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Abstract—We present a flexible algorithmic framework KIC3
that combines IC3 and k-induction. The key underlying obser-
vation is that k-induction can be easily simulated by existing IC3
implementations by following a slightly different counterexample-
queue management strategy.

I. INTRODUCTION

The principle of k-induction is the first successful tech-
nique for unbounded SAT-based model checking [1]. It is based
on the following generalization of the usual one-step induction
principle: a safety property ϕ is invariant (i.e., holds in all
the reachable states of the system) if (a) ϕ holds in all states
reachable in up to k steps, and (b) ϕ holds for k consecutive
steps implies that it holds for k + 1-steps. Interestingly, k-
induction is complete when restricted to loop-free (or simple)
paths. That is, any invariant ϕ is k-inductive for some k, when
only loop-free paths of length k are considered. This gives rise
to an unbounded model checking algorithm that repeatedly
tries to prove that ϕ is k-inductive for increasing values of k.

Today, k-induction [1] remains a very important technique
for unbounded model checking in both hardware and software
domains [2]. A classical implementation of k-induction uses a
SAT-solver to check a k-step unrolling of a transition relation,
and ensures loop-freedom of counterexamples via additional
unique state constraints. However, the scalability of the tech-
nique is limited by the depth k of the required unrolling. While
combining k-induction with additional invariant synthesis (e.g.,
[3]) is beneficial, applicability of k-induction remains limited
to properties that can be established with a small value of k.

IC3/PDR [4], [5] is currently the dominant SAT-based un-
bounded model checking technique. Pioneered by Bradley [4],
IC3 has became the definitive framework for developing SAT-
and SMT-based model checking algorithms for both hardware
and software verification. Given a safety property ϕ, IC3
computes an inductive strengthening F of ϕ. That is, a formula
F such that ϕ→ F and F is inductive. Furthermore, when ϕ is
not an invariant, then IC3 produces a counterexample. One of
the distinguishing features of IC3 is that it does not explicitly
build an unrolling of the transition relation: all reasoning is
done over a single step.

As was pointed out in [6], the strengths of k-induction and
IC3 are complementary. Properties that are k-inductive for a
small value of k (e.g., 3 or 4) and, therefore, are “easy” for k-
induction, are not necessarily easy for IC3. More specifically,
IC3 is not guaranteed to terminate after exploring all k-depth
counterexamples even when a property is k-inductive. Based
on this observation, Jovanovic and Dutertre [6] presented an
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alternative model checking approach using the insights from
both algorithms. However, their approach requires a significant
modification of IC3 and an unrolling-based check for k-
induction. In this paper, we explore an alternative solution that
tighter and more elegantly integrates k-induction within IC3.

The paper makes two contributions. First, we introduce
a new algorithm, called K-Ind, to decide whether a given
safety property ϕ is k-inductive. The algorithm is based on the
insights from IC3, and does not explicitly unroll the transition
relation. Whenever ϕ is k-inductive, K-Ind returns an induc-
tive strengthening of ϕ; otherwise, it returns a counterexample
to k-induction. Perhaps the most interesting feature of K-Ind
is that it does not rely on an expensive unique-states con-
straint to guarantee that only loop-free paths are considered.
Furthermore, since it is embedded in the IC3 framework, it
benefits from all the usual IC3 optimizations such as inductive
generalization and generalization of predecessors.

Second, we introduce a framework, called KIC3, that
combines IC3 and k-induction in a single IC3-like algo-
rithm. Our key insight is that k-induction can be simulated
by a specialized counterexample-queue management strategy.
This enables KIC3 to immediately be compatible with all
known IC3-optimizations and extensions (e.g., [5], [7]–[9]).
The algorithm is parameterized by the degree of k-inductive
reasoning, where k-induction can be used to simply validate k-
inductive conjectures, construct k-inductive strengthening, or
recursively block counterexamples to induction.

The rest of the paper is organized as follows. In Section II,
we review the necessary background about k-induction and
IC3. In Section III, we present the K-Ind algorithm, and
in Section IV, we present the KIC3 framework. Finally, we
conclude the paper with an overview of related work in Section
V, an experimental evaluation in Section VI, and conclusion
in Section VII.

II. BACKGROUND

A. Propositional Satisfiability

Let V be a set of variables. A literal is either a variable
b ∈ V or its negation ¬b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal `, we write ` ∈ c to mean that ` occurs
in c, and c ∈ F to mean that c occurs in F .
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Let V be a set of variables and V ′ = {v′ | v ∈ V}. A safety
verification problem is a tuple P = (Init ,Tr ,Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V,V ′) is
a formula with free variables in V ∪V ′ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

Init(~v0) ∧

(
N−1∧
i=0

Tr(~vi, ~vi+1)

)
∧ Bad(~vN ) (1)

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(~v)→ Inv(~v) Inv(~v) ∧ Tr(~v,~v′)→ Inv(~v′) (2)
Inv(~v)→ ¬Bad(~v) (3)

A formula Inv that satisfies (2) is called an invariant, while a
formula Inv that satisfies (3) is called safe.

