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Abstract—Property Directed Reachability (PDR) is an efficient
model checking technique. However, the intrinsic high compu-
tational complexity prevents PDR from meeting the challenges
of real world verification. To address this problem, this paper
introduces the parallel algorithm P3 based on: 1) partitioning
of the input problem, 2) exchanging of learned reachability
information, and 3) using algorithm portfolios. The generic
nature of the proposed techniques makes them immediately
suitable for software verification. This paper investigates the
benefits of these techniques while taken individually and when
combined together, implemented using distributed computing
environment on top of the SMT-based software model checker
SPACER. In our experiments over SV-COMP benchmarks we
observe up to an order of magnitude speedup with respect to the
sequential implementation with twice as many instances solved
within a timeout.

I. INTRODUCTION

Applying model checking to realistic, complex systems is
highly non-trivial in part due to the computational complexity
of the underlying decision problem. This paper studies how
parallel computing can help in scaling model checking to such
problems. We concentrate on parallelizing the execution of the
Property directed reachability (PDR/IC3) algorithm [1], [5]
using algorithm portfolios and approaches based on divide-
and-conquer together with sharing of information learned in
the model checking process. In particular, we study how
a computational cluster can speed up model checking of
software represented as sets of Constrained Horn Clauses
(CHC) over Satisfiability modulo theories (SMT) constraints.

The PDR/IC3 algorithm (PDR in brief) is a relatively recent
procedure that, given a transition system and a safety property,
computes a safe inductive invariant or finds a counterexam-
ple for the safety of the system. During the computation,
the algorithm maintains an increasingly long sequence of
frames Fi representing symbolically safe over-approximations
of states reachable from the initial state of the transition
system in at most i steps. The frames are constructed as
sets of PDR-lemmas that are computed to block spurious
counterexamples. The algorithm terminates either by finding a
concrete counterexample or by showing that the set of states
described by Fi+1 is a subset of the set of states described
by its immediate predecessor frame Fi. In this case, the frame
Fi+1 is a safe inductive invariant for the program. Constructing
the frame sequence is a heuristic process which can employ
several different strategies within the PDR algorithm.

In this paper we introduce, to the best of our knowledge, the
first divide-and-conquer technique for PDR (called partition-
ing throughout the paper), combine it with a portfolio of PDR
solvers running different strategies, and allow the solvers to

share PDR-lemmas. We combine these techniques in our new
algorithm called P3 (Parallelly Performed PDR).

The P3 algorithm enables efficient parallel model-checking
using PDR with the aim of improving the current state-of-
the-art of parallel software verification. The approach is based
on three concepts that expand the sequential PDR algorithm
as follows: (i) P3 applies a portfolio of sequential PDR
implementations parameterized to compute the frame sequence
in different ways through different search strategies and by
randomizing the search heuristic of the underlying SMT
solver; (ii) P3 implements the novel partitioning approach
introduced here by using the transition function of the program
to compute, based on the negation of the safety property,
its pre-images which are then distributed over the solvers
in the portfolio as new safety properties; and (iii) the PDR
implementations in the portfolio may share the PDR lemmas
stored in the frames among each other. To the best of our
knowledge, P3 enables parallel PDR for software verification
for the first time.

We implemented the P3 algorithm using the sequential
SPACER model checker [12] as a basis. We performed a
thorough experimental analysis processing over 1000 instances
from the Software Verification Competition 2016 (SV-COMP)
with different configurations. The experiments were run in a
computational cluster of 60 CPU cores. Our results show that a
combination of divide-and-conquer, lemma sharing, and algo-
rithm portfolio is capable of solving twice as many instances
within our timeout of 1000 seconds and provides up to an order
of magnitude speedup compared to the best sequential SPACER
configuration. Our experimentations furthermore reveals that
the choice of the heuristic for selecting which clauses to share
is important, and that especially the partitioning technique
benefits the most from it. The results are interesting also in
the sense that they report the first experiments on running
PDR on a computing cluster targeting in particular software
verification with SMT-based Constrained Horn Clauses.

The paper is structured as follows. We compare with related
work in Section II, and in Section III we review the basics of
the PDR algorithm. In Section IV, we introduce our notion of
distributed PDR and give details about our new parallelisation
strategies. In Section V, we describe our implementation used
for empirical evaluation presented in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

The first attempt to parallelize PDR is mentioned in the
original PDR paper [1], where the experimented parallel
setting is based on sharing all the frames among different



computing threads on the same machine. This work is further
improved in [3] where they study different parallel approaches,
all of them focused on multi-threaded portfolios and PDR-
lemma sharing, addressing propositional PDR.

