
Unified Solver Strategy for Floating-Point based on Proxy Theories FMCAD 2017 Student Forum

Jaideep Ramachandran

Northeastern University, Boston

Oct 4, 2017

Model Lifting Architecture [FMCAD16]*

MOLLY = Model Lifting tool *joint work with Thomas Wahl

Name Spec	Molly ^{RA}	Lazy REALIZER	Molly ^{MRFPA}	Molly^{dReal}	Molly ^{RPFPA}	Approx
Proxy theory	RA	RA	RA	Reals $+ \delta$ -sat	RPFPA	RPFPA
Proxy solver	Z3	Realizer++	Realizer++	dReal	Mathsat	MATHSAT
Lifting?	~	×	\checkmark	√	\checkmark	×
Refinement?	×	\checkmark	\checkmark	×	\checkmark	\checkmark

- MOLLY = Model Lifting tool
- RA = Real Arithmetic
- REALIZER = Tool doing eager & exact encoding to Real+Int [DATE14]
- MRFPA = Mixed Real-Floating-Point Arithmetic
- dReal = Numerical solving tool from CMU
- RPFPA = Reduced Precision Floating-Point Arithmetic

 Non-linear polynomials $10.25 < x^2 + y^2 < 10.50$ RA Non-linear complex $-0.5 \le e^{x} + sin(x) \le 0.5$ dREAL Non-linear with operators reordered $|(x + y)^2 - ((x^2 + (2 * x) * y) + y^2)| > \epsilon \text{ dReal, RPFPA}$ Linear with operators reordered $|(x + (y + z)) - ((x + y) + z)| > \epsilon$ **MRFPA** May need different strategies to solve!

<pre>Input: f: FPA formula 1: if Linear(f) then</pre>						
2: return MOLLY ^{MRFPA} (f)	▷ mixed real-float reasoning					
3: end if	_					
4: $result:=MOLLY^{RA}(f)$	pure real abstraction					
5: if $\mathit{result} eq \texttt{failed}$ then						
6: return result						
7: end if						
8: $result:=MOLLY^{dREAL}(f)$	numerical solving					
9: if result \neq failed then						
10: return <i>result</i>						
11: end if						
12: return MOLLY ^{RPFPA} ▷	reduced precision abstraction					

æ

∢ 臣 →

Thank You!

Jaideep Ramachandran Unified Solver Strategy for Floating-Point

< ≣ >

Ξ.