B. k-invariants and k-induction

An invariant over-approximates all the reachable states of
the transition relation; however, there is no efficient way to
check that a formula is an invariant. An inductive invariant is
an invariant that is easy to validate.

A formula ϕ is called a k-invariant if it over-approximates
all states reachable up to k-steps. That is,

∀0 ≤ N ≤ k ·

(
Init(~v0) ∧

N−1∧
i=0

Tr(~vi, ~vi+1)

)
→ ϕ(~vN ) (4)

Note that any formula F that over-approximates the initial
states is a 0-invariant. A formula ϕ is k-inductive invariant if
it is a k-invariant and(

k∧
i=0

ϕ(~vi) ∧ Tr(~vi, ~vi+1)

)
→ ϕ(~vk+1) (5)

The definition of k-induction naturally extends to k-induction
relative to some 0-invariant formula F , by replacing all but
the last occurrence of ϕ in eq. (5) with (ϕ ∧ F ).

Neither induction nor k-induction are complete. That is,
there are a transition system Tr and an invariant ϕ such
that ϕ not k-inductive for any k. However, as shown in [1],
k-induction is complete when restricted to loop-free (or sim-
ple) paths. That is, the antecedent of eq. (5) is strengthened to
ensure that the sequence ~v0, . . . , ~vk+1 is loop free.

C. Description of IC3

We give a brief description of IC3 that highlights some
steps, but omits many crucial optimizations. We refer the
reader to [10] for an overview of available optimizations and
their possible implementations.

IC3 maintains a sequence of sets of clauses F0, F1, . . .
called an inductive trace. Each set of clauses Fi in a trace
is called a frame, each clause c ∈ Fi is called a lemma, and
the index of a frame is called a level. We assume that F0 is

Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive

1 Add(Q, 〈s0, f0))
2 while ¬Empty(Q) do
3 〈s, f〉 ← Pop(Q)
4 assert ¬s is (f − 1)-invariant
5 if f = 0 then
6 return CEX
7 if SAT?(¬s ∧ Ff−1 ∧ Tr ∧ s′) then
8 t← ExtractPredecessor(s)
9 Add(Q, 〈t, f − 1〉)

10 Add(Q, 〈s, f〉)
11 else
12 〈c, g〉 ← Generalize(¬s, f)
13 AddLemma(c, g)
14 if g < f0 then
15 Add(Q, 〈s, g + 1〉)
16 return BLOCKED

Fig. 1. IC3 Blocking (IC3_Block).

initialized to Init and that Init → ¬Bad . IC3 maintains the
following invariant:

Fi → ¬Bad Fi+1 ⊆ Fi Fi ∧ Tr → F ′i+1

That is, each element of the trace is safe, the trace is syntac-
tically monotone, and each Fi+1 is inductive relative to Fi.

Fig. 1 presents the blocking procedure of IC3. The inputs
to IC3_Block are a state s0 and a level f0, with ¬s0 already
known to be (f0−1)-invariant. The procedure either strength-
ens the inductive trace and returns BLOCKED indicating that
¬s0 is f0-invariant, or finds a counterexample trace witnessing
that s0 is reachable from Init and returns CEX.

IC3_Block maintains a queue of proof obligations (or
CTI’s) of the form 〈s, f〉 where s is a cube over state variables
and f is a level. At each point of the execution, it considers a
proof obligation 〈s, f〉 with the smallest level f , and attempts
to prove that s is reachable in f steps. If f = 0 then there is a
real counterexample. Otherwise, it makes a predecessor query
SAT?(¬s ∧ Ff−1 ∧ Tr ∧ s′) that checks whether a state in s
can be reached from a state in Ff−1. If the result is satisfiable,
it adds a predecessor of s as a new proof obligation at level
f − 1. If the result is unsatisfiable, it learns a new lemma c,
such that Init → c, c→ ¬s and c∧Ff−1∧Tr → c′, and adds
c to Fj , for all j ≤ f . In other words, the lemma c represents
a new over-approximation, and in particular demonstrates why
the state s cannot be reached in up to f steps from the initial
states. An important optimization is to re-enqueue s at the
lowest unknown frame.

Each time that IC3 blocks Bad for one additional level,
it enters a propagation phase, in which for each level f and
for each lemma c ∈ Ff \Ff+1, it executes the following SAT
query: SAT?(c ∧ Ff ∧ Tr ∧ ¬c′). Whenever this query is
unsatisfiable, the lemma c can be added to frame Ff+1.

IC3 terminates if at any point of the execution Ff−1 = Ff

and Ff → ¬Bad . In this case Ff represents an inductive
invariant establishing the correctness of the property.