Both [1], [3] are limited to propositional PDR, making them
suitable mainly for hardware verification. In contast to [1],
[3], we propose and thoroughly evaluate different lemma
sharing strategies by differentiating between k-invariants and
∞-invariants inside the frames. We introduce the novel parti-
tioning technique for PDR, together with a concise algorithm
capable of combining all these techniques in a sound manner.
Moreover our implementation is based on the more scalable
distributed computing, thus exploiting the much bigger com-
putational power offered by cloud-computing environments
compared to single-machine threads.

A first investigation of PDR in the setting of software
verification is done in [4]. A different approach based on CHC
for software verification is presented in [12]. We extend this
work with the aim of improving the current state-of-the-art of
parallel software verification.

There is a substantial amount of work on parallel SMT
solving that can help software verification model checking
techniques in general. The parallelization tree framework for
combining divide-and-conquer and portfolio directly on SMT
formulas is introduced in [10] and augmented with clause
sharing in [14]. A parallel approach for model checking of
concurrent programs is given in [9], while [15] presents a
parallel symbolic execution involving several sequential SMT
solvers.

III. PRELIMINARIES

We assume that the reader is familiar with the basic notation
and semantics of First Order Logic (FOL), and theories of
Linear Integer Arithmetic (LIA) and Arrays. For a set of
variables X , we write X ′ to denote the set of primed variables
X ′ = {x′ | x ∈ X}. We extend the notation to formulas,
and write ϕ′ for a formula obtained from ϕ by replacing
all variables in ϕ with the corresponding primed variables.
Furthermore we denote by X [i] the set of variables obtained
by adding i primes to each x ∈ X .

A. Safety Properties

A program can be expressed as a transition system con-
sisting of variables X , a formula Init(X) describing the
program’s initial states, and a formula Tr(X,X ′) describing
the program’s transition relation. Given a transition system,
a safety property ¬Bad(X) is a formula over the variables
of the system. A set of states described by a formula F is
safe if F ∧ Bad is unsatisfiable. A transition system satisfies
a safety property, i.e., is safe with respect to ¬Bad , if all
its states reachable from the initial state with the transition
relation are safe. The transition system is safe up to k steps if
its states reachable by i applications of the transition relation,
for all 0 ≤ i ≤ k, are safe. In this paper, we are interested
in determining whether a given program satisfies a given
safety property. An instance of this problem is expressed as a
triple S = 〈Init(X),Tr(X,X ′),Bad(X)〉. For simplicity, we

assume that Init(X) =⇒ ¬Bad(X), otherwise, S is unsafe
and the counterexample is a trivial model over X that satisfies
Init(X) ∧ Bad(X).

Definition 1 (Post Image). Given a transition relation Tr and
a set of states represented by F , the predicate postnTr (F ) is
the set of states reachable from any state in F after taking
exactly n transitions of Tr . It is defined as follows:

postnTr (F ) =

{
F if n = 0,

∃X ′ · postn−1Tr (F )(X ′) ∧ Tr(X ′, X) if n ≥ 1.

post∗Tr (F ) is the transitive closure of Tr :

post∗Tr (F ) =
∨
n≥0

postnTr (F )

The set of reachable states for a program S is post∗Tr (Init).
The PDR algorithm constructs an approximation of the reach-
able states by computing modularly overapproximations of
states reachable by S in a certain number of steps. The
algorithm presents these overapproximations as PDR-lemmas,
formulas over variables X describing reachability information
learned by PDR.

Definition 2 (Relatively Inductive and Invariant Lemmas).
Given initial states represented by Init , transition relation Tr
and a set of lemmas F , a PDR-lemma ϕ is inductive relative
to F if and only if

Init =⇒ ϕ ϕ ∧ F ∧ Tr =⇒ ϕ′

Whenever ϕ is inductive relative to true, we say that ϕ is an
inductive lemma. A PDR-lemma ϕ is an invariant lemma if
it is true in all the reachable states, i.e., post∗Tr (F ) =⇒ ϕ.
Every inductive PDR-lemma is invariant, but the converse is
not true in general.

