
Designing Samplers is Easy: The Boon of Testers

Priyanka Golia1,2, Mate Soos2, Sourav Chakraborty3, and Kuldeep S. Meel2

1Indian Institute of Technology Kanpur
2National University of Singapore
3Indian Statistical Institute Kolkata

FMCAD 2021

1/23

Testing of Program

• Given a program P and requirement R, test if P satisfies R.

• Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

int max(X,Y) {
Return X

}

2/23

Testing of Program

• Given a program P and requirement R, test if P satisfies R.

• Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

int max(X,Y) {
Return X

}

2/23

Testing of Program

• Given a program P and requirement R, test if P satisfies R.

• Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

int max(X,Y) {
Return X

}

TestCase Output Result

〈X = 10,Y = 5〉 10 Pass
〈X = 10,Y = 10〉 10 Pass
〈X = 10,Y = 7〉 10 Pass

All test cases have X ≥ Y .

2/23

Testing of Program

• Given a program P and requirement R, test if P satisfies R.

• Let requirement R: program P should take two inputs X,Y and outputs maximum of X, Y.

int max(X,Y) {
Return X

}

TestCase Output Result

〈X = 10,Y = 5〉 10 Pass
〈X = 10,Y = 10〉 10 Pass
〈X = 5,Y = 10〉 5 Fail

Uniform testcase generator

2/23

Uniform Sampling

• Given a Boolean formula F , sample solutions of F uniformly at random.

• Let all samples of F constitute RF .

∀s ∈ RF ,Pr [Sampler(F) = s] =
1
|RF |

• Let F = x1∨ x2

x1 x2

0 1
1 0
1 1

RF : All satisfying
assignments of F .
|RF |= 3

x1 x2

0 1
1 1

Probability of getting

each sample =
1
3

Generate 2 samples

3/23

Applications

Widespread applications

• Constrained-random simulations. (Naveh, Rimon, Jaeger et al.,2007)

• Constraint-based fuzzing.(Böhme, Heule, Roychoudhury, 2016)

• Configuration testing. (Clarke,1976)

• Bug synthesis. (Roy, Pandey, Dolan-Gavitt,Hu, 2018)

• Functional synthesis. (Golia, Roy, Meel, 2020,2021)

4/23

Different Sampling Strategies

Uniform Sampling is computationally hard.

• Knowledge representation based
techniques

(Yuan,Shultz, Pixley,Miller,Aziz
1999)
(Yuan,Aziz, Pixley,Albin, 2004)
(Kukula and Shiple, 2000)
(Sharma, Gupta, Meel, Roy, 2018)
(Gupta, Sharma, Meel, Roy, 2019)

• Hashing based techniques
(Chakraborty, Meel, and Vardi 2013,
2014,2015)
(Soos, Meel, and Gocht 2020)

• Mutation based techniques
(Dutra, Laeufer, Bachrach, Sen,
2018)

• Markov Chain Monte Carlo based
techniques

(Wei and Selman,2005)
(Kitchen,2010)

• Constraint solver based techniques
(Ermon, Gomes, Sabharwal,
Selman,2012)

• Belief networks based techniques
(Dechter, Kask, Bin, Emek,2002)
(Gogate and Dechter,2006)

5/23

Testing of Samplers

• To test whether a sampler is indeed sampling uniformly at random?

• Computation of statistics for generated distributions over small benchmarks.
– Do not generalize to many classes of benchmarks.

• Barbarik: First scalable sampling tester (Chakraborty and Meel,2019).
– REJECTs a sampler: the distribution generated by sampler is far from uniform.

– ACCEPTs a sampler: the distribution generated by sampler is close to uniform under
non-adversarial assumption.

6/23

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):
– STS (Ermon, Gomes, Sabharwal, Selman,2012)

– QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:
– UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

7/23

Wishlist

How can we use the availability of Barbarik to design a good sampler?

• Sampler should pass the Barbarik test.

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

8/23

Need of Randomization

• Randomization in the choice of partial assignments.
– Build partial assignment variable by variable.

– If partial assignment is incorrect, record, and learn from failure.

• Randomized variation of Conflict-Driven Clause Learning (CDCL) framework.
– Randomized heuristic for what variable to assign next.

– Randomized heuristic for variable polarities.

9/23

Need of Randomization

• Randomization in the choice of partial assignments.
– Build partial assignment variable by variable.

– If partial assignment is incorrect, record, and learn from failure.

• Randomized variation of Conflict-Driven Clause Learning (CDCL) framework.
– Randomized heuristic for what variable to assign next.

– Randomized heuristic for variable polarities.

9/23

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.
– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.
– Processing techniques: bounded variable elimination, local search, or symmetry breaking, and

many more.
– Can change solution space of instances.

• Restart at static intervals.
– Helps to generate samples which are very hard to find.

10/23

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.
– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.
– Processing techniques: bounded variable elimination, local search, or symmetry breaking, and

many more.
– Can change solution space of instances.

• Restart at static intervals.
– Helps to generate samples which are very hard to find.