Input: A number k, a k-invariant `, a 0-invariant F0

1 F ← F0

2 Add(Q, 〈¬`, k))
3 while ¬Empty(Q) do
4 〈s, f〉 ← Pop(Q)
5 assert ¬s is (f − 1)-invariant
6 if f = 0 then
7 if s ∩ Init 6= ∅ then return CEX
8 else return K-CTI
9 F ← F ∧ ¬s

10 if SAT?(F ∧ Tr ∧ s′) then
11 t← ExtractPredecessor(s)
12 assert t→ F
13 Add(Q, 〈t, f − 1〉)
14 Add(Q, 〈s, f〉)
15 else
16 c← Generalize(¬s)
17 F ← F ∧ c
18 G← G ∧ c
19 return (BLOCKED, G)

Fig. 2. k-induction without unrolling (K-Ind).

III. K-INDUCTION WITHOUT UNROLLING

In this section we present K-Ind, an algorithm for decid-
ing whether a given k-invariant formula is k-inductive. Unlike
the traditional approach that reduces k-induction to BMC by
unrolling the transition relation, our algorithm is based on IC3,
and maintains only a single copy of the transition relation. In
addition, unlike the traditional approach, K-Ind guarantees
loop-free paths without introducing expensive unique-state
constraints. In the rest of this section, we present the algorithm,
argue for its correctness, and illustrate it on an example.

A. The Algorithm

The pseudo-code of K-Ind is shown in Fig. 2. The inputs
to K-Ind are a number k determining the depth of induction,
a k-invariant formula `, and a 0-invariant F0. For simplicity
of presentation, we require that ` is a clause. The algorithm
returns one of three values: CEX to indicate that ` is not (k+1)-
invariant, K-CTI to indicate that ` is not k-inductive relative to
F0, and a tuple (BLOCKED, G) to indicate that ` is k-inductive
relative to F0, and G is an inductive strengthening of ` (i.e.,
G contains ` and is inductive relative to F0.

K-Ind closely follows the blocking procedure of IC3
(shown in Fig. 1) with several important differences that are
highlighted next. First, all SAT-queries are made relative to
the single frame F . This can alternatively be explained as
IC3_Block in which all frames are the same and do not
necessarily form an inductive trace. Second, a lemma learned
at any stage of the algorithm holds for all frames. Hence,
discharged proof obligations are not re-enqueued to higher
levels. In particular, the priority queue Q acts as a LIFO
stack. Third, the level of a proof obligation represents how
much remaining budget it has rather than the frame on which
it should be blocked. Fourth, the assertion on line 5 holds.
Fifth, the negation of the predecessor to be blocked is assumed
during blocking of all of it descendants (line 9). Lastly, the
generalization of predecessors is done with respect to the frame
F so that the assertion on line 12 holds.

B. Correctness

In the following, we establish the correctness of K-Ind.
Our correctness argument is partitioned into two cases: (1)
K-Ind returns CEX or K-CTI, and (2) it returns BLOCKED.

Lemma 1 Let k be a natural number, a clause ` be a k-
invariant, and F0 be a 0-invariant. If K-Ind(k, `, F0) returns
CEX, then ` is not a (k+1)-invariant, and if it returns K-CTI
then ` is not k-inductive relative to F0.

Proof: Similarly to IC3_Block, whenever K-Ind
reaches line 6, the queue Q contains a loop-free sequence of
k + 1 states consistent with F0 and satisfying the transition
relation. This sequence witnesses that ` is not k-inductive.
Furthermore, if it intersects with the initial state, then ` does
not hold after (k + 1) steps of the tranistion relation. Hence,
` is not (k + 1)-invariant.

Lemma 2 Let k be a natural number, a clause ` be a k-
invariant, and F0 be a 0-invariant. If K-Ind(k, `, F0) returns
a tuple (BLOCKED, G), then G is an inductive strengthening
of ` relative to F0.

Proof: By construction, G contains ` and is inductive
relative to F . Whenever K-Ind terminates with BLOCKED,
every state that has ever been added to Q is blocked. Hence,
for every clause c in F \F0 there is a stronger clause d in G.
Thus, G is also inductive relative to F0.

Theorem 1 Let k be a natural number, a clause ` be a
k-invariant, and F0 be 0-invariant. Then, assuming that
Generalize(¬s) always returns ¬s, K-Ind(k, `, F0) ter-
minates and returns BLOCKED iff ` is k-inductive relative to
F0, CEX iff ` is not (k + 1)-invariant, and K-CTI iff ` is not
k-inductive but (k + 1)-invariant.

Proof: We only need to show termination. The rest
follows from Lemma 1 and Lemma 2. The number of iterations
of the outer loop is bounded by the number of clauses (or
cubes). At every iteration of the loop, either a new predecessor
is added to the queue Q, or a new clause is added to frame
F . No predecessor is added more than once. All the clauses
in F are distinct.

The assumption that Generalize(¬s) always returns
¬s in Theorem 1 is needed only to guarantee that K-CTI
is returned whenever ` is not k-inductive. Removing this
assumption makes the algorithm stronger by allowing it to find
an inductive strengthening of ` even when ` is not k-inductive
(of course, this is only possible when ` is an invariant).

