, our method could be used as a “sanity check” of
the protocol, and to automatically prove intermediate lemmas,
that can then be used as formally proved building blocks of a
handmade correction proof.

II. MODEL OF ROBOTS EVOLVING ON A RING

A. Formal model

In this section we present the formal language to describe
mobile robots protocols as well as the way it is interpreted.

1) Preliminaries: For a,b ∈ Z such that a≤ b, we denote
by [a,b] the set {c ∈ Z | a≤ c≤ b}. For a ∈ Z and b ∈ N, we
write a� b the natural d ∈ [0,(b− 1)] such that there exists
j ∈ Z and a = b. j+d (for instance −1�3 = 2). Note that �
corresponds to the modulo operator, but for sake of clarity we
recall its definition when a is negative.

We recall the definition of Existential Presburger (EP)
formulae. Let Y be a countable set of variables. First we
define the grammar for terms t ::= x | t+ t | a · t | t

mod a, where a ∈ N and x ∈ Y and then the grammar for
formulae is given by φ ::= t ./ b | φ∧φ | φ∨φ | ∃x.φ where
./ ∈ {=,≤,≥,<,>}, x ∈ Y and b ∈ N. We sometimes write
a formula φ as φ(x1, . . . ,xk) to underline that x1, . . . ,xk are
the free variables of φ. The set of Quantifier Free Presburger
(QFP) formulae is obtained by the same grammar deleting the
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elements ∃x.φ. Note that when dealing with QFP formulae, we
allow as well negations of formulae.

We say that a vector V = 〈d1, . . . ,dk〉 satisfies an EP formula
φ(x1, . . . ,xk), denoted by V |= φ, if the formula obtained
by replacing each xi by di holds. Given a formula φ with
free variables x1, . . . ,xk, we write φ(d1, . . . ,dk) the formula
where each xi is replaced by di. We let [[φ(x1, . . . ,xk)]] =
{〈d1, . . . ,dk〉 ∈ Nk | φ(d1, . . . ,dk) |= φ} be the set of models
of the formula. In the sequel, we use Presburger formulae to
describe configurations of the robots, as well as protocols.

2) Configurations and robot views: In this paper, we
consider a fixed number k > 0 of robots and, except when
stated otherwise, we assume the identities of the robots are
R = {R1, . . . ,Rk}. We may sometimes identify R with the
set of indices {1, . . . ,k}. On a ring of size n ≥ k, a (k,n)-
configuration of the robots (or simply a configuration if n and
k are clear from the context) is given by a vector p∈ [0,n−1]k

associating to each robot Ri its position p(i) on the ring. We
assume w.l.o.g. that positions are numbered in the clockwise
direction.

A view of a robot on this configuration gives the distances
between the robots, starting from its neighbor, i.e. the robot
positioned on the next occupied node (a distance equals to
0 meaning that two robots are on the same node). A view
V = 〈d1, . . . ,dk〉 ∈ [0,n]k is a k-tuple such that ∑k

i=1 di = n and
d1 6= 0. We let Vn,k be the set of possible views for k robots
on a ring of size n. Notice that all the robots sharing the same
position should have the same view. For instance, suppose that,
on a ring of size 10, 2 robots R1, and R2 are on the same
position of the ring (say position 1), R3 is at position 4, R4 is
at position 8, and R5 is at position 9 (see Figure 1b). Then, the
view of R1 and R2 is 〈3,4,1,2,0〉. It is interpreted by the fact
that there is a robot at a distance 3 (it is R3), a robot a at distance
3+4 (it is R4) and so on. We point out that all the robots at the
same position share the same view. We as well suppose that in
a view, the first distance is not 0 (this is possible by putting 0 at
the ‘end’ of the view instead). As a matter of fact in the example
of Figure 1b, there is a robot at distance 3+ 4+ 1+ 2 = 10
from R1 (resp. R2), which is R2 (resp. R1). The sum of the di
corresponds always to the size of the ring and here the fact
that in the view of R1 we have as last element 0 signifies that
there is a distance 0 between the last robot (here R2) and R1.
When looking in the opposite direction, their view becomes:
〈2,1,4,3,0〉. Formally, for a view V = 〈d1, . . . ,dk〉 ∈ [0,n]k,
we note

←−
V = 〈d j, . . . ,d1,dk, . . . ,d j+1〉 the corresponding view

when looking at the ring in the opposite direction, where j is
the greatest index such that d j 6= 0.

Given a configuration p ∈ [0,n− 1]k and a robot Ri ∈ R ,
the view of robot Ri when looking in the clockwise direction,
is given by Vp[i→] = 〈di(i1),di(i2)−di(i1), . . . ,n−di(ik−1)〉,
where, for all j 6= i, di( j)∈ [1,n] is such that (p(i)+di( j))�n=
p( j) and i1, . . . , ik are indexes pairwise different such that
0< di(i1)≤ di(i2)≤ ·· · ≤ di(ik−1). When robot Ri looks in the
opposite direction, its view according to the configuration p is
Vp[← i] =

←−−−−−
Vp[i→].

3) Protocols: In our context, a protocol for networks of k
robots is given by a QFP formula respecting some specific
constraints.

Definition 1 (Protocol): A protocol is a QFP formula
φ(x1, . . . ,xk) such that for all views V the following holds:
if V |= φ and V 6=←−V then

←−
V 6|= φ

A robot uses the protocol to know in which direction it
should move according to the following rules. As we have
already stressed, all the robots that share the same position
have the same view of the ring. Given a configuration p and
a robot Ri ∈ R , if Vp[i→] |= φ, then the robot Ri moves in
the clockwise direction, if Vp[← i] |= φ then it moves in the
opposite direction, if none of Vp[i→] and Vp[← i] satisfies φ
then the robot should not move. The conditions expressed in
Definition 1 imposes hence a direction when Vp[i→] 6=Vp[← i].
In case Vp[i→] = Vp[← i], the robot is disoriented and it can
hence move in one direction or the other. For instance, consider
the configuration p pictured on Figure 1a. Here, Vp[1→] =
〈3,1,3〉= Vp[← 1]. Note that such a semantics enforces that
the behavior of a robot is not influenced by its direction. In fact
consider two symmetrical configurations p and p′ such that
Vp[i→] =

←−−−−−
Vp′ [i→] for each robot Ri. If Vp[i→] |= φ (resp.

Vp[← i] |= φ), then necessarily Vp′ [← i] |= φ (resp. Vp′ [i→] |=
φ), and the robot in p′ moves in the opposite direction than in
p (and the symmetry of the two configurations is maintained).

We now formalize the way movement is decided. Given
a protocol φ and a view V, the moves of any robot whose
clockwise direction view is V are given by:

move(φ,V ) =





{+1} if V |= φ and V 6=←−V
{−1} if

←−
V |= φ and V 6=←−V

{−1,+1} if V |= φ and V =
←−
V

{0} otherwise

Here +1 (resp. −1) stands for a movement of the robot in
the clockwise (resp. anticlockwise) direction.

B. Different possible semantics

We now describe different transition relations between
configurations. Robots have a two-phase behavior : (1) look at
the ring and (2) according to their view, compute and perform
a movement. In this context, we consider three different modes.
In the semi-synchronous mode, in one step, some of the robots
look at the ring and move. In the synchronous mode, in one step,
all the robots look at the ring and move. In the asynchronous
mode, in one step a single robot can either choose to look at
the ring, if the last thing it did was a movement, or to move, if
the last thing it did was to look at the ring. As a consequence,
its movement decision is a consequence of the view of the
ring it has in its memory. In the remainder of the paper, we
fix a protocol φ and we consider a set R of k robots.

1) Semi-synchronous mode: We begin by providing the
semantics in the semi-synchronous case. For this matter we
define the transition relation ↪→φ⊆ [0,n− 1]k × [0,n− 1]k

(simply noted ↪→ when φ is clear from the context) between
configurations. We have p ↪→ p′ if there exists a subset I ⊆ R
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of robots such that, for all i ∈ I, p′(i) = (p(i)+m)�n, where
m ∈ move(φ,Vp[i→]), and for all i ∈ R \ I, p′(i) = p(i).

2) Synchronous mode: The transition relation ⇒φ⊆ [0,n−
1]k × [0,n− 1]k (simply noted ⇒ when φ is clear from the
context) describing synchronous movements is very similar
to the semi-synchronous case, except that all the robots
have to move. Then p⇒ p′ if p′(i) = (p(i) + m)� n with
m ∈ move(φ,Vp[i→]) for all i ∈ R .

3) Asynchronous mode: The definition of transition relation
for the asynchronous mode is a bit more involved, for two
reasons: first, the move of each robot does not depend on the
current configuration, but on the last view of the robot. Second,
in one step a robot either look or move. As a consequence,
an asynchronous configuration is a tuple (p,s,V) where p ∈
[0,n−1]k gives the current configuration, s ∈ {L,M}k gives,
for each robot, its internal state (L stands for ready to look
and and M stands for compute and move) and V ∈V k

n,k stores,
for each robot, the view (in the clockwise direction) it had the
last time it looked at the ring.

The transition relation for asynchronous mode is hence
defined by a binary relation  φ (or simply  ) working on
[0,n−1]k×{L,M}k×V k

n,k and defined as follows: 〈p,s,V〉 
〈p′,s′,V′〉 iff there exist Ri ∈ R such that the following
conditions are satisfied:

• for all R j ∈ R such that j 6= i, p′( j) = p( j), s′( j) = s( j)
and V′( j) = V( j),

• if s(i) = L then s′(i) = M, V′(i) = Vp[i→] and p′(i) =
p(i), i.e. if the robot that has been scheduled was about
to look, then the configuration of the robots won’t change,
and this robot updates its view of the ring according to
the current configuration and change its internal state,

• if s(i) =M then s′(i) =L, V′(i) =V(i) and p′(i) = (p(i)+
m)�n, with m∈move(φ,V(i)), i.e. if the robot was about
to move, then it changes its internal state and moves
according to the protocol, and its last view of the ring.

4) Runs: A semi-synchronous (resp. synchronous) φ-run
(or a run according to a protocol φ) is a (finite or infinite)
sequence of configurations ρ = p0p1 . . . where, for all 0≤ i<
|ρ|, pi ↪→φ pi+1 (resp. pi⇒φ pi+1). Moreover, if ρ = p0 · · ·pn is
finite, then there is no p such that pn ↪→φ p (respectively pn⇒φ
p). An asynchronous φ-run is a (finite or infinite) sequence
of asynchronous configurations ρ = 〈p0,s0,V0〉〈p1,s1,V1〉 · · ·
where, for all 0≤ i< |ρ|, 〈pi,si,Vi〉 φ 〈pi+1,si+1,Vi+1〉 and
such that s0(i) = L for all i ∈ [1,k]. Observe that the value
of V0 has no influence on the actual asynchronous run, since
any robot starts its computation by a look, hence changing the
value of V0.