An instance S is safe if there exists a safe inductive invariant
Inv(X) such that Inv(X) =⇒ ¬Bad(X). S is unsafe
if there exists an n ∈ N such that postnTr (Init) ∧ Bad is
satisfiable. For an unsafe S, a satisfying assignment for

Init(X [0]) ∧ Bad(X [n]) ∧
n−1∧
i=0

Tr(X [i], X [i+1])

is called a feasible counterexample. The satisfying assignment
corresponds to a sequence of states where the first state
satisfies Init , each consecutive pair of states satisfies Tr , and
the final state satisfies Bad , and can, therefore, be considered
as an evidence for a programming error.

B. Property Directed Reachability (PDR)

In this section, we give a high-level overview of IC3/PDR
algorithm. We refer the reader to [1], [5], [8], [6], [12] for the
details of the original algorithm and its extensions to SMT.

Definition 3 (PDR Trace). Given an instance of the safety
problem S, a PDR trace for S is a sequence of frames F =
〈F0, F1, . . . , FN , . . .〉 such that each frame Fi ∈ F is a set



of PDR-lemmas. Furthermore, the trace satisfies the following
properties for i ≥ 0:

F0 ≡ Init (1)
Fi ∧ Tr =⇒ F ′i+1 (2)

Fi =⇒ Fi+1 (3)
i < N =⇒ (Fi =⇒ ¬Bad) (4)

Intuitively, each frame Fi ∈ F over-approximates all the
states reachable in at most i steps of the transition relation
Tr from Init . Moreover, the trace proves that S is safe up to
N − 1 steps of Tr from Init .

PDR uses the trace to compute an increasing bound of steps
from Init up to which S is safe. The algorithm works by
iteratively adding an initially empty frame FN at the end of
the trace. PDR then tries to either prove safety of FN by
strengthening it, or to find a feasible counterexample based
on it.

Definition 4 (Proof Obligation). Given an instance S of the
safety problem and a PDR trace F for S, a proof obligation
is the pair 〈σ, i〉 where σ is a conjunction of predicates over
state variables and i ≤ N . In addition, the proof obligation
satisfies the following:
• σ ∧ Fi is satisfiable, and
• for all models m such that m |= σ, post∗Tr (m)∧Bad is

satisfiable.
The conjunction σ represents a set of the states consistent with
a frame Fi ∈ F , containing states that can reach Bad with a
feasible path.

Given an instance S, PDR computes a trace F of increasing
length for S until either a fixed point is found for Tr or
the algorithm determines a feasible counterexample. In the
process, PDR constructs candidate counterexamples, proof
obligations, that are stored in an obligation queue Q. The
proof obligations 〈σ, i〉 are propagated towards the initial state
by computing their pre-image with respect to Tr , resulting in
〈σ−, i− 1〉 which is then inserted to Q. If a counterexample
candidate is not feasible, a proof obligation will at some point
be blocked by a frame. This happens if for a proof obligation
〈σ, i〉 it holds that Fi−1 ∧Tr ∧ σ′ is unsatisfiable. The clause
¬σ is then simplified to a PDR-lemma and inserted to Fi.

PDR proves S safe if:

∃i < N · Fi+1 =⇒ Fi

This simplifies Equation (2) to Fi∧Tr =⇒ F ′i . Thus together
with Equations (1) and (4) Fi is proved to be both a fixed point
for Tr and a safe inductive invariant for S.

The way PDR computes the fixed point leaves room for
some flexibility in how the lemmas are organized. In particu-
lar [6] suggests to separate the inductive lemmas to a distinct
frame F∞. Hence the frame F∞ is initially empty and always
consists of those lemmas ϕ ∈ ⋃Fi inductive relative to F∞.
Thus, S is safe when

F∞ =⇒ ¬Bad .
PDR proves S unsafe whenever a proof obligation 〈σ, 0〉 is

added to the obligations queue. By Definition 4, σ represents a

set of states in Init from which there is a feasible path leading
to a state in Bad .

Definition 5 (PDR Configurations). Given an instance of the
safety problem S , a PDR configuration is the quadruple C =
(N,F , F∞,Q) where:
• N ∈ N,
• F = 〈F0, . . . , FN , . . .〉 is a trace of S,
• F∞ is the inductive frame of F ,
• Q = {〈σ, i〉, . . .} is the obligation queue, where i ≤ N .

The Initial gonfiguration of PDR for S is C0 =
(1, 〈Init , ∅, . . .〉, ∅, ∅)

Given a PDR configuration C of a safety problem S,
each of the following operation performed on C updates its
components resulting in a new configuration C′.

Candidate. If there exists σ such that σ =⇒ FN ∧ Bad ,
then the proof obligation 〈σ,N〉 is added to Q.

