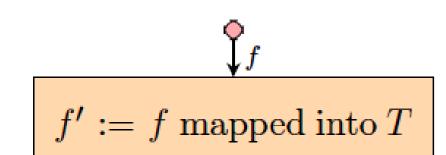


UNIFIED SOLVER STRATEGY FOR FLOATING-POINT Jaideep Ramachandran, Northeastern University jaideep@ccs.neu.edu

GOAL

To come up with a strategy for solving Floating-Point Arithmetic formulas that takes into account:

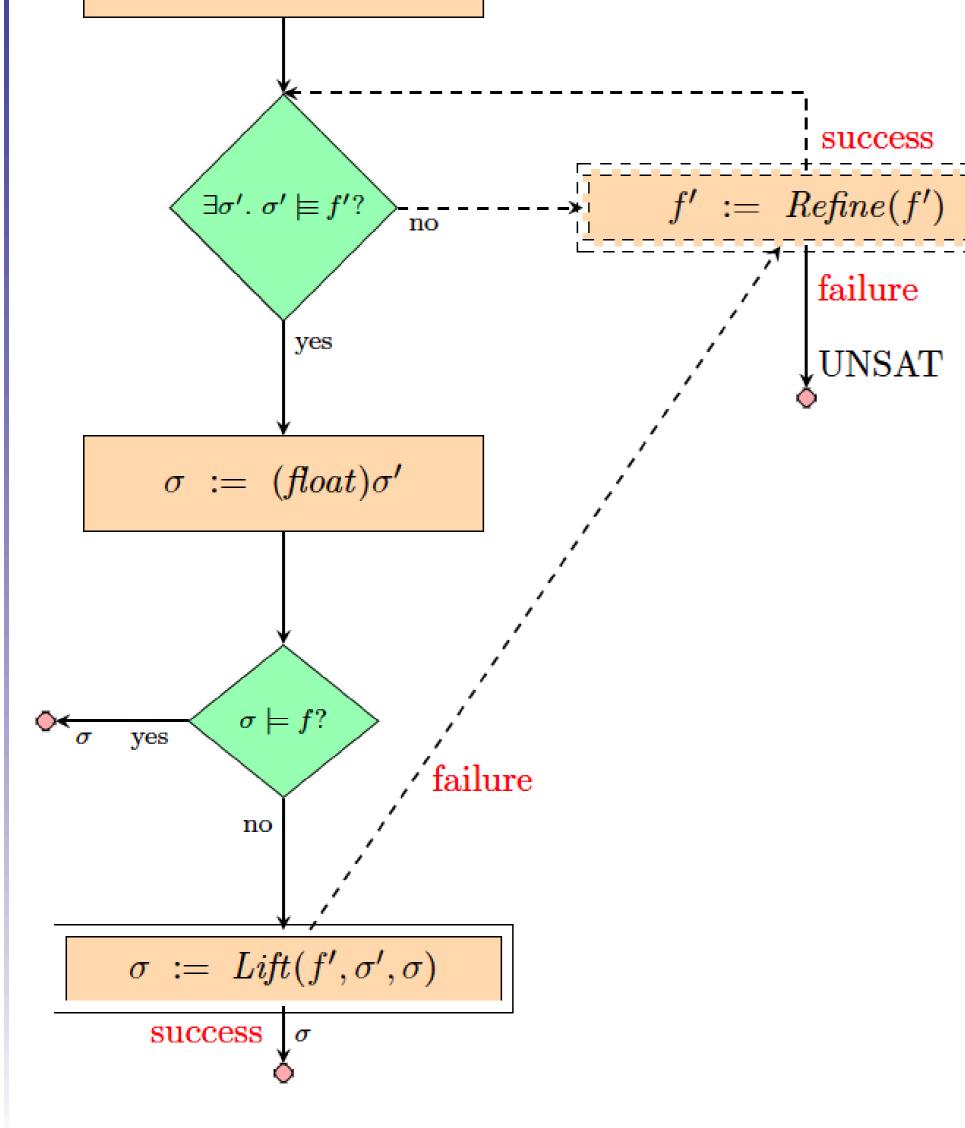
- Nature of input formulas (e.g., complexity)
- Applicability of abstractions


* Performance of "proxy theories"

EXAMPLES

- Linear with arithmetic operations reordered $|(x + (y + z)) - ((x + y) + z)| > \epsilon$
- Non-linear $10.25 \le x^2 + y^2 \le 10.5$
- Non-linear with arithmetic operations reordered $|(x+y)^2 - ((x^2 + (2*x)*y) + y^2)| > \epsilon$

May need different strategies to solve!


MODEL LIFTING ARCHITECTURE

SOLUTION: UNIFIED STRATEGY

Require: *f*: FPA formula

- 1: if Linear(f) then

- return MOLLY^{MRFPA}(f) // mixed real-2: float reasoning
- 3: $result := MOLLY^{RA}(f) // pure real abstraction$
- 4: if $result \neq failed$ then
- return result 5:
- 6: $result := MOLLY^{dREAL}(f) // numerical solving$
- 7: if $result \neq failed$ then
- return result 8:
- 9: return MOLLY^{RPFPA} // reduced precision

MOLLY CONFIGURATIONS

Name Spec	Molly ^{RA}	Lazy Realizer	Molly ^{MRFPA}	Molly ^{dReal}	Molly ^{RPFPA}	Approx
Proxy theory	RA	RA	RA	Reals + δ -sat	RPFPA	RPFPA
Proxy solver	Z3	Realizer++	Realizer++	dReal	Mathsat	MATHSAT
Lifting?	\checkmark	×	\checkmark	\checkmark	\checkmark	×
Refinement?	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Experimental evaluation indicates there is no clear winning configuration across all formulas						

Experimental evaluation indicates there is no clear winning configuration across all formulas. Hence the need for a unified strategy.