We let Postss(φ,p) = {p′ | p ↪→φ p′},
Posts(φ,p) = {p′ | p ⇒φ p′} and Postas(φ,p) = {p′ |
there exist V,s′,V′ s.t. 〈p,s0,V〉  φ 〈p′,s′,V′〉}, with

s0(i) = L for all i ∈ [1,k]. Note that in the asynchronous case
we impose all the robots to be ready to look. We respectively
write ↪→∗φ, ⇒∗φ and  ∗φ for the reflexive and transitive closure
of the relations ↪→φ, ⇒φ and  φ and we define Post∗ss(φ,p),
Post∗s (φ,p) and Post∗as(φ,p) by replacing in the definition

Postss(φ,p),Posts(φ,p) and Postas(φ,p) the relations ↪→φ, ⇒φ
and  φ by their reflexive and transitive closure accordingly.

We now come to our first result that shows that when the
protocols have a special shape, the three semantics are identical.

Definition 2: A protocol φ is said to be uniquely-
sequentializable if, for all configuration p, there is at most one
robot Ri ∈ R such that move(φ,Vp[i→]) 6= {0}.

When φ is uniquely-sequentializable at any moment at most
one robot moves. Consequently, in that specific case, the three
semantics are equivalent as stated by the following theorem.

Theorem 1: If a protocol φ is uniquely-sequentializable,
then for all configuration p, Post∗s (φ,p) = Post∗ss(φ,p) =
Post∗as(φ,p).

C. Problems under study

In this work, we aim at verifying properties on protocols
where we assume that the number of robots is fixed (equals to
k > 0) but the size of the rings is parameterized and satisfies a
given property. Note that when executing a protocol the size
of the ring never changes. For our problems, we consider a
ring property that is given by a QFP formula Ring(y), a set
of bad configurations given by a QFP formula Bad(x1, . . . ,xk)
and a set of good configurations given by a QFP formula
Goal(x1, . . . ,xk). We then define two general problems to
address the verification of such algorithms: the SAFEm problem,
and the REACHm problem, with m ∈ {ss,s,as}.

The SAFEm problem is to decide, given a protocol φ and
two formulae Ring and Bad whether there exists a size n ∈ N
with n ∈ [[Ring]], and a (k,n)-configuration p with p /∈ [[Bad]],
such that Post∗m(φ,p)∩ [[Bad]] 6= /0.

The REACHm problem is to decide given a protocol φ and
two formulae Ring and Goal whether there exists a size n ∈
N with n ∈ [[Ring]] and a (k,n)-configuration p, such that
Post∗m(φ,p)∩ [[Goal]] = /0. Note that the two problems are not
dual due to the quantifiers.

As an example, we can state in our context the SAFEm
problem that consists in checking that a protocol φ working
with three robots never leads to collision (i.e. to a configuration
where two robots are on the same position on the ring) for rings
of size strictly bigger than 6. In that case we have Ring := y> 6
and Bad := x1 = x2 ∨ x2 = x3 ∨ x1 = x3.

III. UNDECIDABILITY RESULTS

In this section, we present undecidability results for the two
aforementioned problems. The proofs rely on the encoding of a
deterministic k-counter machine run. A deterministic k-counter
machine consists of k integer-valued registers (or counters)
called c1, . . . , ck, and a finite list of labelled instructions L.
Each instruction is either of the form ` : ci = ci+1;goto `′, or
` : if ci > 0 then ci = ci−1;goto `′;else goto `′′, where
i ∈ [1,k]. We also assume the existence of a special instruction
`h : halt. Configurations of a k-counter machine are elements
of L× Nk, giving the current instruction and the current
values of the registers. The initial configuration is (`0,0, . . . ,0),
and the set of halting configurations is HALT = {`h}×Nk.
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Given a configuration (`,n1, . . . ,nk), the successor configu-
ration (`′,n′1, . . . ,n

′
k) is defined in the usual way and we

note (`,n1, . . . ,nk) ` (`′,n′1, . . . ,n
′
k). A run of a k-counter

machine is a (finite or infinite) sequence of configurations
(`0,n0

1, . . . ,n
0
k),(`1,n1

1, . . . ,n
1
k) · · · , where (`0,n0

1, . . . ,n
0
k) is the

initial configuration, and, for all i ≥ 0, (`i,ni
1, . . . ,n

i
k) `

(`i+1,ni+1
1 , . . . ,ni+1

k ). The run is finite if and only if it ends in
a halting configuration, i.e. in a configuration in HALT.

Theorem 2: SAFEas is undecidable.
Sketch of proof. The proof relies on a reduction from the
halting problem of a deterministic two-counter machine M
to SAFEas with k = 42 robots. It is likely that an encoding
using less robots might be used for the proof, but for the
sake of clarity, we do not seek the smallest possible amount
of robots. The halting problem is to decide whether the run
of a given deterministic two-counter machine is finite; this
problem is undecidable [21]. The idea is to simulate the run
of M in a way that ensures that a collision occurs if and
only if M halts. Positions of robots on the ring are used to
encode values of counters and the current instruction of the
machine. The k-protocol makes sure that movements of the
robots simulate correctly the run of M. Moreover, one special
robot moves only when the initial configuration is encoded,
and another only when the final configuration is encoded. The
collision is ensured in the following sequence of actions of the
robots: when the initial configuration is encoded, the first robot
computes its action but does not move immediately. When the
halting configuration is reached, the second robot computes
its action and moves, then the first robot finally completes
its move, entailing the collision. Note that if the ring is not
big enough to simulate the counter values then the halting
configuration is never reached and there is no collision.

Instead of describing configurations of the robots by
applications giving positions of the robots on the ring, we
use a sequence of letters F or R, representing respectively
a free node and a node occupied by a robot. When a letter
A ∈ {F,R} is repeated i times, we use the notation Ai, when
it is repeated an arbitrary number or times (including 0), we
use A∗. To distinguish between the two representations of the
configurations, we use respectively the terms configurations
or word-configurations. The correspondence between a
configuration and a word-configuration is obvious. A machine-
like (word-)configuration is a configuration of the form
B3F

∗RF∗B4F
∗RF∗B5F

∗RF∗B6F
∗RF∗B7F

∗RF∗B8P1P2P3P4P5
RFR, where Bi is a shorthand for FRiF, and P1P2 ∈ {RF,FR}
and exactly one Pi = R for i ∈ {3,4,5}, Pj = F for
j ∈ {3,4,5} \ {i} (see Table I for a graphic representation
of the section P1P2P3P4P5 of the ring). Observe that the
different blocks Bi yield for every robot in the ring a distinct
view, since it allows the robots to locate their position on
the ring. Hence, in the rest of the proof we abuse notations
and describe the protocol using different names for the
different robots, according to their position in the ring,
even if they are formally anonymous. We let R be the set
of robots involved. A machine-like (word-)configuration
B3F

n1Rc1F
∗B4F

n2Rc2F
∗B5F

mRcF
nB6F

iR`F
i′B7F

pR`′F
rB8

RttFRtFFRgFRd is said to be stable because of the positions
of robots Rt and Rtt (see Table I). Moreover, it encodes the
configuration (`i,n1,n2) of M (due to the relative positions of
robots Rc1 , Rc2 and R` respectively to B3, B4 and B6). We
say that a configuration p is machine-like, stable, etc. if its
corresponding word-configuration is machine-like, stable, etc.
In the following, we distinguish configurations of the 2-counter
machine, and configurations of the robots, by calling them
respectively M-configurations and φ-(word)-configurations.
For a stable and machine-like φ-configuration p, we let M(p)
be the M-configuration encoded by p. We first present the
part of the algorithm simulating the behavior of M. We call
this algorithm φ′. Since the machine is deterministic, only
one instruction is labelled by `i, known by every robot. The
simulation follows different steps, according to the positions
of the robots Rt and Rtt , as pictured in Table I.

TABLE I: Different types of configurations

stable configuration RttFRtFF

moving1 configuration FRttRtFF

moving2 configuration FRttFRtF

moving3 configuration FRttFFRt

stabilizing1 configuration RttFFFRt

stabilizing2 configuration RttFFRtF

We explain the algorithm φ′ on the configuration
(`i,n1,n2) with the transition `i : if c1 > 0 then c1 = c1−
1;goto ` j;else goto ` j′ .

• When in a stable configuration, robot Rtt first moves to
obtain a moving1 configuration.

• In a moving1 configuration, robot Rc moves until it
memorizes the current value of c1. More precisely, in
a moving1 configuration where n1 6= m, robot Rc moves :
if n1 > m, and n 6= 0, Rc moves towards B6, if n1 < m, it
moves towards B5, if n1 >m and n = 0, it does not move.

• In a moving1 configuration where n1 = m, Rt moves to
obtain a moving2 configuration.

• In a moving2 configuration, if n1 =m 6= 0, then Rc1 moves
towards B3, hence encoding the decrementation of c1.

• In a moving2 configuration, if n1 = m = 0 or if n1 6= m,
(then the modification of c1 is either impossible, or already
done), robot R`′ moves until it memorizes the position of
robot R`: if p < i, and r 6= 0, R`′ moves towards B8; if
p> i, R`′ moves towards B7.

• In a moving2 configuration, if p = i, then Rt moves to
obtain a moving3 configuration.

• In a moving3 configuration, if n1 = m = 0, and robot R`′
encodes `i (i.e. p = i), then c1 = 0 and robot R` has to
move until it encodes ` j′ . If on the other hand n1 < m,
then robot R` moves until it encodes ` j. More precisely,
if n1 = m = 0, and the position encoded by R` is smaller
than j′ (i< j′), and if i′ 6= 0, then R` moves towards B7.
If n1 = m = 0, and the position encoded by R` is greater
than j′, R` moves towards B6. If n1 < m, then robot R`
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moves in order to reach a position where it encodes ` j
(towards B6 if i> j, towards B7 if i< j and i′ 6= 0).