Interestingly, K-Ind is complete in the sense that if `
is an invariant, then there is a k such that K-Ind(k, `,>)
returns BLOCKED. This follows from the fact that K-Ind
only considers loop-free counterexamples to k-induction. Note
that restriction to loop-free paths follows from assuming the
negation of a state to be blocked (line 9). This is a simpler
alternative to a traditional approach of encoding loop-freedom
of a path via an explicit unique-states constraint.

C. An Example

In this section, we illustrate K-Ind and highlight the
difference with IC3_Block on an example. Consider the



following transition system P

V = {x, a, b, c}
Init ≡ x ∧ a ∧ b ∧ c
Tr ≡ (x′ = ¬x ∨ a ∨ b ∨ c) ∧

(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0)

Bad ≡ ¬x
Note that a = 1 and x = 1 are invariants of P , while b = 1
and c = 1 are not. In fact, c = 1 only holds on the initial
cycle, and b = 1 only holds on the first two cycles. Consider
the property ` ≡ ¬Bad = (x = 1). ` is not 1-inductive but is
2-inductive.

We begin by illustrating a run of K-Ind with inputs: ` =
{x = 1}, k = 2 and F0 = >. On the first iteration of the loop,
F is updated to (x), and the predecessor query for s0 relative
to F yields a SAT query:

(x) ∧ (x′ = ¬x ∨ a ∨ b ∨ c) ∧
(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0) ∧ (x′ = 0)

This query is satisfiable. This, in particular, shows that ` is not
1-inductive. The corresponding predecessor is

t = {x = 1, a = 0, b = 0, c = 0}
On the second iteration of the loop, F is updated to (x) ∧
(¬x∨ a∨ b∨ c), and the predecessor query for t relative to F
yields a SAT query

(x) ∧ (¬x ∨ a ∨ b ∨ c) ∧ (x′ = ¬x ∨ a ∨ b ∨ c) ∧
(a′ = a ∨ b) ∧ (b′ = c) ∧ (c′ = 0) ∧ (x′ = 1) ∧

(a′ = 0) ∧ (b′ = 0) ∧ (c′ = 0)

This query is unsatisfiable. Assuming that Generalize does
not remove any literals, K-Ind learns the lemma (¬x∨a∨b∨c)
and adds it to F . With the proof obligation t being blocked,
the algorithm re-examines `, and makes the predecessor query

(x) ∧ (¬x ∨ a ∨ b ∨ c) ∧
(x′ = ¬x ∨ a ∨ b ∨ c) ∧ (a′ = a ∨ b) ∧ (b′ = c) ∧

(c′ = 0) ∧ (x′ = 0)

This query is also unsatisfiable. The algorithm outputs
BLOCKED, with the constructed 1-inductive strengthening of
ϕ being ψ = x∧(¬x∨a∨b∨c). Finally, we note that general-
ization relative to F (the procedure Generalize) could have
also yielded the lemma (a = 1) (resulting in the strengthening
(x ∧ a)), but could not have yielded lemma (b = 1) since
(b = 1) is not inductive relative to (x) ∧ (¬x ∨ a ∨ b ∨ c).

Next, consider IC3 on the same example. The blocking
procedure of IC3 similarly finds t as a predecessor of s, but
makes the next predecessor query relative to F0 = Init . More
importantly, it calls Generalize on (¬x∨a∨ b∨ c) relative
to F0, possibly learning the lemma (b = 0) instead. Then,
IC3 concludes that s0 is blocked on level 2. However, since
(x) ∧ (b) is not an inductive invariant, IC3 needs to unfold
the trace for an additional frame and continue blocking s on
frame 3.

This example shows that K-Ind guarantees to strengthen
a k-inductive property to an inductive one, while IC3 does
not provide any such guarantees.

Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive

1 res← UNKNOWN
2 while res = UNKNOWN do
3 strategy ← AdjustStrategy()
4 res← BlockUsingStrategy(s0, f0, strategy)
5 return res

Fig. 3. KIC3 Top-level blocking (KIC3_Block).

IV. KIC3: K-INDUCTIVE IC3 ALGORITHM

In this section, we describe the KIC3 framework that uni-
fies IC3 and k-induction model checking algorithms. The core
of KIC3 is a blocking procedure that integrates IC3_Block
with a variant of k-induction. This procedure is then incorpo-
rated into a flexible approach for blocking proof obligations
and for pushing existing lemmas forward.

A. Top-level blocking in KIC3

A pseudo-code for the top-level blocking procedure,
KIC3_Block of KIC3 is shown in Fig. 3. The proce-
dure takes as input a state s0 and a level f0 and assumes
¬s0 is an (f0 − 1)-invariant. The procedure outputs either
BLOCKED to indicate that ¬s0 is f -invariant, or CEX to
indicate that s0 is reachable from Init . As in IC3, KIC3 main-
tains an inductive trace F0, F1, . . . that is updated through-
out the blocking process. Internally, KIC3_Block imple-
ments a portfolio approach, delegating lower-level blocking to
other procedures such as IC3_Block (shown in Fig. 1), or
KIC3_Block_Kind (shown in Fig. 3 and described later in
this section). Note that the internal blocking procedure might
return UNKNOWN to indicate that it has given up before finding
a solution.