Predecessor. Given 〈σ, i〉 ∈ Q with i > 0, if there exists a
conjunction of predicates δ such that for all consistent m
such that m |= δ, m∧Tr |= σ′ holds, then 〈δ, i− 1〉 is added
to Q.

Blocking. Given 〈σ, i〉 ∈ Q with i ≥ 1, if Predecessor is not
applicable then remove 〈σ, i〉 from Q and add the PDR-lemma
ϕ to all Fj with 1 ≤ j ≤ i such that

Init =⇒ ϕ ϕ =⇒ ¬σ Fi−1 ∧ Tr =⇒ ϕ′

Unfold. If Q = ∅ and Candidate is not applicable then
N := N + 1.

Inductive. Given a subset of lemmas ϕ ⊆ Fi with 0 ≤ i < N
s.t. ϕ ∧ F∞ ∧ Tr =⇒ ϕ′, add ϕ to F∞ (and to each Fi).

In addition PDR has the following two rules that guarantee
the termination of the algorithm when always taken when
they are applicable:

Safe . If F∞ =⇒ ¬Bad report safe.

Unsafe . If any 〈σ, 0〉 ∈ Q report unsafe and generate a
counterexample.

In PDR with theories, and, therefore, in our implementa-
tion, the operation Predecessor employs Model-Based Projec-
tion [12] to ensure termination, while Blocking uses interpo-
lation [8] to build the lemma.

Definition 6 (PDR Strategy). Given an intance S of the safety
problem and a PDR configuration C, a PDR strategy TS is a
function that maps C to one of the possible PDR operations
applicable for C, based on S.

A PDR execution is a sequence of configurations
〈C0, C1, . . . , CT 〉 such that for every i ∈ {1, . . . , T}, Ci is



the result of the operation TS(Ci−1) on Ci−1, C0 is the
initial PDR configuration for S, i.e. (1, 〈Init , ∅, . . .〉, ∅, ∅), and
TS(CT ) ∈ {Safe,Unsafe} .

IV. THE P3 ALGORITHM

In this section we introduce the P3 (Parallelly Performed
PDR) algorithm for parallel model-checking with PDR.

P3 implements three parallelisation techniques for PDR:
portfolio, partitioning, and lemma sharing. These techniques
can be combined in order to exploit each one strengths.

Portfolio takes advantage by using different PDR strategies
while partitioning focuses the search by constraining the
problem. In general, partitioning means dividing a problem
into several sub-problems. The PDR partitioning technique
introduced in this paper partitions the problem by restricting
the paths leading to the bad states.

Finally, lemma sharing provides each solver with useful
information arising from search diversification, and possibly
not derivable locally. The intuition is that PDR-lemmas express
what is learned by each PDR execution. Since different
executions employs different strategies, PDR-lemmas that are
easily found by one strategy can be difficult to find by another.

In the rest of the section, we formalize portfolio, partition-
ing, and lemma sharing strategies and provide details of P3.

A. Portfolio

The most naı̈ve parallel technique is a portfolio – concurrent
and independent execution of multiple sequential PDR strate-
gies on the same problem. A portfolio terminates as soon as
one of its instances terminates successfully.

We define a notion of a distributed PDR configuration
to model a PDR portfolio with any combination of lemma
sharing and partitioning.

Definition 7 (Distributed PDR Configuration). Given an
instance S of the safety problem, a distributed PDR configu-
ration is a set of tuples:

Dn = {
(
T i, Ci

)
}

where for each i ∈ {1, . . . , n}, n ∈ N :

• T i is a PDR strategy from Definition 6,
• Ci =

(
N i,F i = 〈F i

0, F
i
1, . . . , F

i
Ni , . . . , 〉, F i

∞,Qi
)

is a
PDR configuration from Definition 5.

A distributed PDR configuration expresses a PDR portfolio
when for every i ∈ {1, . . . , |D|}, T i is a strategy for the input
problem S. That is, every strategy evolves the corresponding
PDR-configuration independently, performing asynchronous
and arbitrary choices based on S.

A PDR portfolio D terminates when there exists T i
S(Ci) ∈

{Safe,Unsafe} for some i ∈ {1, . . . , |D|}. Termination and
soundness of this setting follows trivially from PDR because
every execution is independent.

B. Partitioning

In this section, we define partitioning strategy and argue for
its soundness.