• In a moving3 configuration, if the position encoded by
R`′ is `i, if n1 = m = 0 and the position encoded by R`
is ` j′ , or if n1 6= m, and the position encoded by R` is
` j, then the transition has been completely simulated :
the counters have been updated and the next transition is
stored. The robots then return to a stable configuration:
robot Rtt moves to obtain a stabilizing1 configuration.

• In a stabilizing1 configuration, robot Rt moves to obtain
a stabilizing2 configuration.

• In a stabilizing2 configuration, robot Rt moves to obtain
a stable configuration.

For other types of transitions, the robots move similarly.
When in a stable configuration encoding a configuration in
HALT, no robot moves. We describe now the algorithm φ
that simply adds to φ′ the two following rules. Robot Rg
(respectively Rd) moves in the direction of Rd (respectively in
the direction of Rg) if and only if the robots are in a stable
machine-like configuration, and the encoded configuration of
the machine is (`0,0,0) (respectively is in HALT), (since the
configuration is machine-like, the distance between Rg and
Rd is 2). Observe that if the sub-algorithm φ′ is uniquely-
sequentializable, φ is not.

On all configurations that are not machine-like, the algorithm
makes sure that no robot move. This implies that once Rg or Rd
has moved, no robot with a view up-to-date ever moves. One
can easily be convinced that the algorithm can be expressed
by a QFP formula φ.

Let the formulae Bad(p1, . . . ,p42) =
∨

i, j ∈ [1,42]
i 6= j

(pi = p j) that

is satisfied by all the configurations where two robots share
the same position and Ring(y) = y≥ 0. We can show that M
halts if and only if there exits a size n ∈ [[Ring]], a (42,n)-
configuration p with p /∈ [[Bad]], such that Rg and Rd eventually
collide, i.e., Post∗as(φ,p)∩ [[Bad]] 6= /0. Note that Rg and Rd can
collide only in an asynchronous run.

�
Theorem 3: REACHm is undecidable, for m ∈ {ss,s,as}.

Sketch of proof. The proof relies on a reduction from the
repeated reachability problem of a deterministic three-counter
zero-initializing bounded-strongly-cyclic machine M, which
is undecidable [19]. A counter machine is zero-initializing
if from the initial instruction `0 it first sets all the counters
to 0. Moreover, an infinite run is said to be space-bounded
if there is a value K ∈ N such that all the values of all the
counters stay below K during the run. A counter machine
M is bounded-strongly-cyclic if every space-bounded infinite
run starting from any configuration visits `0 infinitely often.
The repeated reachability problem we consider is expressed as
follows: given a 3-counter zero-initializing bounded-strongly-
cyclic machine M, does there exist an infinite space-bounded
run of M? A configuration of M is encoded in the same fashion
than in the proof of Theorem 2, with 3 robots encoding the
values of the counters. A transition of M is simulated by the
algorithm in the same way than above except that if a counter

is to be increased, the corresponding robot moves accordingly
even if there is no room to do it, yielding a collision. Since
the machine is bounded-strongly-cyclic and zero-initializing,
any infinite run will eventually visit (`0,0,0,0), so any infinite
execution of the robots encode an infinite space-bounded run
of M starting in (`0,0,0,0).

�

IV. DECIDABILITY RESULTS AND CASE STUDY

In this section, we show that even if SAFEas, REACHas,
REACHss and REACHs are undecidable, the other cases SAFEs
and SAFEss can be reduced to the satisfiability problem for
EP formulae, which is decidable and NP-complete [8].

A. Reducing safety to successor checking

The first step towards decidability is to remark that to
solve SAFEs and SAFEss it is enough to look at the one-step
successor. Let φ be a protocol over k robots and Ring and Bad
be respectively a ring property and a set of bad configurations.
We have then the following lemma.

Lemma 1: Let n ∈ N such that n ∈ [[Ring]] and m ∈ {s,ss}.
There exists a (k,n)-configuration p with p /∈ [[Bad]], such that
Post∗m(φ,p)∩ [[Bad]] 6= /0 iff there exists a (k,n)-configuration
p′ with p′ /∈ [[Bad]], such that Postm(φ,p′)∩ [[Bad]] 6= /0.

This last result may seems strange at a first sight but it can
easily be explained by the fact that robots protocols are most
of the time designed to work without any assumption on the
initial configuration, except that it is not a bad configuration.

B. Encoding successor computation in Presburger

We now describe various EP formulae to be used to express
the computation of the successor configuration in synchronous
and semi-synchronous mode.

First we show how to express the view of some robot Ri in
a configuration p, with the following formula:

ConfigViewi(y, p1, . . . , pk,d1, . . . ,dk) :=
∃d′1, . . . ,d′k−1.i1, . . . , ik−1 ·

∧k−2
j=1 d′j ≤ d′j+1∧∧k−1

`=1(
∨k

j=1, j 6=i p j = (pi +d′` mod y)∧ i` = j)∧
0< d′1∧

∧k−1
j=1 d′j ≤ y∧∧ 6̀= j i` 6= i j∧

d1 = d′1∧
∧k−1

j=2 d j = d′j−d′j−1∧dk = y−d′k−1,

Note that this formula only expresses in the syntax of
Presburger arithmetic the definition of Vp[i →] where the
variable y is used to store the length of the ring, p1, . . . , pk
represent p and the variables d1, . . . ,dk represent the view.

We also use the formula ViewSym(d1, . . . ,dk,d′1, . . . ,d
′
k) that

is useful to compute the symmetric of a view.

ViewSym(d1, . . . ,dk,d′1, . . . ,d
′
k) :=∨k

j=1(
∧k
`= j+1(d` = 0∧d′` = 0)∧∧ j

`=1 d′` = d j−`+1∧d j 6= 0)

We are now ready to introduce the formula
Move

φ
i (y, p1, . . . , pk,d1, . . . ,dk, p′), which is true if and

only if, on a ring of size n (represented by the variable y), the
move of robot Ri according to the protocol φ(d1, . . . ,dk) from
the configuration p yields to the new position p′. Here the
variables p1, . . . , pk characterizes p and d1, . . . ,dk the view of
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process i. Note that in the asynchronous semantics, the view
of i might completely differ from the current configuration.

Move
φ
i (y, p1, . . . , pk,d1, . . . ,dk, p′) :=

∃d′1, · · · ,d′k ·ViewSym(d1, . . . ,dk,d′1, . . . ,d
′
k)∧(

φ(d1, . . . ,dk)∧
(
(pi < y−1∧ p′ = pi +1)

∨(pi = y−1∧ p′ = 0)
))
∨(

φ(d′1, . . . ,d
′
k)∧

(
(pi > 0∧ p′ = pi−1)∨ (pi = 0∧ p′ = y−1)

))

∨
(
¬φ(d1, . . . ,dk)∧¬φ(d′1, . . . ,d

′
k)∧ (p′ = pi)

)

Now, given two (k,n)-configurations p and p′, and a
k-protocol φ, it is easy to express the fact that p′ is a
successor configuration of p according to φ in a semi-
synchronous run (resp. synchronous run); for this we define
the two formulae SemiSyncPostφ(y, p1, . . . , pk, p′1, . . . , p

′
k) and

SyncPostφ(y, p1 . . . , pk, p′1, . . . , p
′
k)) as follows:

SemiSyncPostφ(y, p1, . . . , pk, p′1, . . . , p
′
k) := ∃d1

1 , . . . ,d
1
k , . . .

dk
1, . . . ,d

k
k ·

∧k
j=1 ConfigView j(y, p1, . . . , pk,d

j
1, . . . ,d

j
k)∧∨k

i=1
(
Move

φ
i (y, p1, . . . , pk,di

1, . . . ,d
i
k, p
′
i)∧∧k

j=1, j 6=i((p′j = p j)∨Moveφ
j (y, p1, . . . , pk,d1, . . . ,dk, p′j))

)

aa
SyncPostφ(y, p1, . . . , pk, p′1, . . . , p

′
k) := ∃d1

1 , . . . ,d
1
k , . . . ,

dk
1, . . . ,d

k
k ·

∧k
i=1
(
ConfigViewi(y, p1, . . . , pk,di

1, . . . ,d
i
k)∧

Move
φ
i (y, p1, . . . , pk,di

1, . . . ,d
i
k, p
′
i)
)

Lemma 2: For all n ∈ N and all (k,n)-configurations p and
p′, we have:

1) p ↪→ p′ if and only if n,p,p′ |= SemiSyncPostφ,
2) p⇒ p′ if and only if n,p,p′ |= SyncPostφ.

C. Results

Now since to solve SAFEss and SAFEs, we only need to
look at the successor in one step, as stated by Lemma 1, and
thanks to the formulae SemiSyncPostφ and SyncPostφ and
their properties expressed by Lemma 2, we deduce that these
two problems can be expressed in Presburger arithmetic.

Theorem 4: SAFEs and SAFEss are decidable and in NP.
Proof: We consider a ring property Ring(y), a protocol φ for k
robots (which is a QFP formula) and a set of bad configurations
given by a QFP formula Bad(x1, . . . ,xk). We know that there
exists a size n ∈N with n ∈ [[Ring]], and a (k,n)-configuration
p with p /∈ [[Bad]], such that Post∗s (φ,p)∩ [[Bad]] 6= /0 if and only
if there exists a (k,n)-configuration p′ with p′ /∈ [[Bad]], such
that Postm(φ,p′)∩ [[Bad]] 6= /0. By Lemma 2, this latter property
is true if and only if the following formula is satisfiable:

SyncPostφ(y, p1, . . . , pk, p′1, . . . , p
′
k)∧

Ring(y)∧¬Bad(p1, . . . , pk)∧
Bad(p′1, . . . , p

′
k)

For the semi-synchronous case, we replace the formula
SyncPostφ by SemiSyncPostφ. The NP upper bound is
obtained by the fact that the built formula is an EP formula.
�

When the protocol φ is uniquely-sequentializable, i.e. when
in each configuration at most one robot make the decision to
move then Theorem 1 leads us to the following result.

Corollary 1: When the protocol φ is uniquely-
sequentializable, SAFEas is decidable.