B. k-induction blocking in KIC3

Fig. 4 presents the k-inductive blocking procedure
KIC3_Block_Kind of KIC3. In addition to a state s0 and
a level f0, KIC3_Block_Kind requires two parameters:
k0 – the induction depth, and m0 – the maximum number
of predecessors to k-induction to be blocked by an external
blocking procedure. The output of KIC3_Block_Kind is
one of BLOCKED, CEX or UNKNOWN. As s0 is only known
to be (f0− 1)-inductive, the actual induction depth k is set to
the smaller of the two values k0 and f0 (line 1). Our algorithm
is strongly reminiscent of both IC3_Block and K-Ind, with
several important differences that are described below.

First, all SAT queries (line 16) are performed relative to
the same frame Ff0−1. The level f of a proof obligation 〈s, f〉
has a slightly different interpretation than in IC3_Block: s is
guaranteed to be unreachable from Init in f − 1 steps or less
(assertion on line 6). The same queue management strategy as
in IC3_Block is used. That is, proof obligations with lowest
levels are chosen first. As in K-Ind, all the learned lemmas
hold up to level f0. The discharged proof obligations do not
need to be re-enqueued, and the priority queue Q acts as a
LIFO stack. However, unlike K-Ind, the query on line 16
does not fully implement loop-free paths, and instead a more
relaxed condition of IC3_Block is used.



Input: A state s0 and a level f0 s.t. ¬s0 is
(f0 − 1)-inductive; parameters k0 and m0

1 k ← min(k0, f0)
2 m← 0
3 Add(Q, 〈s0, f0))
4 while ¬Empty(Q) do
5 〈s, f〉 ← Pop(Q)
6 assert ¬s is (f − 1)-invariant
7 if f = f0 − k then

// Found cex to k-induction
8 if m < m0 then
9 m← m+ 1

10 if BlockInRange(s, f0 − k, f0) = CEX
then

11 return CEX
12 else if (f = 0) ∧ (s ∩ Init 6= ∅) then
13 return CEX
14 else
15 return UNKNOWN
16 if SAT?(¬s ∧ Ff0−1 ∧ Tr ∧ s′) then
17 t← ExtractPredecessor(s)
18 Add(Q, 〈t, f − 1〉)
19 Add(Q, 〈s, f〉)
20 else
21 〈c, g〉 ← Generalize(¬s, f0)
22 AddLemma(c, g)
23 return BLOCKED

Fig. 4. KIC3 blocking using k-induction (KIC3_Block_Kind).

Input: A state s0, levels f0 and f1 s.t. s0 is
(f0 − 1)-invarant

1 for f = f0, . . . , f1 do
2 if (f = 0) ∧ (s0 ∩ Init 6= ∅) then
3 return CEX
4 if (f 6= 0) ∧ (KIC3_Block(s0, f) = CEX) then
5 return CEX
6 return BLOCKED

Fig. 5. KIC3 Top-level blocking in a range of frames (BlockInRange).

Second, when a proof obligation 〈s, f〉 at level f = f0−k
is examined, and consequently a K-CTI is discovered, the algo-
rithm may attempt to recover by blocking this counterexample
to k-induction. Since ¬s is (f0 − 1)-invariant, s needs to be
blocked in every level in the range [f0−k, f0] (see line 10). The
implementation of BlockInRange is shown in Fig. 5. As
usual, we require that ¬s0 is (f0−1)-invariant. The procedure
iterates over levels from f0 to f1 and calls KIC3_Block to
block s0 at the corresponding level. It returns BLOCKED if
s0 is blocked on all levels in [f0, f1] (and hence ¬s0 is f1-
invariant), and CEX otherwise.

Third, there is a parameter to limit the number of K-CTIs
considered. When the number of K-CTIs reaches the maxi-
mum number m0, KIC3_Block_Kind returns UNKNOWN.
Note that whenever m0 = 0, the external blocking procedure is
not used at all, and KIC3_Block_Kind returns UNKNOWN
(or possibly CEX) as soon as the first K-CTI is discovered.
This limits the algorithm to only learn “high-quality” lemmas
that hold up to level f0, at the risk of eventually returning
UNKNOWN sooner. On the other hand, when m0 =∞, all the

K-CTIs are blocked with an external blocking procedure. In
this case, KIC3_Block_Kind is also guaranteed to return
either BLOCKED or CEX (and to never return UNKNOWN).

C. Correctness and Termination

In this section, we argue the correctness of
KIC3_Block_Kind. First, the assertion on line 6 holds:
the top-level proof obligation s0 satisfies the assertion by
assumption, and other proof obligations are added on line 18
and satisfy the assertion due to the following lemma.

Lemma 3 Let s be a state, and f ≥ 0 be a natural number,
such that ¬s is f -invariant. Let t be a predecessor of s. Then
¬t is (f − 1)-invariant.