Definition 8. Given a safety problem S, partition(S) is a
set of problems {Sp1 , . . . ,Spn}, where each instance Spi =
〈Init(X),Tr(X,X ′), pi(X)〉 is called a partition of S, and
such that

n∨
i

pi ⇐⇒ ∃X ′ · Tr(X,X ′) ∧ Bad(X ′)

From Definition 8, it follows that S is safe if and only if all
of its partitions are safe. A distributed PDR configuration D
expresses partitioning if for each partition Sp ∈ partition(S)
there is a pair (T i

Sp , Ci) ∈ D. The result of a distributed con-
figuration with partitioning is Unsafe if there exists T i

Sp(Ci) =
Unsafe , and the result is Safe if for each Sp ∈ partition(S)
there exist T i

Sp(Ci) = Safe .
The soundness is by construction: a counterexample for Sp

is also valid for S, while the safety of all Sp ensures the
safety of S because every state leading to Bad in one step is
expressed in a partition.

C. Lemma Sharing

In this section, we give the formal definition of lemma
sharing and argue for its soundness in a distributed portfolio
setting.

Definition 9 ((k-)invariant). A PDR-lemma ψ is k-invariant if
it is true in all the states reachable in k steps or less, i.e.,
postkTr (Init) =⇒ ψ. If ϕ is invariant, then it is k-invariant
for any k ∈ N.

Following Definition 9, each frame Fk, k ∈ N, is a set of
k-invariants for S , while F∞ is a set of invariants for S.

Theorem 1 (Lemma Sharing). Given a distributed PDR
configuration D for an instance S of the safety problem, the
PDR-lemma ψ ∈ F i

k, k ∈ N is a k-invariant for S and the
operation of adding ψ to any F j

l with i 6= j and l ≤ k keeps
Cj a valid PDR configuration for S.
The same holds for ϕ ∈ F i

∞ when added to any F j
∞, i 6= j.

Proof. The proof follows from Definition 2. Each ϕ ∈ F i
k is a

k-invariant if k ∈ N, or an invariant if k =∞ and can be used
to soundly refine a different abstraction of states reachable in
up to k steps.

Similarly, sharing invariants is sound and makes every F i
∞

an invariant for S. Thus, S is safe whenever any F i
∞ implies

¬Bad .

D. Parallelly Performed PDR

The P3 algorithm is shown in Algorithm 1. It combines
portfolio, lemma sharing, and partitioning. The algorithm
works as follows. Until there are available computing re-
sources, the procedure Entrust randomly selects a partition not
yet solved, creates a new strategy and allocates the necessary
resources in order to run PDR.

The procedure Exclude at line 12 is taken exactly once for
each partition in P whenever a corresponding sequential PDR
instance terminates. This happens finitely many times because
there are finitely many partitions. Therefore, the algorithm



Input : Safety problem
S = 〈Init(X),Tr(X,X ′),Bad(X)〉.

Output : {Reachable, Unreachable}
Data : A distributed PDR configuration D, a set of

partitions P .
Initially: D ← ∅, P ← ∅.
Assume: Init ∧ Bad is unsatisfiable.

1 P ← partition(S)
2 while True do
3 Reachable: if 〈σ, 0〉 ∈ Qi for some i ∈ {1, . . . , |D|},

return Reachable.
4 Unreachable: if P = ∅, return Unreachable.
5 Lemma Sharing: copy a PDR-lemma ϕ ∈ F i

n to F j
n

with: i, j ∈ {0, . . . , |D|}, i 6= j and n ∈ N ∪ {∞}
6 Entrust: if computing resources are available, then:
7 select a partition Sp ∈ P
8 create a new PDR strategy TSp
9 create new C = (1, 〈Init , ∅, . . .〉, ∅, ∅)

10 set D ← D ∪ {(TSp , C)}
11 allocate computing resources for PDR(TSp , C)
12 Exclude: if there exists Sp ∈ P such that

F i
∞ =⇒ ¬p for some i ∈ {1, . . . , |D|}, then:

13 P ← P \ {p}
14 release computing resources used for each

(TSp , C) ∈ D
15 end

Algorithm 1: The P3 algorithm.

terminates if all corresponding PDR instances terminate. Once
exclude is taken, all the computing resources available might
be reallocated on other partitions by several Entrust calls.

Lemma Sharing does not affect termination because it only
refines the frames, leading the execution toward convergence.
It is not possible for any frame to get weaker after lemma
sharing is applied.