D. Expressing other interesting properties

Not only the method consisting in expressing the successor
computation in Presburger arithmetic allows us to obtain the
decidability for SAFEs and SAFEss, but they also allow us
to express other interesting properties. For instance, we can
compute the successor configuration in asynchronous mode
for a protocol φ working over k robots thanks to the formula
AsyncPostφ(y, p1, . . . , pk,s1, . . . ,sk,v1 . . . ,vk, p′1, . . . , p

′
k,s
′
1, . . . ,

s′k,v
′
1, . . . ,v

′
k), which is given by:

AsyncPostφ := ∃d1, . . . ,dk·
∨k

i=1

(∧
j 6=i(p′j = p j ∧ s′j = s j ∧ v′j = v j)∧

s′i = 1− si∧
(
(si = 0∧ v′i = 〈d1, . . . ,dk〉∧

ConfigViewi(y, p1, . . . , pk,d1, . . . ,dk)∧ p′i = pi)∨
(si = 1∧ v′i = vi∧Moveφ

i (y, p1, . . . , pk,d1, . . . ,dk, p′i)
))

To prove the correctness of this formula for an asynchronous
configuration (p,s,V) with k robots we make the analogy
between the flags L and M and the naturals 0 and 1, which
means that in the definition of the vector s ∈ {L,M}k, we
encode L by 0 and M by 1 and we then apply the definition
of →as.

One can also express the fact that one configuration is a
predecessor of the other in a straightforward way.

It is as well possible to check whether a protocol φ over k
robots fits into the hypothesis of Corollary 1, i.e. whether it
is uniquely-sequentializable. We define the formula UniqSeqφ
that is satisfiable if and only if φ is uniquely-sequentializable.

UniqSeqφ := ¬∃y.p1, . . . , pk, p′1, . . . , p
′
k·∨

i 6= j,1≤i, j≤k(Move
φ
i (n, p1, . . . , pk, p′i)∧Move

φ
j (n, p1, . . . , pk, p′j)

∧p′i 6= pi∧ p′j 6= p j.

Hence we deduce the following statement.
Theorem 5: Checking whether a protocol φ is uniquely-

sequentializable is decidable.

E. Applications

We have considered the exclusive perpetual exploration
algorithms proposed by Blin et al. [6], and generated the
formulae to check that no collision are encountered for different
cases. We have used the SMT solver Z3 [12] to verify whether
the generated formulae were satisfiable or not. We have been
able to prove that, in the synchronous case, the algorithm using
a minimum of 3 robots was safe for any ring of size greater than
10 and changing a rule of the algorithm has allowed us to prove
that we could effectively detect bugs in the Algorithm. In fact,
in this buggy case, the SMT solver provides a configuration
leading to a collision after one step. We have then looked
for absence of collision for the algorithms using a maximum
number of robots, always in the synchronous case. Here, the
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verification was not parametric as the size of the ring is fixed
and depends on the number of robots (it is exactly 5 plus
the number of robots). The algorithm in [6] was designed to
work for any number of robots k odd and co-prime with k+5.
However, we found bugs for k = 7,9. Note that for 11 robots,
the SMT solver Z3 was taking more than 10 minutes and we
did not let him finish its computation. We observe that when
there is a bug, the SMT solver goes quite fast to generate
a bad configuration but it takes much more time when the
algorithm is correct. The files containing the SMT formulae
are all available on the webpage [15] in the SMTLIB format.

V. CONCLUSION

We have addressed two main problems concerning formal
verification of protocols of mobile robots, and answered the
open questions regarding decidability of the verification of such
protocols, when the size of the ring is given as a parameter
of the problem. Note that in such algorithms, robots can
start in any position on the ring. Simple modifications of
the proofs in this paper allow to obtain undecidability of both
the reachability and the safety problem in any semantics, when
the starting configuration of the robots is given. Hence we
give a precise view of what can be achieved in the automated
verification of protocols for robots in the parameterized setting,
and provide a means of partially verifying them. Of course, to
fully demonstrate the correctness of a tentative protocol, more
properties are required (like, all nodes are visited infinitely
often) that are not handled with our approach. Nevertheless, as
intermediate lemmas (for arbitrary n) are verified, the whole
process of proof writing is both eased and strengthened.

An application of Corollary 1 and Theorem 5 deals with
robot program synthesis as depicted in the approach of Bonnet
et al. [7]. To simplify computations and save memory when
synthesizing mobile robot protocols, their algorithm only
generates uniquely-sequentializable protocols (for a given k
and n). Now, given a protocol description for a given n, it
becomes possible to check whether this protocol remains
uniquely-sequentializable for any n. Afterwards, regular safety
properties can be devised for this tentative protocol, for all
models of computation (that is, FSYNC, SSYNC, and ASYNC).
Protocol design is then driven by the availability of a uniquely-
serializable solution, a serious asset for writing handwritten
proofs (for the properties that cannot be automated).

Last, we would like to mention possible applications of our
approach for problems whose core properties seem related
to reachability only. One such problem is exploration with
stop [5]: robots have to explore and visit every node in a
network, then stop moving forever, assuming that all robots
initial positions are distinct. All of the approaches published
for this problem make use of towers, that is, locations that
are occupied by at least two robots, in order to distinguish
the various phases of the exploration process (initially, as all
occupied nodes are distinct, there are no towers). Our approach
still makes it possible to check if the number of created towers
remains acceptable (that is below some constant, typically 2
per block of robots that are equally spaced) from any given

configuration in the algorithm, for any ring size n. As before,
such automatically obtained lemmas are very useful when
writing the full correctness proof.
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Abstract—Firewalls are widely deployed to manage enterprise
networks. Because enterprise-scale firewalls contain hundreds
or thousands of rules, ensuring the correctness of firewalls
– that the rules in the firewalls meet the specifications of
their administrators – is an important but challenging problem.
Although existing firewall diagnosis and verification techniques
can identify potentially faulty rules, they offer administrators
little or no help with automatically fixing faulty rules. This
paper presents FireMason, the first effort that offers automated
repair by example for firewalls. Once an administrator observes
undesired behavior in a firewall, she may provide input/output
examples that comply with the intended behaviors. Based on
the examples, FireMason automatically synthesizes new firewall
rules for the existing firewall. This new firewall correctly handles
packets specified by the examples, while maintaining the rest of
the behaviors of the original firewall. Through a conversion of
the firewalls to SMT formulas, we offer formal guarantees that
the change is correct. Our evaluation results from real-world case
studies show that FireMason can efficiently find repairs.

I. INTRODUCTION

Firewalls play an important role in today’s individual and
enterprise-scale networks. A typical firewall is responsible
for managing all incoming and outgoing traffic between an
internal network and the rest of the Internet by accepting,
forwarding, or dropping packets based on a set of rules specified
by its administrators. Because of the central role firewalls
play in networks, small changes can propagate unintended
consequences throughout the networks. This is especially true
in increasingly large and complex enterprise networks.

A single line in a firewall could, for example, allow anyone to
access production services, and therefore it is critical to ensure
the correctness of firewall rules. Broadly speaking, a firewall
is correct if the rules of that firewall meet the specification
of its administrator. There have been many efforts that aim to
check the correctness of firewall rules through techniques such
as firewall analysis [23], [30], verification [22], and root-cause
troubleshooting [26], [31], [34]. For instance, systems like
Margrave [26] and Fang [23] build an event tree recording
states of an observed error, and backtrack through it to find
the root causes.

While existing tools can identify the cause of an error,
administrators still have to manually find an effective repair to
the firewall so that it meets the specification. We propose the
first framework, called FireMason, that not only detects errors
in firewall behaviors, but also automatically repairs the firewall.
Specifically, a user provides a list of examples of packet routing
(e.g., all packets with a certain source IP address should be
dropped) to describe what the firewall should do. The current
firewall might or might not route the packets as specified in the
examples. Given the complexity of enterprise-scale networks,

finding such a repair requires considerable expertise on the
part of the administrator. To the best of our knowledge, there
is no existing effort that automates firewall repair.

The main challenge of firewall repair is to show that a
generated firewall is indeed repaired and that new rules do
not change the routing of packets which are not described
by the given examples. We employ an SMT solver for this
task. In a nutshell, FireMason translates a given firewall
into a sequence of first-order logic formulas falling into the
EUF+LIA logic [25], thus allowing us to use an SMT solver for
reasoning about the firewalls. By using SMT solvers, FireMason
provides formal guarantees that the repaired firewalls satisfy
two important properties:
• Those packets described in the examples will be routed

in the repaired firewall, as specified.
• All other packets will be routed by the repaired firewall

exactly as they were in the original firewall.
Taken together, these two properties allow administrators
confidence that the repairs had the intended effect.

Previous work has modeled firewalls using less expressive
logics. For example, Zhang et al. [34] use SAT and QBF
formulas, while Margrave [26], uses first-order relational logic
(specifically, through the use of KodKod [30]). By using our
formalism we are able to check some important and widely
used, but previously out-of-scope, properties. In particular, the
ability to reason about linear integer arithmetic with an SMT
solver is invaluable in handling rate limits. Rate limits, which
are frequently used in all modern firewalls, put a restriction
on the number of packets matched in a given amount of time.
Using SMT solvers we are able to efficiently reason about
limiting rules. Due to the complexity of modeling limits, no
previous work has considered firewalls with such rules. Such
rules say, for example, that we can only accept 6 packets per
minute from a certain IP address. As before, the user provides a
list of examples, but with relative times. This requires reasoning
about the priorities and permissions of each firewall entry, as
well as the temporal patterns of the incoming packets.

Furthermore, FireMason is also a stand-alone verification
tool, that can either prove that a given specification holds, or
produce counterexamples.

We evaluated our tool using real-world firewall issues, and
observed that FireMason is able to efficiently generate correct
firewalls meeting administrators’ examples, without introducing
any new problems. In addition, our evaluations show that
FireMason scales well to enterprise-scale networks.

In summary, this paper makes the following contributions.
We developed a formalism to model firewalls and their behavior.
This formalism allows us to use SMT solvers. By using them we
can easily prove formal guarantees for verification and repair,
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thus making FireMason the first work capable of automatically
repairing firewalls based on easily specified examples. This
allows administrators to conveniently specify their desired
behaviors, and automate the repair process. Additionally, by
using SMT solvers we can efficiently reason about limit rules,
which were not considered by any of existing tools. Finally,
we built a workable system that scales well with real-world
examples and larger-scale datasets.

II. PRELIMINARIES

Repair by Example. In this paper, we introduce the repair
by example paradigm, which repairs faulty code so that it
satisfies the given examples. In some ways, this resembles the
programming by example paradigm [14], [21]. However, in
programming by examples, the output is code which generalizes
the given input examples. On the other hand, in the repairing
by example paradigm the input is both an existing program
and a set of examples. The goal is to adjust the input program
to satisfy the examples, but otherwise to have a minimal
effect on the programs behavior. This allows a user to easily
specify instances of faulty behavior, but have confidence that
the program will continue to function as it did before. With
repair by example, it is important that the effect of the changes
is constrained, whereas in programming by example there is
no such restriction.

