Designing Samplers is Easy: The Boon of Testers

Priyanka Golia^{1,2}, Mate Soos², Sourav Chakraborty³, and Kuldeep S. Meel²

Indian Institute of Technology Kanpur
 National University of Singapore
 Indian Statistical Institute Kolkata

FMCAD 2021

• Given a program P and requirement R, test if P satisfies R.

- Given a program P and requirement R, test if P satisfies R.
- Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

```
int max(X,Y) {
          Return X
}
```

- Given a program P and requirement R, test if P satisfies R.
- Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

```
int max(X,Y) {
     Return X
}
```

TestCase	Output	Result
$\langle X = 10, Y = 5 \rangle$ $\langle X = 10, Y = 10 \rangle$	10 10	Pass Pass
$\langle X=10, Y=7 \rangle$	10	Pass

 $\left. \begin{array}{c} t \\ \end{array} \right. \text{All test cases have } X \geq Y.$

- Given a program P and requirement R, test if P satisfies R.
- Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

```
int max(X,Y) {
     Return X
}
```

TestCase	Output	Result
$\langle X=10, Y=5 \rangle$	10	Pass
$\langle X = 10, Y = 10 \rangle$	10	Pass
$\langle X = 5, Y = 10 \rangle$	5	Fail

Uniform testcase generator

Uniform Sampling

- Given a Boolean formula F, sample solutions of F uniformly at random.
- Let all samples of F constitute R_F.

$$\forall s \in R_F, Pr[Sampler(F) = s] = \frac{1}{|R_F|}$$

• Let $F = x_1 \vee x_2$

<i>X</i> ₁	<i>X</i> ₂			
$\overline{}$	1	Generate 2 samples	<u>^1</u>	^ 2
U	'		Ω	1
1	Ω	•	O	'
•	•		1	1
1	1			
- 1	- 1			

 R_F : All satisfying assignments of F. $|R_F| = 3$

Probability of getting each sample = $\frac{1}{3}$

Applications

Widespread applications

- Constrained-random simulations. (Naveh, Rimon, Jaeger et al.,2007)
- Constraint-based fuzzing.(Böhme, Heule, Roychoudhury, 2016)
- Configuration testing. (Clarke, 1976)
- Bug synthesis. (Roy, Pandey, Dolan-Gavitt, Hu, 2018)
- Functional synthesis. (Golia, Roy, Meel, 2020,2021)

Different Sampling Strategies

Uniform Sampling is computationally hard.

Knowledge representation based techniques

```
(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)
```

Hashing based techniques

```
(Chakraborty, Meel, and Vardi 2013, 2014,2015)
(Soos, Meel, and Gocht 2020)
```

Mutation based techniques
 (Dutra, Laeufer, Bachrach, Sen, 2018)

Markov Chain Monte Carlo based techniques

```
(Wei and Selman,2005)
( Kitchen,2010)
```

Constraint solver based techniques

```
(Ermon, Gomes, Sabharwal, Selman,2012)
```

Belief networks based techniques

```
(Dechter, Kask, Bin, Emek,2002)
(Gogate and Dechter,2006)
```

Testing of Samplers

- To test whether a sampler is indeed sampling uniformly at random?
- Computation of statistics for generated distributions over small benchmarks.
 - Do not generalize to many classes of benchmarks.
- Barbarik: First scalable sampling tester (Chakraborty and Meel,2019).
 - REJECTs a sampler: the distribution generated by sampler is far from uniform.
 - ACCEPTs a sampler: the distribution generated by sampler is close to uniform under non-adversarial assumption.

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS (Ermon, Gomes, Sabharwal, Selman, 2012)
 - QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)
- Sampler with guarantees:
 - UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

	QuickSampler	STS	UniGen3
ACCEPTs	0	14	50
REJECTs	50	36	0

Wishlist

How can we use the availability of Barbarik to design a good sampler?

- Sampler should pass the Barbarik test.
- Sampler should be at least as fast as STS and QuickSampler.
- Sampler should perform good on real world applications.

Need of Randomization

- Randomization in the choice of partial assignments.
 - Build partial assignment variable by variable.
 - If partial assignment is incorrect, record, and learn from failure.

Need of Randomization

- Randomization in the choice of partial assignments.
 - Build partial assignment variable by variable.
 - If partial assignment is incorrect, record, and learn from failure.
- Randomized variation of Conflict-Driven Clause Learning (CDCL) framework.
 - Randomized heuristic for what variable to assign next.
 - Randomized heuristic for variable polarities.

• Exploits the flexibility CryptoMiniSat.

- Exploits the flexibility CryptoMiniSat.
- Pick polarities and branch on variables at random.
 - To explore the search space as evenly as possible.
 - To have samples over all the solution space.

- Exploits the flexibility CryptoMiniSat.
- Pick polarities and branch on variables at random.
 - To explore the search space as evenly as possible.
 - To have samples over all the solution space.
- Turn off all pre and inprocessing.
 - Processing techniques: bounded variable elimination, local search, or symmetry breaking, and many more.
 - Can change solution space of instances.

- Exploits the flexibility CryptoMiniSat.
- Pick polarities and branch on variables at random.
 - To explore the search space as evenly as possible.
 - To have samples over all the solution space.
- Turn off all pre and inprocessing.
 - Processing techniques: bounded variable elimination, local search, or symmetry breaking, and many more.
 - Can change solution space of instances.
- Restart at static intervals.
 - Helps to generate samples which are very hard to find.

Power of Test-Driven Development

- Test-Driven Development of CMSGen.
- Parameters of CMSGen are decided with the help of Barbarik
 - Iterative process.
 - Based on feedback from Barbarik, change the parameters.
- Uniform-like-sampler.
- Lack of theoretical analysis.

