Data-driven Optimization
for
Inductive Generalization

Nham Le and Arie Gurfinkel Xujie Si

\ .o_— Mlla

What are we trying to optimize

Big picture: Symbolic Model Checking

|<Init Tr, Bad>

N :— 0 |
Counter example
Modern SMCs share the common (—[of 1ength ¥]«ﬁ
basis: IC3-style algorithms s .

inductive

Bounded invariant?

lemma L

Inductive generalization (IG): the key

Lgeneralized

to the efficiency of modern IC3-style nauctive |)

generalization

Symbolic Model Checkers G is

A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011
N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011 2

A Typical Inductive
Generalization Query

and (X3 Problem:
: : i ivel
Ei_é) . inductive? Inductive checks are expensivel
(x_ 9 - x 10 >=41) YES
(x 5 = 1)
and —x—+r
=3 Inductive?
(x 9 - x 10 >=41) NBS
(x 5 = 1)
aunel (< L) inductive?
x5 —1F
and (x 1)

(x_ 9 - x 10 >=41)

Our goal

We want a heuristics that:
Can check dropping multiple literals at the soame time
Can be learned based on past behavior

Can generalize to unseen literals

On the road to our goal

s there something to learn?
Representation learning of symbolic formulas
Learning for inductive generalization

Are the learned heuristics useful?

Is there something to learn?

Conjecture:

Some groups of literals may always
be dropped or kept together

What if we plot the literal co-
occurrences maotrix?

how many times lit; and lit; are kept
together?

AN
‘ ‘ 0o <)
NS 200
AN\wZ4 .0.6"57
Qs

Literal co-occurrences in solving

0

10

20

30

40

0 10 20 30 40

PRODUCER_CONSUMMER _luke_2_e7 1068_e8_1019

Why Machine Learning in the first
place?

We want to avoid haond-crafted heuristics thot do not
oeneralize well

We want a heuristic that applies to new, previously
unseen, literals

Prior to ML, we have tried several hand-crafted
heuristics using Boolean abstraction

but they were not stable and do not extend to many
benchmarks

Mlla

\

Challenge 1.
Representation learning

Literals are symbolic formulas

Machine learning algorithms/frameworks only work with
fixed length vectors of real numbers

That is not a new problem!
Can we use existing techniques in PL+ML space”?

Code2lnv

CODE2VEC: LEARNING DISTRIBUTED REPRESENTATIONS OF CODE IR2VEC

+ [0.82, ©.86, 0.43, 0.56, 0.94] (off the shelf) solution

>‘9'X1(|>>=41 : [0.36, ©.46, 0.65, 0.94, 0.61]
tokenization * [0.66, ©.48, .51, 0.79, 0.03]
7 / [0.31, 0.01, 0.45, 0.91, 0.95]
X |- Xo | >= M - [0.56, .47, 0.62, 0.02, 0.82]
| <= [0.20, ©.39, 0.55, 0.87, 0.99]
encoding
>= [0.11, 0.50, 0.78, 0.91, 0.31] [[0.93, 0.84, 0.03, 0.94, 0.81],
v [0.36, 0.46, 0.65, 0.94, 0.61],
QVAR> | - | VAR> | >= | <NUM> VAR> | [0.93, 0.84, 0.03, 0.94, 0.81] || »[0.93, 0.84, 0.03, 0.94, 0.81],
P LT [0.11, 0.50, ©.78, 0.91, 0.31],
[6.10, 0.7, 0.69, ©.24, 0.20] [0.10, 0.97, 0.69, 0.24, 8.20]]

embedding

Important semantics is lost!

x1 + 2*x3 + 7*x5 >= 10 x1 + 2*x3 + 7*x5 >= 10
x1 + 2*x3 + 7*x5 >= 14 X4 + 7*x2 + 2*x8 >= 0
Off the shelf solution Off the shelf solution
\ 4 \ 4
emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>) emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)
emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>) emb(<VAR> + <NUM>*<VAR> + <NUM>*<VAR> >= <NUM>)

Inputs are different, but outputs are identical
Semantically important information is lost before learning!