ACL-Based Firewalls. We focus on one of the most represen-
tative types of firewalls, Access Control List-based firewalls (or
ACL-based firewalls). ACL-based firewalls, such as iptables [4],
Juniper [18], and Cisco firewalls [13], are widely used in
practice. A typical ACL-based firewall contains an ordered list
of rules, each of which has criteria and an action. A criterion
describes which preconditions need to hold for the action to
take place (e.g., dropping or accepting a packet) [28]. When
a network packet is received by an ACL-based firewall, the
packet is evaluated against all the rules according to the order in
which they appear. After the firewall finds the first rule whose
criteria is satisfied by the packet, it performs the corresponding
action. The criteria in a rule may refer to properties of the
packet that is currently being processed, or to information
tracked by the firewall. For instance

iptables -A INPUT -p 16 -s 123.23.12.1 -j DROP

has criteria denoting packets with a protocol of 16 and a source
IP address of 123.23.12.1, and an action specifying those
packets should be dropped.

Actions are either terminating or non-terminating. Termi-
nating actions end the packet’s traversal (for example, once a
packet is accepted or dropped, it no longer needs to check more
rules in the ACL). Non-terminating actions (such as printing
to a log file) allow a packet to continue traversing the ACL
rules and finding a match for more rules. An action might also
refer to another ACL, which then needs to be used to evaluate
the packet. We refer to this as a jump to a different ACL.

The ACL jumps can not form a loop. That is, if ACL A1

contains a jump to ACL A2, there can be no jumps from A2

back to A1. However, suppose a packet is evaluated against
all rules in an ACL A2 and does not match any rule with

a terminating action. The packet will then continue being
evaluated at the next rule in A1. If the packet started in A1,
and the packet does not match any rule in A1 with a terminating
action, the packet will be routed according to the policy of A1.
The policy is the default action on packets that start in a given
ACL, and must be to either accept or drop the packet [9].

Rate Limiting Rules. When an administrator wants to restrict
the amount of packets matching a certain rule, a rate limit can
be specified for that rule. We call a firewall with such rules a
rate limiting firewall. In many firewalls, including iptables [9],
Juniper [18], and Cisco [13] firewalls, a limit is a criterion
that specifies how frequently a rule can be matched. A limit
is implemented as a counter l, and allows a match of a rule
only if l > 0. A limit has two parameters: an average rate of
packets per some time unit, ra, and a burst limit, b. Whereas
other criteria are based solely on evaluating a single packet, a
limit requires the firewall to maintain its counter, and hence
warrants special consideration.

Firewalls use the token bucket algorithm [29] to determine if
a packet should be dropped or further processed. The counter
l decrements when a packet matches the rule, and increments
every 1/ra time units. The counter can never exceed the burst
limit b. The next example shows how limits work in practice.

Example. Suppose that we set a limit on incoming packets,
with ra = 1 packet / second and b = 5 packets. The firewall
is initialized with l = b = 5. If we do not exceed the limit,
we will accept incoming packets. If we do exceed it, we will
drop them. Suppose in the first, third, and fourth seconds after
initialization, we receive 1 packet, 3 packets, and 4 packets,
respectively. We receive no packets during the second second.

At the end of the first second, l = 5 − 1 = 4, since 1
packet arrives. At the beginning of the second second, l will be
incremented back to 5. The counter l will not be incremented
at the beginning of the third second, since if it was incremented
it would exceed the burst limit. However, since 3 packets arrive
during the third second, by the end of the third second l = 2.
At the beginning of the fourth second, l is incremented again
to 3. During the fourth second, 4 packets arrive. The first 3 will
be accepted, but will result in the counter being decremented,
to l = 3− 3 = 0. Since l = 0 when the fourth packet arrives,
that packet can not match the limit. Therefore, it is dropped.

III. MOTIVATING EXAMPLES

Stateless Example. We start to demonstrate the functionality
of FireMason with a problem inspired by a StackExchange
post [1], shown in Figure 1. An administrator is maintaining
firewall rules written in iptables [4], one of the most represen-
tative firewall script languages. The firewall initially contained
rules labeled R1 to R5.

If the administrator wants to block TCP requests coming
from the IP address 172.168.14.6, she may try expressing
that as a rule and putting it at the end of the current firewall,
cf. rule R6 in Figure 1. Such an action is very common in
enterprise-scale firewall management, because administrators
prefer appending a new rule to the existing rules [20].

FireMason can be used as a standard firewall analysis tool.
To test her changes, the administrator can execute the query:
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R1
R2
R3
R4
R5
R6

FireMason

(a) Original Firewall

.... ....
iptables -A INPUT -p udp -–dport 80 -j ACCEPT
iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP
iptables -A INPUT -m state –-state RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT

(b) Example

(c) Repaired Firewall

repair(INPUT, protocol = 6,
source_ip = 172.168.14.6 => DROP)

.... ....
iptables -A INPUT -p udp -–dport 80 -j ACCEPT
iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
iptables -A INPUT -m state –-state RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP

Figure 1: An example of a firewall repair problem.

verify(INPUT, protocol = tcp,
source_ip = 172.168.14.6 => DROP)

FireMason reports to the administrator that the specification
is violated, and gives an example of a packet that will be
incorrectly routed (For example, a TCP packet with the SYN
flag set, a source ip address of 172.168.14.6, and a destination
port of 22. Such a packet would be accepted by R3 or R4).

Knowing that her repair does not work as intended, the
administrator can also use FireMason as a repair tool. She
provides an example of what should be changed in the firewall
and invokes FireMason as shown in Figure 1 (b).

FireMason returns a repaired firewall, Figure 1 (c), to the
administrator. The new rule is positioned close to similar
rules, namely, those rules related to the TCP protocol. This
positioning is very important. While one may argue that directly
appending a rule to the top of firewall can also make the firewall
behave correctly (in terms of functionality), such a way would,
unfortunately, destroy the structure and organization of the
firewall. Much like traditional code, keeping the firewall rules
organized is important to facilitate later understanding and
maintaining. Most importantly though, the rule is positioned so
any packet matching the example is guaranteed to be dropped.
R1 specifies a protocol other than TCP, and so never matches
the example. The example could match R2, but R2 drops any
matching packet anyway.
Rate Limiting Example.We next show how an administrator
can use FireMason to add/repair rate limiting rules. To the
best of our knowledge no existing firewall analysis tools can
address this problem. Suppose an administrator wants to allow
TCP connections with the SYN flag set once every 10 seconds
(a task inspired by a forum post on StackExchange [6].) To
do this, the administrator may provide a sequence of example
packets and relative times, in seconds:
repair(INPUT, SYN, time = 0 => ACCEPT;

INPUT, SYN, time = 5 => DROP;
INPUT, SYN, time = 10 => ACCEPT)

As a result FireMason creates and inserts two new rules:
iptables -A INPUT -m limit --limit 6/minute \
--limit-burst 1 -p tcp --tcp-flags SYN SYN -j ACCEPT
iptables -A INPUT -p tcp --tcp-flags SYN SYN -j DROP

Repair Algorithm

Rule Set

Correctness Checking

Rate Limiting
Examples

Stateless
Examples

Rate Limiting
Rules Generation

OK/Counterexamples

Consistency Checking

Verification

Example(s)/Specification(s)Original Firewall

Repaired Firewall

Figure 2: The workflow overview of FireMason.

This limit satisfies the administrator’s requirement. Only one
TCP SYN packet can be received every 10 seconds.

IV. SYSTEM DESIGN

Figure 2 shows the overview of FireMason’s workflow.
FireMason takes as input a firewall and a user command, which
can be either a verification command or a repair command and
contains a list of examples.

FireMason first translates the firewall and examples into a
set of formulas belonging to a fragment of first-order logic.
The translation (described in Sec. IV-A) produces two sets of
EUF+LIA formulas [25], which means we can use an SMT
solver to reason about firewalls.

The verification process (described in Sec. IV-B) checks
if the rules specified in the examples are violated by the
new firewall. If there are such rules, FireMason reports
counterexamples to the user.

The repair process first checks consistency of the input
examples and reports to the user if they are contradictory
(Sec. IV-D). This also allows us to detect sets of examples
that can be used to generate rate limiting rules. FireMason
creates any needed rate limiting rules to handle provided
examples. (Sec. IV-F). FireMason next runs the repair algorithm
(Sec. IV-G). Finally, FireMason adds the rules to the firewall
(Appendix, Sec. IV-C), checks if there are redundant rules in
the newly generated firewall (Sec. IV-H), and outputs a correct
firewall.

A. Encoding Firewalls and Examples as FOL Formulas

Translating Examples. FireMason starts with a list of exam-
ples provided by the user, either for a verification or a repair
process. Those examples are expressed using the grammar:

comm := verify({(acl, rule)}+) | repair({(acl, rule)}+)

rule := precon+ ⇒ action

precon := protocol = INT | source ip = IP ADDRESS

| destination port = INT | . . . | not precon

action := ACCEPT | DROP

acl := STRING \\ ACL Name
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We represent every example by a tuple (a, r, t), where a is
the name of the ACL to which the rule r applies, and t is the
time given in the example. If no time was given, we set t = ∅.
This tuple is then used in FireMason’s algorithms. For instance,
the example repair(protocol = 16, time = 5 ⇒ ACCEPT) is
translated to (INPUT,protocol = 16⇒ ACCEPT, 5).

Translating Firewall scripts. Broadly speaking, FireMason
describes a firewalls behavior with a sequence of first-order
logic formulas. The translation results in formulas that are
amenable for reasoning with a SMT solver. Such encoding
has two benefits: the computational burden of checking
consistencies or finding redundant rules is done by a solver. In
addition, we can easily formalize that the repaired firewall is
indeed repaired and that only packets described by the examples
will be treated differently and according to the specification.

While the majority of the rules could be easily translated to
first-order formulas, one obstacle is when the firewall contains
jumps. This becomes an issue especially when the ACL also
uses limits. Consider, for example, an ACL that has at least
two jumps to an ACL A1. Let us assume that the ACL A1 has
some limit rules. If a packet has to go through both the jumps,
then when it reaches the limit in A1 the second time, the limit
in A1 will have counted the packet twice.