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS (Ermon, Gomes, Sabharwal, Selman, 2012)
 - QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)
- Sampler with guarantees:
 - UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

	QuickSampler	STS	UniGen3
ACCEPTs	0	14	50
REJECTs	50	36	0

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS (Ermon, Gomes, Sabharwal, Selman, 2012)
 - QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)
 - CMSGen
- Sampler with guarantees:
 - UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

	QuickSampler	STS	UniGen3	CMSGen
ACCEPTs	0	14	50	50
REJECTs	50	36	0	0

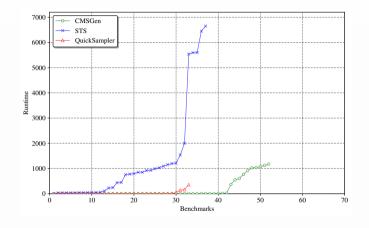
Wishlist

- Sampler should pass the Barbarik test.
- Sampler should be at least as fast as STS and QuickSampler.
- Sampler should perform good on real world applications.

CMSGen vs. Other State-of-the-Art Samplers

- 70 Benchmarks arising from:
 - probabilistic reasoning, (Chakraborty, Fremont, Meel et al., 2015)
 - bounded model checking. (Clarke, Biere, Raimi, Zhu,2001)
 - bug synthesis. (Roy, Pandey, Dolan-Gavitt, Hu, 2018)
- Runtime evaluation to generate 1000 samples.
- Timeout: 7200 seconds.

CMSGen vs. Other State-of-the-Art Samplers (II)



QuickSampler	STS	CMSGen
33	37	52

Wishlist

- Sampler should pass the Barbarik test.
- Sampler should be at least as fast as STS and QuickSampler.
- Sampler should perform good on real world applications.

Case Studies

Usage in application where both scalability and quality are key determining factors.

- Functional Synthesis
- Combinatorial Testing

Functional Synthesis

- Given: A set of inputs (X) and outputs (Y), and underlying specification $\varphi(X, Y)$
- Synthesize: Outputs in terms of inputs such that specification holds.

$$\exists Y \varphi(X,Y) \equiv \varphi(X,F(X))$$

- Objective is to synthesize function F(X)
- Wide ranging applications:
 - Logic synthesis (Jiang,Lin, Hung,2009)
 - Program synthesis (Srivastava, Gulwani, Foster, 2013)
 - cryptography (Massacci, Marraro, 2000)

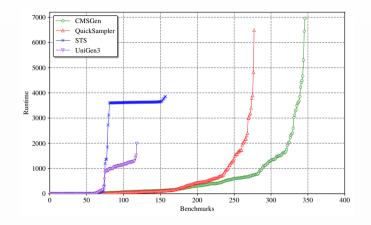
Functional Synthesis (II)

- State-of-the-art approach for Boolean function synthesis, Manthan (Golia, Roy, Meel, 2020).
- One of the key component of Manthan: Data-Generation
- Manthan uses constraint sampling to generate the data.

Functional Synthesis (II)

- State-of-the-art approach for Boolean function synthesis, Manthan (Golia, Roy, Meel, 2020).
- One of the key component of Manthan: Data-Generation
- Manthan uses constraint sampling to generate the data.
- Experimental Evaluation:
 - Augment Manthan with STS, QuickSampler, UniGen3, and CMSGen.
 - Total benchmarks 609, Timeout: 7200 seconds.

Functional Synthesis: CMSGen vs. Other State-of-the-Art Samplers



UniGen3	STS	QuickSampler	CMSGen
118	157	275	345

Combinatorial Testing

- A powerful paradigm for testing configurable system.
- Challenge: To generate test suites that maximizes *t*-wise coverage.

t-wise coverage:
$$=\frac{\text{# of t-sized combinations in test suite}}{\text{all possible valid t-sized combinations}}$$

- To generate the test suites use constraint samplers.
- Uniform sampling to have high *t*-wise coverage (Plazar, Acher, Perrouin et al., 2019).

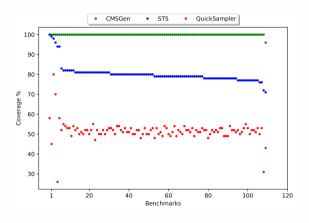
Combinatorial Testing

- A powerful paradigm for testing configurable system.
- Challenge: To generate test suites that maximizes *t*-wise coverage.

$$t\text{-wise coverage:} = \frac{\text{\# of t-sized combinations in test suite}}{\text{all possible valid t-sized combinations}}$$

- To generate the test suites use constraint samplers.
- Uniform sampling to have high t-wise coverage (Plazar, Acher, Perrouin et al., 2019).
- Experimental Evaluations:
 - Generate 1000 samples (test cases).
 - 110 Benchmarks, Timeout: 3600 seconds
 - 2-wise coverage. t = 2.

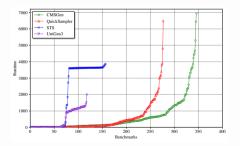
Combinatorial Testing: CMSGen vs. Other State-of-the-Art Samplers



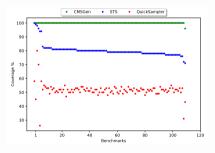
	STS	QuickSampler	CMSGen
Avg. Coverage	80.15%	51.5%	\sim 100%

CMSGen: https://github.com/meelgroup/cmsgen

	QuickSampler	STS	UniGen3	CMSGen
ACCEPTs	0	14	50	50
REJECTs	50	36	0	0



Functional Synthesis



Combinatorial Testing: 2-wise Coverage