
ABackwardReachabilityAlgorithmfor
ParameterizedSystemsonWeakMemory

Sylvain Conchon, David Declerck and Fatiha Zaïdi

Tool Download
The algorithm described in this poster has been successfully implemented in a new version of the Cubicle model checker

called Cubicle-W. This tool, as well as various examples, can be downloaded here :
https://www.lri.fr/~declerck/cubiclew/

Weak Memory Parameterized Systems
F Weak memory :
• order of memory accesses 6= interleaving of memory in-
structions : algorithms are harder to check

• different "flavors" of reorderings : TSO, PSO, ARM...
• we adopt a TSO-like model, as shown on the left
• reorgerings can be prevented using fences

Shared Memory

X

P1

W
ri
te
bu
ffe
r

P2

...

... Pn−1 Pn

Idle

Want

Crit

X[p]← >

∃q 6= p.X[q] = >
X[p] ← ⊥ ∀q 6= p.X[q] = ⊥

X[p]← ⊥

F Parameterized systems :
• concurrent systems
• unbounded number of processes
• process-indexed arrays

Our example : a (naive and inefficient) mutual exclusion
algorithm using a process-indexed array of booleans X, and
each process p executes the automaton on the right.

Cubicle-W code
The automaton on the left can be expressed as a parame-

terized transition system in the language of Cubicle-W.
type loc = Idle | Want | Crit

array PC[proc] : loc

weak array X[proc] : bool

init (p) { PC[p] = Idle && X[p] = False }

unsafe (p1 p2) { PC[p1] = Crit && PC[p2] = Crit }

transition t_req ([p])
requires { PC[p] = Idle }
{ PC[p] := Want; X[p] := True }

transition t_enter ([p])
requires { PC[p] = Want && fence(p) &&

forall_other p. X[p] = False }
{ PC[p] := Crit }

transition t_cancel ([p] q)
requires { PC[p] = Want && fence(p) &&

X[p] = True }
{ PC[p] := Idle; X[p] := False }

(* Critical section *)

transition t_exit ([p])
requires { PC[p] = Crit }
{ PC[p] := Idle; X[p] := False }
Note the use of the fence predicate, that allows a transi-

tion to be taken only when the process’ buffer is empty.

Our approach
F The base framework :
• Model Checking Modulo Theories (MCMT)
• checks safety properties of parameterized systems
• assumes a sequentially consistent (SC) memory
• uses a backward reachability algorithm

F Our extension :
• adds weak memory reasoning using an axiomatic model
• maps memory instructions to read/write events
• builds a global-happens-before relation over events

PC[#1] = Crit ∧ PC[#2] = Crit

PC[#1] = Crit ∧ PC[#2] = Want
RdX(e1,#2,#1) ∧ V al(e1) = ⊥

fence(#2, e1)

PC[#1] = Want ∧ PC[#2] = Want
RdX(e1,#2,#1) ∧ V al(e1) = ⊥
RdX(e2,#1,#2) ∧ V al(e2) = ⊥
fence(#2, e1) ∧ fence(#1, e2)

PC[#1] = Want ∧ PC[#2] = Idle
RdX(e1,#2,#1) ∧ V al(e1) = ⊥
RdX(e2,#1,#2) ∧ V al(e2) = ⊥

WrX(e3,#2,#2)
fence(#2, e1) ∧ fence(#1, e2)

ghb(e3, e1)

PC[#1] = Want ∧ PC[#2] = Idle
RdX(e1,#2,#1) ∧ V al(e1) = ⊥
RdX(e2,#1,#2) ∧ V al(e2) = ⊥
WrX(e3,#2,#2) ∧ V al(e3) = >
fence(#2, e1) ∧ fence(#1, e2)

ghb(e3, e1)
V al(e2) = V al(e3)

t_enter(#2)

t_enter(#1)

t_req(#2)

Here, we try to
link e3 with e2,
but the values
don’t match

Here, we consider
the case where
e3 doesn’t satisfy

any read

Note how e3 is
ghb-before e1,

thanks to fence(#2, e1)

Reads and fences
are simply accumulated Acknowledgements

This work is supported by the French ANR project PARDI
(DS0703)

Benchmarks
The implementation was tested on some typical concur-

rent algorithms. Some algorithms are incorrect due to the
effects of weak memory. In this case, we created fixed ver-
sions of these algorithms by adding fences. The test machine
features an Intel Core i7 CPU @ 2.9 Ghz and 8GB of RAM.

Benchmark Name Correct ? Analysis Time
naive_mutex_N No 0,05s
naive_mutex_f_N Yes 0,06s
lamport_N No 0,42s
lamport_f_N Yes 0,62s
spinlock_N Yes 0,07s
sense_rev_N Yes 0,15s
msi_N Yes 0,09s
moesi_N Yes 0,21s