We introduce a data structure, called a FirewallMap, which
simplifies modeling of jumps and limits. A FirewallMap M
maps unique IDs (we use natural numbers) to tuples of ACL
names and lists of the ACLs rules. A rule is modeled as an
implication, where a set of criteria implies an action. Possible
actions are ACCEPT, DROP, and GO(a). GO is parameterized
by a natural number a, and represents a jump to the ACL with
ID a. In the FirewallMapM there is at most one GO referring
to a particular ACL ID. Every rule in M is assigned a tuple
(a, r), where a is an ID of the ACL where the rule appears
and r is an ID of the rule in that ACL. This way there exists
a single unique path through the FirewallMap to reach any
individual rule. Without this property, it would be significantly
more difficult to correctly model the order in which rules must
be checked. Any ACL jumped to from more than one place in
the original firewall is duplicated and assigned multiple IDs.
The ACL mapped to by each of these IDs is identical, except
any GOs in them must also have different IDs. We refer to
these duplicated ACLs as equivalent to each other.

Language for Encoding Firewall Behavior into Formulas.
We now describe a first-order language that we use to
model firewalls and packets. Most of these predicates take
a FirewallMap M as an argument. One can think of M as a
firewall script.

Table I lists a selection of those predicates, functions, and
their meanings. FireMason uses these functions and predicates
to encode the firewall. For example, if rule r in ACL a in a
FirewallMapM had criteria specifying that it matched a packet
p with protocol 17 and destination port 8, then FireMason
translates that as follows:

matches criteria(M, p, a, r)

⇔ (protocol(p) = 17 ∧ destination port(p) = 8)

Table II shows some axioms describing general relationships
between the predicates and functions, and encoding actual
firewall behavior. All formulas in the table are implicitly univer-
sally quantified, with additional guards 0 ≤ p < max packets
and valid rule(M, a, r). Since the sets of values for M, p, a,
and r are finite, these formulas (as well as the definitions of
reaches end, reaches return, reaches exit, and matches rule
from Table I) can be finitely instantiated. Thus, no universal
quantifiers are needed, and we encode the firewalls in the
decidable EUF+LIA logic [25].

Modeling Limits. Limits have two attributes: an average rate
ra in packets per time unit, and a burst limit of b packets.
Each limit also uses a counter to decide if a packet can match
the rule. Intuitively, it may seem one could easily model the
behavior of a limit using linear integer arithmetic. However,
ra might not be an integer when the units are converted to
seconds. For example, 31 packets per minute is .516 packets
per second. Therefore, we introduce a new sub variable, which
represents the time unit used by the limit, converted to seconds.
For example, a limit with an average rate of 31 packets per
minute and a burst of 10 will be assigned ra = 31, sub = 60,
and b = 600 in the formula. Essentially, this corresponds to
multiplying the whole formula by sub, to reduce the problem to
integers. ra is now 31 tokens per second, we have a maximum
of 600 tokens, and we require 60 tokens to send a single packet.

To have a correct counter of the number of packets, in our
model we assign to each limit from the firewall two integer IDs,
a main ID i and a secondary ID j. Limits for the same rule in
equivalent ACLs all have the same main ID. The secondary IDs
start from 0, and they increase every time a packet could meet
that limit. We define two functions, counter pre(M, i, j, p)
and counter post(M, i, j, p), parameterized by the limit’s
main and secondary IDs, and the packet ids. They are used
to track the value of the counter at any given point in
time. counter pre(M, i, j, p) is the value of counter (i, j)
immediately before packet p reaches the rule containing that
limit. counter post(M, i, j, p) is the value of that counter
immediately after. To check if a limit will allow a packet
to match, we check if counter pre(M, i, j, p) ≥ sub.

The SMT formulas related to computation of limits are given
in Table III Note that, since we multiply ra and ∆t(p), we
must know one of their values for this formula to be in LIA.
Fortunately, when reading a limit from an existing firewall
script we know ra. In Sec. IV-F we explain how ∆t(p) is
known in advance from the examples, so we can obtain ra
from the SMT solver.

B. Firewall Verification

Since firewalls are not annotated with standard specifications,
systems for verifying firewalls, such as Margrave [26], verify
firewalls against user provided queries. When performing
the verification process, FireMason also checks if the given
examples violate the firewall rules.

We first explain the verification process for examples without
time (limit) constraints. Given an example, e = (n, c⇒ act, ∅),
and a firewall M, we verify e against M by showing that the
following formula F is valid:
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Table I: Partial list of predicates and functions used to model firewalls.

Predicate Meaning of the predicate
valid acl(M, a) There exists an ACL with ID a in FirewallMap M
valid rule(M, a, r) valid acl(M, a) and there exists a rule with ID r in a
matches criteria(M, p, a, r) Packet p satisfies the criteria of rule r in ACL a in FirewallMap M
reaches(M, p, a, r) Packet p reaches rule r in ACL a in FirewallMap M
starting acl(M, a) Returns true if ACL a is not jumped to from some other ACL
is go(act) Returns whether the action act is GO(a) for some arbitrary a
reaches end(M, p, a) reaches(M, p, a, acl length(M, a))
reaches return(M, p, a) reaches(M, p, a, r) ∧ rule action(M, a, r) == RETURN
reaches exit(M, p, a) reaches end(M, p, a)∨ reaches return(M, p, a)
matches rule(M, p, a, r) matches criteria(M, p, a, r)∧ reaches(M, p, a, r)
matches example(p, e) Packet p matches the criteria of an example e
protocol(p) The protocol of packet p
acl length(M, a) Returns the number of rules in ACL a
max packets Returns the maximum number of packets to be considered
terminates with(M, p) Returns if the FirewallMap M would ACCEPT or DROP packet p
rule action(M, a, r) Returns the action of rule r in ACL a in FirewallMap M
insert rule(M, R, a, r) Returns FirewallMap M, but with rule R inserted in ACL a as rule r
equivalent(M, n) Returns the set of IDs in FirewallMap M for the ACL named n
go acl(act) For act = GO(a) returns a, otherwise -1

Table II: Formulas to model a firewall, and packets that firewall is processing.

a1 6= a2 ∧ reaches(M, p, a1, 0) ∧ starting acl(M, a1) ∧ starting acl(M, a2) =⇒ ¬reaches(M, p, a2, 0)
reaches(M, p, a, r) ∧ ¬matches criteria(M, p, a, r) =⇒ reaches(M, p, a, r + 1)
reaches(M, p, a, r + 1) =⇒ reaches(M, p, a, r)

matches rule(M, p, a, r) ∧ is go(rule action(M, a, r)) ≡ reaches(M, p, go acl(rule action(M, a, r)), 0)
matches rule(M, p, a, r) ∧ is go(rule action(M, a, r)) =⇒ reaches exit(M, p, go acl(rule action(M, a, r))) = reaches(M, p, a, r + 1)
reaches(M, p, a, r) ∧ ¬is go(rule action(M, a, r)) ∧ rule action(M, a, r) 6= RETURN ∧ ¬terminating(M, a, r) =⇒ reaches(M, p, a, r + 1)
reaches return(M, p, a) =⇒ ¬reaches(M, p, a, r + 1)
matches rule(M, p, a, r) ∧ terminating(rule action(M, p, a, r)) =⇒ ¬reaches(M, p, a, r + 1)
matches rule(M, p, a, r) ∧ terminating(rule action(M, p, a, r)) =⇒ terminates with(M, p) = rule action(M, p, a, r)
reaches end(M, p, a, r) ∧ starting acl(M, a) =⇒ terminates with(M, p) = policy(M, a)

Table III: Logical formulas related to limits, all variables are implicitly universally quantified with additional constraints that
rule r in ACL a has a limit with main ID i and secondary ID j, and 0 ≤ p < max packets. We use j max(i) to denote the
maximum secondary ID for the limit with main ID i.

∀p.p ≥ 1 =⇒ arrival time(p) ≥ arrival time(p− 1)

∆t(p) =

{
arrival time(p)− arrival time(p− 1) if 1 ≤ p < max packets

0 otherwise

counter pre(M, i, j, p) =





counter post(M, i, j − 1, p) if j ≥ 1

min(counter post(M, i, j max(i), p− 1) + ra ∗∆t(p), b) if p ≥ 1 and j = 0

b otherwise

counter post(M, i, j, p) =

{
counter pre(M, i, j, p)− sub if counter pre(i, j, p) ≥ sub ∧matches rule(M, p, a, r)

counter pre(M, i, j, p) otherwise

∀p, a. a ∈ equivalent(M, n) ∧ reaches(M, p, a, 0)

∧matches example(p, e)⇒ terminates with(M, p) = act

Formula F states that every packet arriving to ACL n and
satisfying criteria c terminates with action a. Note that when
negated, the formula is only existentially quantified.

To verify a list of examples with times, ek = (nk, ck ⇒
actk, tk), for 0 ≤ k ≤ N we apply a similar procedure. After
setting up all packets with appropriate times, the verification
condition states that at least one packet does not terminate as
desired (expressed already in the negated form):

∀k∃a.0 ≤ k ≤ N ∧ a ∈ equivalent(M, nk)

∧ reaches(M, pk, ak, 0) ∧matches example(pk, ek)

∧ (
∨

0≤j≤N
terminates with(M, pj) 6= actj)

C. Adding Rules

Here we outline how to create rules from the provided
examples. We describe in more detail how to create rate
limiting rules in Sec. IV-F. We first focus on stateless rules.
We use the repair algorithm, Algorithm 2 in Sec. IV-G,
to assign each rule a position. After positions are assigned,
it is straightforward to add the rules to the firewall. We
simply copy the old rules from the original firewall, convert
the new rules from our internal language to the iptables
language, and insert them at the appropriate positions. For
example, the tuple (INPUT, protocol = 6, source_ip
= 1.2.3.4 => ACCEPT, ∅) would become iptables
-A INPUT -p 6 -s 1.2.3.4 -j ACCEPT.
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D. Consistency Checking

The purpose of consistency checking is both to let the
administrator know whether the provided examples contradict
each other, and to detect when to invoke the algorithm for
addressing limits. Consider the two examples below:

repair(INPUT, protocol = 17 => ACCEPT),
repair(INPUT, source_ip = 1.1.0.0/16 => DROP)

If a packet with protocol = 17 and a source IP address
of 1.1.1.1 enters the INPUT ACL, it is not clear whether
such a packet should be accepted or dropped. We consider
these examples rule inconsistent.

Formally, we say two examples, (n1, c1 ⇒ act1, t1) and
(n2, c2 ⇒ act2, t2) are rule inconsistent if n1 = n2, c1 ∧ c2 is
satisfiable by a single packet, and act1 6= act2. We find the
contradictory examples by using an SMT solver and we inform
the administrator about ambiguities. Note that this definition
makes no reference to time, and handling of rule inconsistent
examples with different times will be covered in Sec IV-F.

