
End-to-End Formal Verification of
a RISC-V Processor Extended

with Capability Pointers
Dapeng Gao Tom Melham

University of Oxford

The problem

• Systemic security flaws in conventional computer architectures
• Unsafe memory

‘70% of the vulnerabilities addressed through a security update each
year continue to be memory safety issues’ [Miller, BlueHat IL 2019]

• Solution: CHERI, a security extension to conventional ISAs
• Automatically mitigates 31% of reported vulnerabilities [MSRC 2020]

• Only a conservative estimate—can go up to 67% when using advanced features
• Verification of CHERI hardware is essential to guarantee security

This talk

• First extensive formal verification of a
CHERI processor

• Novel proof engineering methodologies

Capability Hardware Enhanced RISC
Instructions (CHERI)
• Replace integer-based pointers by 128-bit wide ‘capabilities’

• Compressed lower and upper bounds limit accessible memory
• Read/Write/Execute permissions and more limit authorised operations
• 1-bit validity tag (stored out-of-band) for each capability location
• Can only derive less privileged capabilities from more privileged ones
• Throws exception deterministically if any of the above is violated

· · · · · ·

struct my struct *buffer = · · ·

AddressLower Bound Upper Bound

Permissions: Load & Store

Source: CHERI ISAv8

CHERI protection

• Mitigates many classes of memory-related exploits
• Buffer overflow
• Control flow redirection

• Advanced features
• In-process software compartmentalisation

• ISA extension for secure capability manipulation, e.g.
• CIncOffset Increments address, clears tag if it goes out-of-bound
• CSetBounds Reduces the bounds
• CAndPerm Reduces the permissions

Verification flow
• CHERI-Flute† is an open-

source five-stage processor
• Written in Bluespec

SystemVerilog (BSV)
• Compiles to SystemVerilog

(SV)
• JasperGold only supports SV

• Need to ‘reverse-engineer’ the
compiled SV to identify relevant
signal names

• Specification written in Sail
• Manual translation into SV

Specification

(Sail)

Properties

(SystemVerilog Assertions)

Manual

Translation

Original Design

(Bluespec SystemVerilog)

Compiled Design

(SystemVerilog)

bsc Compiler

JasperGold

InputInput

Property Result Bound

prop 1 Proof Infinite

prop 2 Counterexample 41

prop 3 Bounded Proof 105

· · · · · · · · ·

Output

‘Reverse

Engineering’

Engine 1

Engine 2

Engine 3

· · ·

† Modified from the original Flute processor that implements plain RISC-V.

Simplified Example: CSetBounds

• Initial state An = {regfile: …, pc: …, etc.}
• Execute CSetBounds cd, cs1, rs2 †

• Reduce the length of the bounds of cs1 to rs2 and then write the result
to cd—successful retirement

• However, if either
• cs1 is invalid (i.e. validity tag is unset), or
• rs2 is greater than the length of the bounds of cs1,

• Then an exception is thrown—unsuccessful retirement
• Final state An+1
• How to formulate this as a property of the microarchitecture?

† Notation: Register names beginning with ‘c’ (e.g. cs1) denote capability registers. Those beginning with ‘r’ (e.g. rs1) denote integer registers.

Guard conditions

Formulating specification as properties
(1/3)
• Let ⍺ be an abstraction function that maps each

microarchitectural state to an architectural state
• To verify instruction I, assert: For any microarchitectural state s,

• If retiring instruction I brings the processor from state s to s’, then
• According to the specification, executing instruction I should alter the
architectural state from ⍺(s) to ⍺(s’)

• This is difficult to implement in practice
• An instruction can retire successfully in only one way
• But it can retire unsuccessfully in many ways
• Difficult to capture all possible outcomes in manually-written properties

Formulating specification as properties
(2/3)
• Weakened to: For any microarchitectural state s,

• If successfully retiring instruction I brings the processor from state s to
s’, then

• According to the specification, executing instruction I alters the
architectural state from ⍺(s) to ⍺(s’) and all instruction I’s guard
conditions are met

• Contrapositive implies: If any of instruction I’s guard conditions
are not met, then instruction I is not successfully retired

• Still enforces the security guarantees offered by CHERI

Formulating specification as properties
(3/3)

• When I1 is in stage W (i.e. about to be retired),
• vW = resultCSetBounds(regfile[cs1], regfile[rs2]), and
• guardCSetBounds(regfile[cs1], regfile[rs2])

• Unfortunately, proof engines do not converge for this property

F

I5
D

I4
E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·CSetBounds cd , cs1 , rs2 cdW vW

Proof engineering (1/2):
Decomposing the pipeline

• Define regfileM[r] = (if cdW = r then vW else regfile[r])
• When I1 is in stage M (and about to move to stage W),

• vM = resultCSetBounds(regfileM [cs1], regfileM [rs2]), and
• guardM

CSetBounds(regfileM [cs1], regfileM[rs2])

F

I4
D

I3
E

I2
M

I1
W

I0
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·CSetBounds cd , cs1 , rs2 cdM vM cdW vW

Proof engineering (2/2):
Developing microarchitectural invariants
• CHERI instructions execute sophisticated functions in the ALU

• Efficient bounds-checking and address computation
• Sail specification can handle potentially malformed inputs
• Hardware only works for well-formed capabilities

• Malformed capabilities can never be created in the first place
• Model checker unaware that malformed capabilities never occur

• Creates unreachable counterexamples in SAT-based model checking
• Use k-induction to prove global consistency invariant

• State-Space Tunnelling (SST) is used to achieve convergence

Also covered in paper

• Correctness properties for
• Branching instructions
• Memory instructions

• Liveness properties
• With the help of fairness constraints

Results (1/4)

• End-to-end verification of 80+ CHERI instructions
• Final properties are basically agnostic of the microarchitecture

• Black-boxed
• Cache and memory
• Branch predictor

• Template-based properties
• One template for each class of instructions
• Can instantiate properties for different instructions with a few templates
• Allows quick testing of new proof ideas on large number of instructions

Results (2/4)

• Discovered several edge case bugs
• Some ALU functions can yield malformed capabilities
• Some CSR registers are not cleared during reset
• The CUnseal instruction does not clear a permission bit
• The AUIPCC instruction incorrectly clears the validity tag
• The CSetAddr instruction returns incorrect results

• Rare corner case—escaped previous simulation-based testing
• Easily uncovered by formal verification

• All bugs have been confirmed by the designers

Results (3/4)

• Bug or Feature? More design-side investigation is required
• An instruction gives better results than the specification

• Perhaps the specification should be changed instead
• Corrupted memory can introduce malformed capabilities

• Sanitise all capabilities read from memory?

Results (4/4)

• Pattern of bug discovery
1. Try to prove property
2. If proof fails, report the counterexample
3. If proof does not converge, use SST to generate a ‘counterexample’
4. Usually, the ‘counterexample’ involves a malformed capability and

should be unreachable, so we try to strengthen the global
consistency invariant

Conclusion and prospects

• Need automatic translation from the Sail specification to SVA
• Can eliminate the need to weaken the specification

• Can serve as basis for verifying complex out-of-order designs
• Morello—a high-performance CHERI-enabled prototype board by Arm
• Eventually apply in verifying commercial CHERI processors