If partition(S) = {S} at line 1, then partitioning is
disabled, and if procedure Lemma Sharing at line 5 is never
taken then lemma sharing is disabled. If both are disabled then
the algorithm corresponds to a PDR portfolio. We assume that
there is a global t to handle the desired setting.

V. IMPLEMENTATION

We implemented our parallel PDR algorithm using the tool
SMTSERVICE [13], a framework for parallel and distributed
solving already used in [14] for distributed SMT. A Graphical
User Interface [2] is also available for analysing the parallel
executions. We upgraded it to also support distributed PDR.
SMTSERVICE is a client-server based framework. The server
implements Algorithm 1. The client uses the SMT-based PDR
model checker SPACER [12]. We modified SPACER in order
to expose the API for lemma sharing. The overview of the
architecture is shown in Figure 1.

The server is written in PYTHON and its behaviour can
be controlled through a configuration file. The server is in
charge of pre-processing the input instances, managing clients
connections and solving tasks and collecting statistics sent
by the client solvers. The server stores its information in an

SQLITE3 database called Logs. The database is also used to
analyse the steps of the parallel solving process. Instances to
be solved are provided to the server at run time through the
control socket. The control socket allows either the user or a
tool (e.g., a model checker) to interact with the server.

The partitioner component creates the partitions. The parti-
tioning process is guided by the CHC syntactic structure of the
input instances. When partitioning is disabled, the partitioner
creates a single partition corresponding to the bad states.

The scheduler keeps the list of all the instances and their
partitions and manages connected clients. The scheduler solves
one instance at a time. The partitions of the current instance
are evenly distributed among the connected clients. Once
a partition is proven unsatisfiable, the client working on it
is provided with a remaining unsolved partition. SPACER
implements three strategies, SPACER(DEF), SPACER(IC3),
SPACER(GPDR), which differ in how they manage the queue
of proof obligations. The scheduler proceeds in a best-effort
way assigning each partition to 3 solvers, each configured
with one strategy. If there are still solvers available then the
same procedure is repeated using a different random seed in
the underlying SMT solver of the client. Client failures and
connection of new clients are handled in a sound way so that
computational power may be added or removed on request.

The Lemma Database is implemented as a separate server.
Each client periodically pushes learned lemmas to the Lemma
Database accordingly to the sharing strategy provided by the
server. The pull of the lemmas is also periodic and each client
only pulls lemmas that are yet unknown for that client.

We implemented 4 lemma sharing strategies. The server
reads from the configuration file which is the desired lemma
sharing strategy and forwards it to the solver together with
the instance. The procedure Lemma Sharing at line 5 in
Algorithm 1 describes the strategy ∗-invariants, namely the
exchanging of every learned PDR-lemma. Sharing only PDR-
lemmas from F∞ (∞-invariants) is done by fixing n = ∞,
while sharing only k-invariants is achieved by constraining
n ∈ N. Finally, lemma sharing is disabled when the procedure
Lemma Sharing is never taken. Once an instance is solved
its lemmas are removed to reduce memory consumption. In
the case of partitioning combined with lemma sharing, our
implementation shares lemmas only among solvers working
on the same partition.

...

Server

Lemma DB

Client 
Spacer

Configuration

Cluster
Partitioner

Client 
Spacer

Client 
Spacer

Scheduler

Control Socket

User Logs

Figure 1. SMTSERVICE framework overview. The server implements Algo-
rithm 1. Each client represents a different solver process in a computing node.
Solid lines represent TCP/IP connections, while dashed lines represent disk
I/O.



Table I
SUMMARY OF RESULTS SHOWING THE NUMBER OF SOLVED INSTANCES.

Technique less500 more500
#reachable #unreachable #unknown #reachable #unreachable #unknown

SPACER(GPDR) 63 175 13 0 8 317
SPACER(IC3) 64 155 32 2 9 314
SPACER(DEF) 64 155 32 2 13 310

portfolio 66 185 0 8 40 277
∞-invariants 66 185 0 7 49 269
k-invariants 66 182 3 7 90 228
∗-invariants 66 185 0 7 90 228

partitioning 66 176 9 10 34 281
partitioning+∞-invariants 66 183 2 11 49 265
partitioning+k-invariants 66 182 3 11 115 199
partitioning+∗-invariants 66 185 0 16 98 211

virtual best 66 185 0 18 132 175

VI. EXPERIMENTS

This section presents an extensive experimental evaluation
of the P3 algorithm on instances from the Software Verifica-
tion Competition. We measure separately the performance of
the algorithm on instances that are known to be easy and hard
for the SPACER model checker, and study the performance
of combinations of lemma sharing, portfolio, and partitioning.
We also experiment on different lemma sharing heuristics on
these settings.