Proof: By contradiction. Assume ¬t is not (f − 1)-
invariant. Then, there is a counterexample trace π of length
at most f that reaches t from the initial states. Since t is a
predecessor of s, there is a one-transition extension of π that
shows that ¬s is not f -invariant.

Second, whenever KIC3_Block_Kind reaches line 13,
the queue Q contains a sequence π of k + 1 states satisfying
the transition relation, with the first state in the sequence
intersecting the initial states, and the last state intersecting s0.
The path π shows that s0 is reachable from Init in k+1 steps.

Third, whenever the algorithm reaches line 23, correctness
is argued as in IC3: each lemma c added in line 22 satisfies
Init → g and g ∧ Ff0−1 ∧ Tr → g, and, hence, is inductive
relative to Ff0−1.

Fourth, whenever KIC3_Block_Kind calls
BlockInRange recursively with a state s, by construction
BlockInRange always calls an internal blocking procedure
at the lowest level at which s is not yet blocked. Thus, the
pre-conditions of the internal blocking procedure are satisfied.

Finally, the recursion of BlockInRange is well
founded. Suppose that KIC3_Block_Kind(s0, f0)
calls BlockInRange which, in turn, calls
KIC3_Block_Kind(s1, f1). Then either f1 < f0, or
f1 = f0 and, thus, BlockInRange has already blocked s1
at level f0 − 1 and learned a new lemma. Thus, in both cases
the recursion makes a progress and must terminate.

D. Discussion

It is interesting to contrast the blocking strategies in IC3
and KIC3. IC3_Block blocks each proof obligation at the
lowest level it is yet unknown. Thus, if 〈s, f〉 ∈ Q is a proof
obligation and t is a predecessor of s, then IC3_Block
recursively attempts to block t at level f − 1, and, if suc-
cessful, blocks t at level f as well. On the other hand,
KIC3_Block_Kind attempts to directly block t at level
f , without blocking it at level f − 1 first. Thus, from a
high-level perspective, KIC3_Block_Kind is a variant of
IC3_Block, with a different counterexample-queue manage-
ment strategy.

By always making SAT queries relative to the frame Ff0−1,
KIC3 essentially ignores all lemmas not in Ff0−1. On the
one hand, this may force it to spend more effort on blocking
the top-level proof obligation 〈s0, f0〉. On the other hand, all



learned lemmas automatically hold up to level f0. Intuitively,
since the lemmas are true for more steps of the transition
relation they are of a “higher-quality”, i.e., more likely to be
part of the final inductive invariant.

Note that while KIC3_Block_Kind is similar to K-Ind,
it does not fully incorporate the search for loop-free paths.
This might be important when proof obligations are not
enqueued at their lowest unknown levels. In particular,
KIC3_Block_Kind may fail to find an inductive strength-
ening of ¬s0, even when s0 is k-inductive relative to Ff0−1.
Addressing this deficiency requires an ability to remove lem-
mas from frames in an IC3 framework. Developing support
for this feature is an interesting direction for future work.

Another interesting technical dilemma reflects predecessor
generalization on line 17 of KIC3_Block_Kind. More pre-
cisely, when the SAT query SAT?(¬s ∧ Ff0−1 ∧ Tr ∧ s′) is
satisfiable, with t̄ being the predecessor of s, it is customary
to generalize t̄ to a larger set of states t such that any
state in t leads to s [5]. In practice, it is not clear whether
it is desirable to additionally enforce that t → Ff0−1 and
t → ¬s. On the one hand, generalizing predecessors with
respect to ¬s ∧ Ff0−1 avoids spurious K-CTIs. On the other
hand, it significantly increases the sizes of proof obligations
considered. We do not take these additional constraints into
account in our experiments.

E. Portfolio blocking strategies

In this section, we describe the portfolio blocking strategies
used in the experimental evaluation. Given a state s0 to be
blocked at level f0, the B(k0,m0)-strategy with 1 ≤ k0 ≤ ∞
and 0 ≤ m0 ≤ ∞ is defined as follows:

B(k0,m0)
1) Block (s0, f0) using KIC3_Block_Kind with the in-

duction depth k0, the maximum number of K-CTIs
m0, and the procedure BlockInRange realized by
IC3_Block;

2) If the previous procedure returns UNKNOWN, block
(s0, f0) using IC3_Block.

There are several important special cases of this strategy.
First, when k = ∞, KIC3_Block_Kind is called with the
largest induction depth (in other words, f0) allowed for block-
ing (s0, f0). Second, when m0 = 0, KIC3_Block_Kind
returns UNKNOWN as soon as the first K-CTI is discovered,
in the process only learning lemmas at levels at least f0. Third,
when m0 = ∞, KIC3_Block_Kind blocks all counterex-
amples to k-induction using IC3_Block, and IC3_Block
is never called directly.