10

>

mL D D OY Mmoo MmA2 N ECae 0o oal

[0.56, 0.47, 0.62, 0.02, 0.82]

REAL |
+ [0.70, ©.98, 0.65, 8.75, 0.49]
REAL |
- ‘ [0.11, ©.50, 0.78, ©.91, 0.31]
REAL
E * [0.35, ©.95, 0.43, 0.62, 0.50]
X BooL|

INT_\IH \ LU LUy

[0.35, 0.68, 0.60, 0.98, 0.01]

YUeddy UeJdIdy U0/, U.JUJ

INT [0.11, ©.59, ©.78, 0.91, ©.31]

(BOOL_OP, >=)

(REAL_OP, -) | | (REAL, 41)

(REAL_VAR, x_9)

(REAL_VAR, x_10)

Naive variabl
Embedding

Positional

Embedding

Constant

Embedding

Kind
Embedding

Op
Embedding

((X_e).)
((X_l).)
[{¢

X 2

((X_3)J

[0.60, 0.71, 0.56, 0.97, 0.17]
[0.95, ©.59, 0.47, 0.83, 0.87]
[0.14, ©.53, 0.67, 0.26, 0.45]
[0.66, 0.32, 0.09, 0.67, 0.41]

[0.34, 0.84, 0.61, 0.21, 0.75]

Our solution

11

5\“ OF 11_,% @ ...!/\'é.\ .
it Vo, v sMila
Positional
Embedding

To be useful for machine learning algorithms, we want:

Each absolute position t is mapped to a fixed length vector PE(t)
Each entry in the vector should be in a small range

If two positions differ by k, PE(t) and PE(t+k) should differ by a linear
transformation Tr that only depends on k

12

AL TAN
e b AAA
NS 200
AN\Z/ b 1w
Rt

Positional
Embedding

Embedding using sine and cosinel
Not trivial, was a huge breakthrough in Natural Language Processing!

Formally:
Position t is converted into a vector PE of length d
Each entry i in the vector PE is

dopy) osin(wg-t) if i =2k
PE (t)l_{ cos(wg - t) ifi=2k+1

where wr = 10000 2k/d

Ashish Vaswani et al. Attention is all you need. (NIPS'17)

13

= #Mila

\\n .Q v

Constant
Embedding

What we want:
Each number p is mapped to a fixed length vector
Numbers that are vastly different should be easily distinguishable

Each entry in the vector should be in a small range

14

AN
W A4VAY

ey
& &y Mila

Constant
Embedding

Scientific notation + one hot encoding!

Exaomple

P = s *10¢ in the scientific notation CE@42)=[4200010]with MAX_E =2

CE(42)=[4.200100 0 0] with MAX_E = 3

p is converted into a vector of length 2(n+1)

First entry: s
The rest 2*n entries: one hot encoding for e between [-MAX_E, +MAX_E]

(out of range e’s are mapped to either -MAX_E or MAX_E)

15

Recap

Need to convert formulas to a structure of fix-length
vectors of numbers (list of vectors or tree of vectors)

Off-the-shelf solution abstracts too much semantic
information

Our solution retains positional, value, and kind information

*Spoiler: Our solution shows a difference in practice

16

Challenge 2:
Learning to generalize

How to formulate the learning problem?

What neural network architecture should we use?

17

ITERDROP can be viewed as a tagging process:

ITERDROP

-

|G as a tagging process

and (x_ 1)

(x_ 9 - x 10 >=41)

Given two tags 0 and 1, which literal is tagged 1, which is tagged 07

and

ITERDROP

o -~ 0 -~0

18

\ The Lemma tagging problem

A datapoint (x, y) in the dataset

inout x:a lemma represented as an ordered list of literals
outout y-a binary mask corresponding to ITERDROP's result
(I =1v)

Learning problem
Train a tagger M: x > {0,}¥ st M(x) ~y for all datapoints (x,)

Mlla

19

What neural network
architecture should we use?

lit_(i-) lit_]

A

Ideally, n
In practig

At tagging lit_i

(we use BiLSTM in our implementation)
This is Bedivectidrdée BealUretht Neural Net!