All the reported experiments are executed on a cluster
where each computing node is equipped with 2×Intel E5-
2650 v3 CPU, 64 GB of RAM and Intel 40Gbps Infiniband
network adapter. The parallel experiments are executed using
60 solvers on 6 computing nodes, with the server running on a
separate node. The timeout is set to 1000 seconds (wall-clock
time) on all the experiments.

The benchmark set used in our evaluations is constructed
by SEAHORN [7], a fully automated analysis framework for
LLVM-based languages. Given as input the source file, SEA-
HORN constructs the triplet 〈Init(X), T r(X,X ′), Bad(X)〉
expressed in SMT-LIB v2 like language and representing the
input safety problem ready to be provided to SPACER. Our
benchmark set is based on 1,802 C problems taken from the
SV-COMP 2016 Device Drivers Linux 64-bit (LDV) cate-
gories available at https://github.com/sosy-lab/sv-benchmarks/
tree/master/c and preprocessed by SEAHORN.

We first evaluate the benchmarks sequentially using the
different strategies available in SPACER: IC3, GPDR and DEF.
We call these settings sequential. Those benchmarks solved
in less than one second are removed from the set and we
experiment over the remaining 562 benchmarks.

Based on these evaluations we create two different bench-
marks sets of easy and hard instances respectively:
• less500: benchmarks solved in less than 500 seconds by

at least one strategy. It contains 251 benchmarks.
• more500: benchmarks solved in more than 500 or timed

out by at least one strategy. It contains 325 benchmarks.

These benchmark sets partially overlap by having 14 bench-
marks in common.

Table I shows an overall evaluation over all the experiments
we carried out. For each technique, we report the number of
instances proven reachable, unreachable, and those unsolved,
for both the experimental sets. The table is partitioned into 4
parts. Going from top to bottom: part 1 contains the results
from sequential executions; part 2 contains the result for
lemma sharing strategies with pure portfolio; part 3 contains
results with partitioning; and part 4 presents the results of the
virtual best solver that uses the best configuration for each
problem. This virtual best is achievable by running in isolation
a portfolio of the 8 combinations, using 8×60 CPUs. Notably,
every parallel technique outperforms sequential execution.

For the more500 set the partitioning-based techniques per-
form the best. For the less500 set, especially for reachable
instances, portfolio-based technique is the best, matching the
virtual best solver.

In Table II, we show average time speedups between se-
quential executions and the respective best parallel techniques
for both sets, over benchmarks that did not time out. The
columns 60 CPU show the performance of the best technique:
∞-invariants for less500 and partitioning+k-invariants for
more500. An overview of performance over all the techniques
is shown in Figure 2. We present the runtime performance for
the three sequential strategies (IC3, GPDR and DEF) and all

Table II
AVERAGE SPEEDUP COMPARED TO SEQUENTIAL SOLVING.

Sequential
strategy

less500 more500

60 CPU
virtual
best 60 CPU

virtual
best

SPACER(GPDR) 8× 10× 59× 91×
SPACER(IC3) 26× 32× 56× 88×
SPACER(DEF) 27× 33× 53× 83×

https://github.com/sosy-lab/sv-benchmarks/tree/master/c
https://github.com/sosy-lab/sv-benchmarks/tree/master/c
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Figure 2. Comparison among all tested techniques on the sets less500 (top)
and more500 (bottom). k-invariants refers to sharing only lemmas from the
trace, ∞-invariants refers to sharing just F∞, while ∗-invariants implements
both. Finally, for each benchmark we report the virtual best runtime among
all the tested techniques.

the parallel techniques tested in the cluster.
An overview for the set less500 is given in Figure 2 (top).

Sharing ∞-invariants over portfolio is the best technique for
this set, already performing similarly to the virtual best. In
fact, ∞-invariants solves all the benchmarks with an average
30% slowdown with respect to the virtual best, and up to 27×
faster than sequential, as reported in Table II.

Figure 2 (bottom) shows a similar overview for more500.
Regarding this set, partitioning techniques are the best choices.
In fact, the best technique for this set is partitioning+k-

Table III
LEMMA SHARING STATISTICS.