F. Pushing in KIC3

Our generic framework for blocking a state at a specific
level can also be used in the pushing stage of IC3. The pseudo-
code of KIC3_Push is shown in Fig. 7. Lines 1–5 implement
the traditional pushing procedure: when a lemma c ∈ Ff \
Ff+1 is inductive relative to Ff , it is also added to the frame
Ff+1. Interestingly, this process can be reinterpreted as calling
KIC3_Block_Kind with parameters k0 = 1 and m0 = 0.
On lines 6–7, we propose to additionally push lemmas at the
last level of the inductive trace using KIC3_Block_Kind
with a larger value of k0 (and m0 still equal to 0).

1 N ← Level((¬Bad))
2 for f = 1, . . . , N do
3 for all lemmas c ∈ Ff \ Ff+1 do
4 if Ff ∧ c ∧ Tr ⇒ c′ then
5 Ff+1 ← Ff+1 ∪ {c}
6 for all lemmas c ∈ FN do
7 KIC3_Block(¬c, f + 1)

Fig. 6. KIC3 Pushing (KIC3_Push).

There are many alternative ways to integrate
KIC3_Block_Kind into the pushing stage of IC3.
However, as in general KIC3_Block_Kind(¬c, f + 1) can
add new lemmas to the level f + 1, additional care must be
taken to guarantee termination of the pushing stage.

V. RELATED AND FUTURE WORK

There is a large body of work on automating k-induction
using SAT-based reasoning and on unbounded model checking
using IC3. We focus only on the most closely related work.

It is well-known that k-induction principle is stronger than
induction. In fact, k-induction is complete when restricted to
loop-free paths while induction is not. Bjørner et al. [11] show
that any k-inductive property can be converted into an induc-
tive property by interpolation. Thus, the size of an inductive
property is linear in the size of the resolution proof of the
corresponding k-inductive property. Our K-Ind algorithm is
a constructive proof of this fact. Given a k-inductive property,
K-Ind constructs an inductive certificate in CNF.

K-Ind is built on top of the blocking procedure of IC3
and shares many similarities with it. When the property ϕ un-
der consideration is k-inductive, both K-Ind (instantiated with
the induction depth at least k) and IC3 are guaranteed to ter-
minate and to discover a suitable inductive strengthening of ϕ.
However, K-Ind is guaranteed to only learn k-inductive lem-
mas, while IC3 provides no such guarantees. In particular, the
convergence depth of IC3 might be significantly larger than
k. We believe that this is an important theoretical advantage of
K-Ind over IC3. Unfortunately, our KIC3_Block_Kind in
the KIC3 framework does not guarantee to converge in k steps,
making it closer to IC3_Block than to K-Ind. Addressing
this deficiency is an interesting topic for future work.

In Quip [9], a variant of IC3, a maximal inductive subset
of all the lemmas is explicitly computed and maintained in a
separate frame. This guarantees that Quip converges as soon
as the trace contains an inductive subset. It is interesting to
extend KIC3 to guarantee convergence as soon as the trace
contains a k-inductive subset. Using KIC3_Block_Kind
for pushing, as suggested in Section IV-F, is a step in that
direction.

The PD-Kind algorithm of Jovanovic and Dutertre [6]
is closest to ours, and has inspired our work. The main
difference is that we have tried to integrate k-induction into
IC3 with the fewest modifications of the IC3 framework. For
example, PD-Kind requires unrolling the transition relation
for validating k-induction queries, while KIC3 does not.
Unfortunately, a direct experimental comparison of KIC3 and
PD-Kind is difficult, as PD-Kind is implemented at the level
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Fig. 7. Summary of experimental results comparing KIC3 (y-axis) with Quip (x-axis) on benchmarks from HWMCC’15.

of SMT and does not target hardware benchmarks. Further,
in our experience, a direct implementation of PD-KIND for
hardware does not scale, as unrolling the transition relation
has a huge negative effect on many benchmarks. At the same
time, using k-induction for pushing clauses on the last frame,
as we suggest in KIC3_Push in Section IV-F, while blocking
all predecessors to k-induction using IC3_Block, is closely
related to the PUSH procedure in PD-Kind. Overall, adapting
the ideas of PD-Kind to hardware is a non-trivial task, and
to some extent our algorithm can be viewed as a step in this
direction.

Recall that KIC3_Block_Kind can be seen as
IC3_Block with a specialized counterexample-queue man-
agement. Alternatively, KIC3_Block_Kind can also be seen
as a form of abstraction. Whenever a proof obligation 〈s, f〉
should be blocked, traditionally, we check whether ¬s is
inductive relative to Ff−1. However, any abstraction of Ff−1
can be used as well. For example, using only lemmas that are
also in Ff as the abstraction closely corresponds to KIC3.

VI. EXPERIMENTS

The techniques presented in this paper are implemented on
top of Quip (a variant of IC3 presented in [9]) in the IBM
formal verification tool IBM RuleBase SixthSense Edition [12],
[13]. All experiments were performed on a 2.13Ghz Linux-
based machine with Intel Xeon E7-4830 processor and 16GB
of RAM. We have used all single property designs from the
HWMCC’15 benchmark set. Each design is initially simplified
using standard logic synthesis techniques (similar to the &dc2
command in ABC [14]). We used a timeout of 900 seconds.