10/23

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.
– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.
– Processing techniques: bounded variable elimination, local search, or symmetry breaking, and

many more.
– Can change solution space of instances.

• Restart at static intervals.
– Helps to generate samples which are very hard to find.

10/23

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.
– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.
– Processing techniques: bounded variable elimination, local search, or symmetry breaking, and

many more.
– Can change solution space of instances.

• Restart at static intervals.
– Helps to generate samples which are very hard to find.

10/23

Power of Test-Driven Development

• Test-Driven Development of CMSGen.

• Parameters of CMSGen are decided with the help of Barbarik
– Iterative process.
– Based on feedback from Barbarik, change the parameters.

• Uniform-like-sampler.

• Lack of theoretical analysis.

11/23

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):
– STS (Ermon, Gomes, Sabharwal, Selman,2012)

– QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:
– UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

12/23

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):
– STS (Ermon, Gomes, Sabharwal, Selman,2012)

– QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

– CMSGen

• Sampler with guarantees:
– UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3 CMSGen

ACCEPTs 0 14 50 50
REJECTs 50 36 0 0

12/23

Wishlist

• Sampler should pass the Barbarik test.

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

13/23

CMSGen vs. Other State-of-the-Art Samplers

• 70 Benchmarks arising from:
– probabilistic reasoning, (Chakraborty, Fremont, Meel et al.,2015)
– bounded model checking. (Clarke, Biere, Raimi, Zhu,2001)
– bug synthesis. (Roy, Pandey, Dolan-Gavitt,Hu, 2018)

• Runtime evaluation to generate 1000 samples.

• Timeout: 7200 seconds.

14/23

CMSGen vs. Other State-of-the-Art Samplers (II)

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
STS
QuickSampler

QuickSampler STS CMSGen
33 37 52

15/23

Wishlist

• Sampler should pass the Barbarik test.

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

16/23

Case Studies

Usage in application where both scalability and quality are key determining factors.

• Functional Synthesis

• Combinatorial Testing

17/23

Functional Synthesis

• Given: A set of inputs (X) and outputs (Y), and underlying specification ϕ(X ,Y)

• Synthesize: Outputs in terms of inputs such that specification holds.

∃Y ϕ(X ,Y)≡ ϕ(X ,F(X))

• Objective is to synthesize function F(X)

• Wide ranging applications:
– Logic synthesis (Jiang,Lin, Hung,2009)
– Program synthesis (Srivastava,Gulwani,Foster,2013)
– cryptography (Massacci,Marraro,2000)

18/23

Functional Synthesis (II)

• State-of-the-art approach for Boolean function synthesis, Manthan (Golia, Roy, Meel,2020).

• One of the key component of Manthan: Data-Generation

• Manthan uses constraint sampling to generate the data.

• Experimental Evaluation:
– Augment Manthan with STS, QuickSampler, UniGen3, and CMSGen.
– Total benchmarks 609, Timeout: 7200 seconds.

19/23

Functional Synthesis (II)

• State-of-the-art approach for Boolean function synthesis, Manthan (Golia, Roy, Meel,2020).

• One of the key component of Manthan: Data-Generation

• Manthan uses constraint sampling to generate the data.

• Experimental Evaluation:
– Augment Manthan with STS, QuickSampler, UniGen3, and CMSGen.
– Total benchmarks 609, Timeout: 7200 seconds.

19/23

Functional Synthesis: CMSGen vs. Other State-of-the-Art Samplers

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
STS
UniGen3

UniGen3 STS QuickSampler CMSGen
118 157 275 345

20/23

Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite
all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Uniform sampling to have high t-wise coverage (Plazar, Acher, Perrouin et al., 2019).

• Experimental Evaluations:
– Generate 1000 samples (test cases).
– 110 Benchmarks, Timeout: 3600 seconds
– 2-wise coverage. t = 2.

21/23

Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite
all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Uniform sampling to have high t-wise coverage (Plazar, Acher, Perrouin et al., 2019).

• Experimental Evaluations:
– Generate 1000 samples (test cases).
– 110 Benchmarks, Timeout: 3600 seconds
– 2-wise coverage. t = 2.

21/23

Combinatorial Testing: CMSGen vs. Other State-of-the-Art Samplers

Higher is better

1 20 40 60 80 100 120
Benchmarks

30

40

50

60

70

80

90

100

Co
ve

ra
ge

 %

CMSGen STS QuickSampler

STS QuickSampler CMSGen
Avg. Coverage 80.15% 51.5% ∼ 100%

22/23

Conclusion

CMSGen: https://github.com/meelgroup/cmsgen

QuickSampler STS UniGen3 CMSGen

ACCEPTs 0 14 50 50
REJECTs 50 36 0 0

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
STS
UniGen3

Functional Synthesis

1 20 40 60 80 100 120
Benchmarks

30

40

50

60

70

80

90

100

Co
ve

ra
ge

 %

CMSGen STS QuickSampler

Combinatorial Testing: 2-wise Coverage

Thanks!

https://github.com/meelgroup/cmsgen