Parallel
technique

less500 more500
time #lemmas time #lemmas

portfolio +
∞-invariants 0.35% 141 0.41% 670
k-invariants 1.24% 252 1.00% 347
∗-invariants 1.55% 243 0.83% 348

partitioning +
∞-invariants 1.46% 170 0.87% 403
k-invariants 3.51% 140 4.55% 238
∗-invariants 3.27% 221 4.45% 320

invariants, followed by partitioning+∗-invariants. However, 40
benchmarks are solved by only one of these two techniques,
making them complementary rather than strictly better than
the other.

A possible way to address the complementarity issue is
by implementing a portfolio of multiple isolated parallel
techniques, giving priority to the complementary ones. This
approach is capable of gradually improving performance to-
ward the virtual best results, where the best performance is
reached with the highest CPU resource allocation.

Regarding more500, a portfolio of partitioning+k-invariants
and partitioning+∗-invariants is capable of solving 140 in-
stances, 10 less than the virtual best and with an average 15%
slowdown. Then, by adding ∗-invariants and k-invariants it is
possible to solve 148 instances with 5% slowdown and half
computing resources with respect to virtual best. The missing
2 instances are only solved by partitioning+∞-invariants and
∞-invariants.

Regarding less500, a similar setting can only decrease
solving time. This is because ∞-invariants already solved
all the benchmark. Figure 3 shows the comparison between
partitioning and portfolio with ∗-invariant sharing being quite
complementary. Thus, a portfolio of these two techniques is
capable of solving the entire less500 set using one fourth
the CPU power requested by the virtual best, with a 14%
slowdown.

Another important result shown in Figure 3 that partitioning
often outperforms pure portfolio on reachable instances. This
is because the first partition proven satisfiable also proves the
entire problem satisfiability, and the focused search done in
each partition helps the solvers to converge quickly.

Table III shows results about lemma sharing. The columns
time show the average amount of time spent on lemma sharing
push and pull, with respect to solving time. The columns
#lemmas show the average number of PDR-lemmas exchanged.
The amount of time spent on PDR-lemmas push and pull is
about 1% and 3% of solving time respectively for portfolio
based techniques, and partitioning based technique. The av-
erage amount of PDR-lemmas generated is significantly lower
than in parallel SAT and SMT [10], [11]. While heuristics
for clause sharing within parallel SAT and SMT are required
due to the high throughput, in this settings lemma sharing



heuristics are less crucial.
Overall, our experimental evaluations show that parallel

techniques are highly beneficial. In particular, parallelization
with portfolio combined with sharing PDR-lemmas from F∞
is the best choice for easier instances, while partitioning with
sharing PDR-lemmas from the trace is the best choice for
harder instances. This demonstrate that the choice of the
lemma sharing strategy is important.

More experimental results are available at http://verify.inf.
usi.ch/content/p3-experimental-results-fmcad2017.

VII. CONCLUSIONS

This work introduces the first parallel approach of the
IC3/PDR algorithm for software model checking based on
constrained horn clauses and satisfiability modulo theories.
The P3 algorithm is based on combining in a new and
PDR-specific way algorithm portfolios, divide-and-conquer
approaches, and sharing of information learned during the
algorithm execution. We describe our algorithm and its parallel
extensions in a unified framework that allows us to both reason
about the correctness of the implementation, and study the
effect of each component in relative isolation. In addition we
identify two different types of PDR-lemmas, the k-invariants,
and the∞-invariants, and give the first results on constructing
lemma sharing heuristics. To the best of our knowledge in
particular the divide-and-conquer approach and the lemma
sharing heuristics have not been previously used in the context
of PDR. The techniques we propose improve the previously
introduced powerful portfolio technique for PDR, and we
believe that the contributions help in applying parallel and
distributed computing both in hardware and software verifica-
tion.

We implemented the P3 algorithm following the same
principle of isolation between the different techniques. The
implementation is based on the SPACER model checker and
is adaptable to both distributed environments and multi-core
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Figure 3. Comparison between sharing invariant with and without partitioning
over less500 sat (×) and unsat (�) instances. Compared to “best”, this
combination is overall 14% slower while using 75% less CPU. Moreover
it is shown that partitioning outperforms on all sat instances.

computing throught our SMTSERVICE framework. Our exper-
imental results obtained by running P3 on a representative set
of software verification benchmarks from the SV-COMP 2016
competition show that the parallel approach is vastly superior
to sequential SPACER configurations, solving over hundred
more instances within our timeout and providing on the
average super-linear speed-ups. We also show that each of the
new techniques work in isolation and that they have interesting
interaction with the different clause-sharing heuristics.
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