TABLE I. SUMMARY OF EXPERIMENTAL RESULTS.

Technique Solved Time (seconds)
Quip 230 52,776
B(5, 0) 233 51,695
B(5, 5) 224 57,864
B(5,∞) 212 68,012
B(∞, 0) 229 53,757
B(∞, 5) 223 57,551
B(∞,∞) 219 62,397

We omit a direct experimental comparison to the original k-
induction algorithm, as k-induction solves tremendously fewer
properties than any of the IC3-based techniques. On the other
hand, on most of the (few) properties that k-induction is able
to solve, the value of k is small. In these cases, k-induction
(based on unrolling the transition relation) usually outperforms
IC3-based techniques, in the same manner as BMC usually
outperforms IC3 when searching for counterexamples.

We focus the experimental evaluation on the comparison
of Quip and KIC3 with different blocking strategies. The
experiments are presented for 238 designs – which are all of
the designs that remain after removing all instances solved by
logic synthesis alone and all instances not solved by any of the
techniques. Recall that the blocking strategy B(k0,m0) means
that KIC3_Block_Kind is called with induction depth k0
and at most m0 K-CTIs. We say that k0 = ∞ whenever a
proof obligation is always blocked with the largest possible
induction depth. In what follows, we report the results for 6
different configurations of KIC3, obtained by setting k0 to
either 5 or∞, and setting m0 to either 0, 5, or∞. A summary
of the overall results is shown in Table I. The columns Solved
and Time represent the total number of instances solved



and the cumulative time in seconds, respectively. A detailed
comparison between Quip and each KIC3 variant is shown in
the scatter plots in Fig. 7. For each of the plots the horizontal
axis measures the runtime of Quip, while the vertical axis
measures the runtime of KIC3 with the corresponding k-
induction blocking strategy. Thus, points below the diagonal
represent wins for the pure Quip approach, and vice versa.

According to the experiments, the blocking strategy B(5, 0)
performs the best, slightly outperforming Quip by solving 3
more instances in less time. Furthermore, from the plot on
the top-left, we can see that the total runtimes of Quip and
KIC3 with B(5, 0) are fairly well correlated, as most points
are in the vicinity of the diagonal. However, a more detailed
analysis shows that about 30% of the total time to block a
proof obligation is spent in the KIC3_Block_Kind part of
the procedure, so the actual profiles of the two algorithms are
significantly different.

We have also experimented with other blocking strategies
B(k0, 0), and in general all the results are highly consistent.
For example, the “extreme” configuration B(∞, 0) solves 4
instance less than B(5, 0) (and 1 instance less than Quip),
and the plot on the bottom-left still shows high correlation
with Quip.

At the same time, increasing the number m0 of K-CTIs
has a clear negative effect on the algorithm’s performance for
almost every k0. The three top plots demonstrate this for k0 =
5, while the three bottom plots demonstrate this for k0 =∞.
However, we can also note that Quip and KIC3 become less
correlated as m0 is increased, while some instances get solved
faster than before.

VII. CONCLUSIONS

In this work, we present an algorithm to decide whether a
given safety property is k-inductive. This algorithm is based
on the insights from IC3, and does not explicitly unroll the
transition relation or add unique-state constraints to guarantee
simple paths. In addition, we show how k-induction can be
integrated into IC3 with minor modifications of the IC3-
framework. On the practical side, a preliminary experimental
evaluation shows a potential benefit of the suggested methods.
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[1] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in Formal Methods in Computer-
Aided Design, Third International Conference, FMCAD 2000, Austin,
Texas, USA, November 1-3, 2000, Proceedings, ser. Lecture Notes
in Computer Science, W. A. H. Jr. and S. D. Johnson, Eds.,
vol. 1954. Springer, 2000, pp. 108–125. [Online]. Available:
http://dx.doi.org/10.1007/3-540-40922-X 8

[2] M. Brain, S. Joshi, D. Kroening, and P. Schrammel, “Safety verification
and refutation by k-invariants and k-induction,” in Static Analysis
- 22nd International Symposium, SAS 2015, Saint-Malo, France,
September 9-11, 2015, Proceedings, 2015, pp. 145–161. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-48288-9 9

[3] T. Kahsai and C. Tinelli, “PKind: A parallel k-induction based model
checker,” in Proceedings 10th International Workshop on Parallel
and Distributed Methods in verifiCation, PDMC 2011, Snowbird,
Utah, USA, July 14, 2011., 2011, pp. 55–62. [Online]. Available:
https://doi.org/10.4204/EPTCS.72.6

[4] A. R. Bradley, “SAT-based model checking without unrolling,” in
Verification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX, USA, January
23-25, 2011. Proceedings, ser. Lecture Notes in Computer Science,
R. Jhala and D. A. Schmidt, Eds., vol. 6538. Springer, 2011, pp. 70–87.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-18275-4 7

[5] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, Austin,
TX, USA, October 30 - November 02, 2011, P. Bjesse and
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