E. Formal Guarantees for Repaired Firewalls

FireMason offers two guarantees on the behavior of repaired
firewalls. The first guarantee is the packets or sequences of
packets described by the examples are correctly routed in the
repaired firewall. The second guarantee is that the changes have
a minimal effect; that is, that the routing of every packet not
described by the examples is the same as it was in the original
firewall. Together, these guarantees allow an administrator to
be confident that the repairs had the intended effect, and only
the intended effect.

Here we give formulas which can be used by an SMT solver
to check if the formal guarantees hold.

For given examples of the form ek = (nk, critk ⇒ actk, ∅),
for 0 ≤ k < N , the first guarantee can be written with
Formula (1),

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)∧ (1)
matches example(k, ek) ∧ reaches(M′, k, a, 0)

=⇒ terminates with(M′, k) = actk

Now suppose we have examples with relative times, ek =
(nk, critk ⇒ actk, tk). Without loss of generality, assume that
for k1 < k2, we have tk1 < tk2 . In this case we ensure that
packets arriving at the appropriate times, with the appropriate
criteria, are correctly routed, given that no other packets
matching the examples criteria are processed before their arrival.
Formally, we write:

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk) (2)
∧

0≤m≤k

(
arrival time(m) = tm ∧matches example(m, em)

∧ reaches(M,m, a, 0)
) ∧

m′>k

nonexample(M,m′, k)

=⇒ terminates with(M, k) = actk

where we use the predicate nonexample to determine if the
packet p either does not correspond to or arrives after the last
relevant example.

nonexample(M, p, e) =

∀k, a.0 ≤ k < e ∧ a ∈ equivalent(M, nk) =⇒
te < arrival time(p) ∨ ¬reaches(M, p, a, 0)

∨
( ∧

0≤m≤k
¬matches example(p, em)

)

The second guarantee, that the changes we make are minimal,
is stated as Formula (3):
∀p.terminates with(M, p) = terminates with(M′, p) (3)

∨
(
∃k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)

∧matches example(p, ek) ∧ reaches(M, k, a, 0)
)

F. Rate Limiting Rules Generation

Algorithm 1: Limit Generating Algorithm
input :E, the list of examples, all with relative times,

optional parameters minRulesAndLimits and
minTotalSub (both default to ∅)

output : r a list of rules
1 E′ ← [];
2 foreach (n, r, t) ∈ E do
3 r2 ← r, with a limit template, consisting of symbolic

values for ra, b, sub, and useLimit, and a Boolean
enableRule added to the criteria

4 E′.append((n, r2, t));

5 sortByNameByTime(E′);
6 if minRulesAndLimits 6= ∅ and minTotalSub 6= ∅ then
7 Assert rulesAndLimits < minRulesAndLimits

∨(rulesAndLimits = minRulesAndLimits ∧ totalSub <
minTotalSub)

8 Convert E′ to SMT formulas, create formulas defining
score and totalSub, run SMT Solver;

9 sat← getSat;
10 if sat = UNSAT then
11 r ← getRulesFromModel(model);
12 return r;

13 else
14 model ← getModel;
15 (rulesAndLimits, totalSub)← getScore(model);
16 call this recursively, to lexicographically minimize

(rulesAndLimits, totalSub);

After the consistency checking, some examples may have
to be resolved via rate limiting. Specifically, this is required
for rules that are rule inconsistent, but have relative times.
Algorithm 1 generates rate limiting rules satisfying these
examples. Our algorithm takes a list of rule inconsistent
examples, E, each with a time. It returns an ordered list of
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satisfying rules, which are later inserted into the firewall using
Algorithm 2.

Recall that we may express an example as consisting of
an ACL name, a rule, and a time. We create E′ from E,
by adding two criteria to each examples rule. The first is a
limit template, which uses variables in place of actual integers
for ra, b, and sub. It also has a Boolean variable useLimit,
which enables and disables the limit. The second criterion is a
Boolean, enableRule. Packets can match the rule if and only
if enableRule is true. We will use this template with an SMT
solver to search for the solution that requires the fewest limits
and rules.

We sort E′ into distinct groups according to which ACL
the rules are meant to be added to, and then sort each group
by ascending time, at line 5. We extract the rules from E′

into lists (ACLs) to form a templated FirewallMap M. This
allows us to convert to an SMT formula, using exactly the
same formulas and logic as in Sec. IV-A.

For each original example, ep = (np, cp ⇒ actp, tp), we
pick a ∈ equivalent(M, np)and assert that the packet with ID
p matches the requirements of that example:

arrival time(p) ∧matches example(p, ep) (4)
∧ reaches(M, p, a, 0) ∧ terminates with(M, p) = actp

For all the pairs 0 ≤ r, q < length(E′), r 6= q, we check if
cr ∧ ¬cq is satisfiable by a single packet. For each pair which
is, we assert:

¬matches example(r, eq) (5)

The SMT solver can then find values for each ra, b, sub,
u, and enableRule that guide the packets as required by the
examples. Formula (4) ensures that the found solution satisfies
the requirements of the examples sequence. Formula (5) ensures
that the SMT solver does not make assumptions about packets
criteria that the user likely does not intend. For example, if
the administrator provided the examples:

repair(
INPUT, protocol = 17, time = 0 => ACCEPT;
INPUT, protocol = 17, time = 5 => DROP;
INPUT, source_ip = 1.1.0.0/16, time = 10 => ACCEPT;
INPUT, source_ip = 1.1.0.0/16, time = 15 => DROP)

Formula (5) would prevent the SMT solver finding a solution
that required any of the packets satisfying protocol = 17
AND source_ip = 1.1.0.0/16.

Such a model is always possible to find. One valid solution
is to set all the enableRule to true, all the bursts to 1, and all
the rates and subs such that the limit recharging even once
takes longer than the total time between the first and last packet
arriving. Then, each packet will be sorted according to the rule
that came from its modified example.

To make our solution capable of handling more general
cases, we assign a lexicographic score to our formula. The
first value is calculated by adding the number of limits and the
number of non-ignored rules, which we call rulesAndLimits.
The second value is the sum of the limit’s sub values, which we
call totalSub. We aim to make this score as small as possible.
This can be done by repeatedly asserting there exists a formula

Algorithm 2: Rule Adding Repair Algorithm
input :E, the list of examples; M, a FirewallMap
output : a FirewallMap with a rule for each e ∈ E added

1 foreach (n, newR, t) ∈ E do
2 a′ ← ACL id of an arbitrary representation of the

ACL n in M;
3 res ← SAT ;
4 maxR← acl length(a′)− 1;
5 while res = SAT do
6 Pick r′ ≤ maxR , using a similarity measure to

newR;
7 M’ ← insertRule(M, newR, a′, r′) ;
8 res ← SMTCheckCorrectness(M, M’, e);
9 if res = SAT then

10 maxR ← r′− 1;

11 M ← M’

with a better score. If (minRulesAndLimits, minTotalSub) is the
current best score, we assert:

rulesAndLimits < minRulesAndLimits ∨ (rulesAndLimits =

minRulesAndLimits ∧ totalSub < minTotalSub)

When the SMT solver returns UNSAT, we can guarantee we
found the solution which minimizes the number of rules plus
the number of limits used.

There are two small potential problems with this approach,
and luckily, both have straightforward solutions. First, recall
from Sec. IV-A that the model involves the value of ra∗∆t(p),
but to stay in the theory of LIA, we must avoid multiplying
two variables. In that section, there was an assumption that
the value of ra was known, whereas here it clearly is not.
Fortunately, while we do not know the value of ra, we can
precompute, and fix as a constant, the time difference between
neighboring packets, ∆t(p).

Second, some firewalls languages constrain the value of sub
to a fixed list of possible values s1, . . . sv . This can be handled
through one additional assertion per sub value, ∨vu=1sub = su.
This occasionally leads to cases where there is no valid way
to generate the limits, but such cases can be detected when
the first call to the SMT solver is UNSAT.

G. Repair Algorithms

Given the formulas representing the target firewall and
examples, we need to run a repair algorithm to generate a
correct firewall based on the examples. We will first consider
rule insertion for non-rule inconsistent examples. Then, we
will explain how this same algorithm can be used to insert
the rate limiting rules found by Algorithm 1. Suppose we
have N non-rule inconsistent examples, e1 = (n1, r1 =
(c1 ⇒ act1), t1), ..., eN = (nN , rN , tN ). Given a firewall
represented by a FirewallMap M, our goal is to to find a new
FirewallMap M′ which ensures all the examples are satisfied,
but that guarantees all non-described packets maintain the same
behavior. We also wantM′ to be well organized, meaning that
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“similar rules” all appear together. Our procedure (omitted due
to space restrictions) to decide the similarity assigns a score
based on the number and kinds of criteria used in the rules,
but could be replaced by any desired scoring algorithm.

Consider the kth example, 1 ≤ k ≤ N . We express the
desired condition with respect to example ek by instantiating k
in Formulas 1 and 3. We then show that Algorithm 2 outputs
a firewall which satisfies this condition. For each example
ei = (ni, ri, ti), we take some a′ ∈ equivalent(M, ni) and
find the ID r′ of the existing rule most similar to ri in ACL
a′. Next we set M′ =M, and run insert rule(M′, ri, a′, r′)
to insert ri in all ACLs equivalent to a′ at position r′ in M′.

We convert both M and M′ to SMT formulas, and use
an SMT solver to check that Formulas 1 and 3 are valid. To
do this, we must eliminate the two universal quantifiers that
remain after instantiating k. There are only a finite number of
values that a may attain - namely, it can only be the values
in equivalent to name(M, a′). Using this observation, we can
easily eliminate the universal quantifier using finite instantiation.
Once the formula is only universally quantified by p, we negate
it, and try to show that its negation is unsatisfiable.

If the SMT solver does find the formula to be unsatisfiable,
we know that the original formula was valid, i.e. the firewall
satisfies the considered example. However, if the formula is
satisfiable, we search for a different place to insert the rule,
that comes before rule r′ in ACL a′. We do not consider any
rule after this rule, as any route along whichM andM′ could
incorrectly diverge would also exist if the new rule was inserted
after a′. Also note that the condition is guaranteed to hold if
the new rule is inserted as rule 0 in ACL a′; and although this
placement is often not ideal for the structure of the firewall, it
does guarantee termination.