Lit_(i+1)

20

What about the trees in
Representation Learning?

Literals are represented as trees of vectors
Inputs to the Bidirectional RNN are single vectors
Solution: Feed the tree of vectors through a TreelLSTM

. B | eelsTv [

21

Full Model

‘:‘: 5=1 ‘
TreeLSTM

)

22

How is the model used?

XDROP, o drop-in
replacement for
ITERDROP

XDROP is only one of

the many ways to use
the neural networkl!

and

and

and

t=—3r

(x_1)

——1)

(x_ 9 - x 10 >=41)
(ﬁﬁé_—)—

inductive?
YES

1N A1\
— X U — 1)

(x_1)
(x 9 - x 10 >=41)

inductive?
NO

23

\ ROPEY: A SMC using XDROP

Core SMC is based on SPACER, written in C++
Model inferencing is written in PyTorch

Communication is done through gRPC

24

Empirical evaluation

Online learning:

How well does a model trained on 10 minutes of solving X guide
the rest of solving X?

Transfer learning:

How well does a model trained on solving X to completion guide
the solving of its variants X;, X,, etc. ?

(exact formal definition and dataset are in the paper)

25

and

4
3

5 - x 1 >=0)
5

Metrics

Perfect prediction ratio (PPR):

How often do M and ITERDROP return the same exact answer?

ITERDROP

< 2)

ITERDROP

> 1)

Perfect prediction ratio: 0.5

0
1
0
1
0

- O -0

v/

0
0
0
1
0

O -0

26

\ Not all instances are the samel

Instances with too few IG queries (e.g, <10) are:

Very hard to train
Subjected to noise in measurement

Solution: Plot PPR for all instances with at least 100 |G
queries, 200 queries, etc.

27

Predictive Power Result

Online learning Transfer learning

perfect prediction ratio
\
\
\
A
perfect prediction ratio

0 500 1000 1500 2000 0 500 1000 1500 2000
ind.gen queries (k) # ind.gen queries (k)

28

Running time

SPACER's running time is easy to measure

ROPEY's running time has multiple components:

SMC solving time

Model inferencing time (GPU dependent) |

Data parsing time
9RPC communication time

inferencing time

_ can be improved by

better engineering and
hardware (GPU/TPU)

29

Not all instances are the samel
(again)

All Non-trivial

solving + inf. time 0.81560 1.25385
Small instances are subjected to noisel solving time 1.14085 1.69792
Plot running time improvement for ind gen + o tme 070319 09189
instances that are solved by SPACER in
under 10 seconds, 20 seconds, 30 seconds,
etc.
(Instances that takes more than 10 second
to solved are called non-trivial) " [[="sotving tme + n.time

3.0 solving time
ind. gen time + inf. time
~—— ind. gen time

How about timed out instances? /
Use the time needed to reach the same & /\F:jﬁ T 1
depth explored by SPACER 05

0 200 400 600 800
seconds (s)

30

Do Constant and Positional
maoke a difference?

(Have you tried turning it off and on again?)

0.95
—— all embedding enabled
% 0.90 pos. embedding disabled
E —— naive embedding disabled
2 085 const. embedding disabled
(&)
g 0.80
a
© 075
@
®
a 0.70
0.65
0 500 1000 1500 2000

ind.gen queries (k)

31

Conclusion

A data-driven approach to improve inductive
generalization

Learned neural nets show promising predictive power

The predictive power translates to meaningful improvement
in running time over the state-of-the-art SMC

32

Future work

Explore other ways to use the neural network
Explore other neural architecture, e.g.,Transformer

Better engineering for ROPEY

33

>

UNIVERSITY OF

WATERLOO

ENGINEERI

FACULTY OF

.O
.\
CL.

School of
NG

Computer Science

& McGill |

*Mila

/L

\/

/N\/

Thank youl!

PAGE 34