When rules are from consistent examples, we can insert
them in any order. By definition, two consistent examples
cannot describe any of the same packets, so it does not matter
which corresponding rule comes before the other in the firewall.
However, the rules found by Algorithm 1 are rule inconsistent.
In this case, insertion of the rules must be done in reverse
order of the corresponding example’s times. This ensures that
the inconsistent rules have the same relative order in E′ (from
Sec. IV-F) as inM′, and thus we can expect the same behavior
from the examples in both E′ and M′.

H. Redundant Rule Detection

The final step in repairing the firewall is removing redundant
rules – that is, rules which cannot be matched by any packet.
Thanks to the SMT model, this is straightforward.

As before, the firewall is converted to an SMT formula.
Then, for each ACL name and rule ID, n and r, respectively,
check that there exists a packet that matches the rule, or some
equivalent rule by asserting

∃a′.a′ ∈ equivalent(M, n) ∧matches rule(M, p, a′, r)

If this call returns SAT, then clearly there exists some packet
that matches the rule, and the rule is therefore not redundant.
If it returns UNSAT, then there was no packet that matched
the rule, and it is therefore redundant. In this case, it can be

commented out. This does involve a large number of calls to
the SMT solver, but these calls tend to be fast.

V. IMPLEMENTATION AND EVALUATION

FireMason is developed in Haskell and fully implements
the design described in Sec. IV. The default firewall language
that we support is the iptables language [4], but the framework
can be easily extended to other firewall languages, such as
Juniper [18] and Cisco firewalls [13]. The syntax of these
languages varies, but the semantics are largely the same.
Therefore, only the translation step (essentially a parser) needs
to be rewritten for a particular language, which means that
FireMason can easily be adapted to repair firewalls written
in other languages. As an SMT solver we used Microsoft’s
Z3 [24]. The source code for our implementation is available
at https://github.com/BillHallahan/FireMason.

The evaluation was conducted with an Intel Xeon Quad Core
HT 3.7 GHz.

Scalability evaluation. We evaluated the scalability of Fire-
Mason with regard to real-world network sizes by using three
examples as specification, and varying the number of rules in
the target firewall between 100 and 500. These firewalls were
randomly generated. As shown in Figure 3, FireMason scales
well to large-scale firewalls.

One might expect the rate limiting rules insertion to be
slower than the non rate limiting rules insertion, due to the
additional runtime of Algorithm 1. However, Algorithm 1’s
runtime depends only on the number of examples, and not
on the number of rules in the original firewall, its runtime is
constant across the rate limiting tests. In the rate limiting case
our three examples result in only two rules to insert, whereas
in the non rate limiting case, we insert three rules. Thus, the
additional runtime is due to Algorithm 2.

We also evaluated the performance of FireMason for different
numbers of provided examples, as shown in Table V. In the
stateless case this scales linearly. In the rate limiting case,
the time required increases rather sharply as the number of
examples generating a single limit increases. However, this is
not a major concern, as we have found that a small number of
examples is typically sufficient to find an appropriate limit.

Case study: Repairing real-world firewalls. To demonstrate
that FireMason can repair real-world firewalls, we found fire-
wall repair problems on Server Fault [7] and Stack Overflow [8].
We recreated each scenario, and generated corrected firewalls
using FireMason.

Table IV presents five such problems. We list the examples
which an administrator may provide to clarify how the firewall
should be repaired and present the resulting repairs to the
firewall. We also include the running time, the number of calls
to the SMT solver, and the number of rules in the original
iptables script.

We manually checked the correctness of each result and
compared them to the repairs suggested on the forums. We
found that the output returned by FireMason not only fixed the
problems, but also avoided any side effects. Furthermore, we
manually confirmed the “minimality” of the repairs, in terms
of the impact on the firewalls overall behavior. In some cases,
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Table IV: Case study: Sampled firewall repair problems and our solutions.

Case Study 1 [1] An administrator appended a rule iptables -A INPUT -s 73.143.129.38 -j DROP, but can still receive packets from 73.143.129.38.
Input example repair(INPUT, source_ip = 73.143.129.38 => DROP)

Results 1. Remove the appended rule, and insert a new rule iptables -A INPUT -s 73.143.129.38/32 -j DROP in front of an original rule
iptables -A INPUT -i lo -j ACCEPT.

Original Rule Count 11
Repair Time .109 s

SMT Solver calls 26
Case Study 2 [2] An administrator wants to allow SSH access from the IP address 71.82.93.101, but does not know how.
Input examples 1. repair(INPUT, protocol = 22, source_ip = 71.82.93.101 => ACCEPT),

2. repair(INPUT, protocol = 22, not source_ip = 71.82.93.101 => DROP)
Results Insert new rules iptables -I INPUT 0 -p 22 -s 71.82.93.101/32 -j ACCEPT and iptables -I INPUT 0 -p 22 ! -s

71.82.93.101/32 -j DROP in front of an original rule iptables -I INPUT -p icmp --icmp-type time-exceeded -j ACCEPT.
Original Rule Count 11

Repair Time .088 s
SMT Solver calls 23
Case Study 3 [3] An administrator is trying to limit the number of inbound SSH packets, but it just seems to lock her out.
Input examples 1. repair(INPUT, protocol = 22, time = 0 => ACCEPT),

2. repair(INPUT, protocol = 22, time = 20 => ACCEPT),
3. repair(INPUT, protocol = 22, time = 30 => ACCEPT),
4. ... ... (In total, this repair uses 8 examples, we cannot list all the examples due to limited space)

Results Insert new rules iptables -A INPUT -m limit --limit 2/minute --limit-burst 4 -p 22 -j ACCEPT and
iptables -A INPUT -p 22 -j DROP at the beginning of the original firewall.

Original Rule Count 9
Repair Time 21.10 s

SMT Solver calls 44
Case Study 4 [6] A server is attacked by TCP SYN flooding, so the administrator wants a limit on SYN packets per second.
Input examples 1. repair(INPUT : source_ip = 192.132.209.0/24, SYN, time = 10 => ACCEPT),

2. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 11 => ACCEPT),
3. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 12 => ACCEPT),
4. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 13 => DROP),
5. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 19 => DROP),
6. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 21 => ACCEPT)

Results Append two new rules, iptables -I INPUT 0 -s 192.132.209.0/24 -p 6 --tcp-flags
SYN -j DROP and iptables -I INPUT 0 -m limit --limit 6/minute --limit-burst
3 -s 192.132.209.0/24 -p 6 --tcp-flags SYN SYN -j ACCEPT, to the original firewall.

Original Rule Count 11
Repair Time 6.046 s

SMT Solver calls 42
Case Study 5 [5] An administrator has the IP address 192.168.1.99, and wants to SSH to the IP address 192.168.1.15. She appended a rule iptables

-A INPUT -p tcp -i eth0 --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT but still cannot SSH 192.168.1.15.
Input example 1. repair(OUTPUT, protocol = , destination_ip = 192.168.1.15 => ACCEPT),

2. repair(INPUT, source_ip = 192.168.1.15 => ACCEPT)
Results Insert two new rules iptables -A INPUT -s 192.168.1.15/32 -j ACCEPT and iptables -A OUTPUT -d 192.168.1.15/32

in front of the fourth and fifth rules in the original firewall, respectively.
Original Rule Count 4

Repair Time .054 s
SMT Solver calls 14

Table V: Scalability for number of examples (when inserting
into a firewall with 100 rules).

Number of examples Stateless Time (s) Rate Limiting Time
3 3.567 2.177
6 4.545 2.004
9 5.804 36.37

FireMason outputs a different solution from the posted solution.
After manual comparison, we found that both solutions work
correctly, but FireMason’s output required adding fewer new
rules.

Interestingly, the case studies involving rate limits took
significantly longer than those only involving stateless examples.
This is not at odds with the results of the scalability evaluation.
As shown in table V, for a small number of examples, rate
limit rule generation is generally faster, whereas for a larger
number of examples, stateless rule generation is faster.

VI. RELATED WORK

This section presents existing efforts on firewall analysis,
verification and generation, and discusses why these efforts are
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Figure 3: Scalability for number of rules.

not helpful to our target.

Firewall synthesis. Zhang et al. [34] proposed a symbolic
firewall synthesis approach such that the synthesized firewall
has the same behavior as a given firewall, but with the
smallest possible number of rules. As this approach focuses on
automatically simplifying redundant rules, rather than repairing
an observed error, it is not applicable to our goal.

As software defined networks (SDN) have become increas-
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ingly popular, automatic programming approaches for SDN
have been proposed [27], [33]. Yuan et al. [33] proposed an
automatic SDN policy generation approach, named NetEgg,
based on a scenario-based programming technique. NetEgg can
only generate a new policy, it can not account for the effect of
a new policy on existing policies in the network. Furthermore,
NetEgg can not synthesize rate limiting rules.
Firewall analysis and verification. Mayer et al. [23] devel-
oped the first systematic firewall analysis engine, Fang, to
analyze diverse properties of firewalls. Fang and its sequel
Lumeta [31] allow checking the correctness of firewall con-
figurations by sending their analysis engines queries. Other
efforts [10], [16] propose packet-filter based schemes to detect
conflicting or violated rules. Frantzen et al. [17] and Kamara
et al. [19] proposed different data-flow based approaches to
analyze vulnerability risks in firewalls. Wool [32] conducted a
case study on understanding and classifying the configuration
errors of firewalls.

The Margrave firewall verification tool [26] encodes firewall
rules and queries into first-order logic. It uses KodKod [30]
to search for finite state models. Compared with another
firewall verification tool, NoD [22], Margrave cannot produce
all differences between policies in a compact way, and does
not scale for large firewall rule sets.
Firewall testing. El-Atawy et al. [15] proposed targeting test
packets for better fault coverage. Al-Shaer et al. [11] developed
a system-wide framework to generate targeted packets and
obtain good coverage during firewall testing. Brucker et al. [12]
proposed a formal firewall conformance testing approach,
which uses Isabelle/HOL to generate test-cases from constraint
satisfaction problems.

VII. CONCLUSION

In this paper, we have presented FireMason, an automatic
tool for formally verifying and repairing firewalls. To this
end, we use a first-order intermediary language to model
firewalls, which allows us use of an SMT solver to obtain
formal guarantees on the correctness of verification and repair.
We showed that FireMason not only generates correctly repairs
real-world firewall scripts, but also is able to scale to large-scale
firewalls. We hope that this work will inspire more reasoning
about firewalls in the formal methods community.
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