Exploiting Isomorphic
Subgraphs in SAT

OFER STRICHMAN, TECHNION, ISRAEL

ALEXANDER IVRII, IBM-HAIFA, ISRAEL

CLAUSE REPLICATION

* Recall clause replication [S’01,S’04] for BMC.

* Enhances learning with extra clauses, not related to the current path.

* Based on the regular structure of BMC formulas.

* Our contributions here:
* ldentify this property in many other problem domains

* Theory: Show how it extends dynamic symmetry handling [DBB’17,TD’19]

* Practice: Experiments with various learning / forgetting strategies.

CLAUSE REPLICATION IN BMC [S’01,5°04]

* BMC (of safety properties): BMCy = I(Sg) A Aj=g x—1 T (Si, Six1) A 2P(Sy)
* At the CNF level T(S;,S;+1) is the same for each i, up to renaming.

* This can be exploited for learning additional clauses:

Skc St

T(So,51) T(Sk-1,Sk)

Clause replication in BMC [S'01,5°04]

Maintain additional clause header data:
|. Is this clause ‘replicable’ ?

2. (min,max) cycle used for deriving this clause:

When learning a new clause ¢ from antecedents S (i.e., S + ¢):

If all of S clauses are marked:
|. Mark c.

2. Record (min,max) cycle indices in S.

3. Learn ¢! fori € —min..(k — max).

EXAMPLE

s = (—x, Vs), (X5 ¥s 23 Wy) (min,max) = (2,5), k=6
, ‘
z c = (V5 23 Wy)
W
0 1 2 3 4 5 6
Going right

y
Z #:_: o
W

THE SAME PRINCIPLE APPLIES TO MANY OTHER FORMULAS

* In previous works:
* Bounded model checking [S’01,S'04]
* Planning with neural networks [SDNS’20]

* Here we apply it to various problems that drew attention in recent years:

* Van-Der Waerden numbers

Pythagorean triples

The ‘Sweep’ problem

The ‘Anti-bandwidth’ problem

Cardinality constraints

EXAMPLE |:VAN-DER WAERDEN NUMBERS

The van der Waerden number W (k) is the smallest integer n such that every 2-coloring

of 1..n has a monochromatic arithmetic progression of length k.

E.g.,a bad coloring forn =9,k = 3

M N Y A

It can be shown that W (3) = 9.

We have a witness for W (3) > 8

Computer
Programming
8 Sivtabivey
DONA

EXAMPLE |:VAN-DER WAERDEN NUMBERS

* For a sequence length n, define n variables

* x;-for 1 <i < n,location i is with color ‘1’.

* Suppose k = 3,n = 10.Then:
* No 3 consecutive literals with gap 1 are all‘0”: (123)(234)(345) ... (8910)
* No 3 consecutive literals with gap 2 are all‘0’: (135)(246)(357) ... (6810)
* No 3 consecutive literals with gap 3 are all‘0’: (147)(258)(369) (47 10)
* No 3 consecutive literals with gap 4 are all‘0’: (159) (2 6 10)

* + same for all color ‘1’: negate all literals, e.g.,
(-1,-2,-3)(-2,-3,-4) (—3,—4,-5) ... (—8,—9,—10)

EXAMPLE 2: PYTHAGOREAN TRIPLES

e Triples (a, b, ¢) such that a? + b? = ¢?

* Q:for a givenn € N,can 1.. N be separated to two sets, such that no set contains a
Pythagorean triple !

* Example CNF for n = 17 (3 4 5) (-3 -4 -5)
(51213) (-5-12-13)
6810) (-6-8-10)
91215 (-9-12-15)
81517) (-8-15-17)

EXAMPLE 2: PYTHAGOREAN TRIPLES

* Example CNF forn =17 345 -3-4-5

51213 -5-12-13

6810 -6 -8 -10

91215 -9 -12 -15

81517 -8 -15-17

: : 5 8
* Symmetry emanates from factoring triples 4
3 6
Base 2*Base 3*Base

Going left: divide ¢ by a common divisor of the antecedents

Going right: multiply ¢ by a factor f,as long as f - max < n (max = maximal literal in c’s

antecedents).
10

A THEORETICAL FRAMEWORK

* Static (full) symmetry —
e Static symmetry breaking [Shatter, BreaklD] — Statically adding Symmetry-Breaking constraints.

* Dynamic symmetry handling [e.g., SEL (DBB’17)] — Given a learned clause c, adding extra

clauses (“eclauses”) based on symmetry data.

* This talk — we find eclauses regardless of static symmetry.

* The theory is based on isomorphic subgraphs

THE CNF INCIDENCE GRAPH

The colored literals incidence graph of (—a, b,c) (a,—b):

Opposite literals are connected

A clause node is connected to its literals

Literals have one color, clauses another.

STATIC SYMMETRY IN CNF BY EXAMPLE

Cy:|(—a,b,c)
¥: Cy:|(a,—b,—c)

Cs:| (—b,c) Syntactic equivalence
up to clause/literals

reordering

Find a Boolean-consistent map o between the labels, such that (@) = ¢.

Example:a: (a,—a)(b, —c)(Cy, C3)

(a,—c,—Db)
a(@):|(—a,c,b)
(¢, —b)

STATIC SYMMETRY IN CNF BY EXAMPLE

Ci:|(—a,b,c)
?: Cy:|(a,—b,—c)
Cs:| (—=b,c)

a: I 0 0 | 0 |
Find a Boolean-consistent map o between the labels, such that (@) = ¢.

Example:a: (a,—a)(b, —c)(Cy, C3)

Hence,if a = ¢ then o(a) E ¢

O'(C(): | 0 14

STATIC SYMMETRY BREAKING

* So ¢ in our example has the property that Va.a = ¢ = a(a) E ¢.

* We only need one representative to maintain satisfiability.

 Shatter/BreaklD find such mappings, and add symmetry-breaking constraints.
* How ? See Crawford et al [CGLR96].

DYNAMIC SYMMETRY HANDLING*

Suppose we learned a new clause C,.
Hence ¢ +,.¢ C,

= 0(¢) Fres 0(Cy)

= ¢ I_res 0(64)

Conclusion: we can learn also ¢(C,)

Note that:
|. This does not break the symmetry; all solutions remain.
2. The map o was built statically, according to symmetries in ¢.

se , ,
* Used by SEL [BDB’17], SLS [BNOS’10], SP [BBDDM’12 16

“ALMOST SYMMETRIES” [CBMS14,...]

* Suppose we have ¢ = @1 U ¢,
* @Y1 prevents symmetry.

* But there is still a mapping ¢ such that a(¢,) = ¢,

Our work: a weaker

* If we learn a clause ¢ from ¢,, we can also add the eclause a(c). "
condition for eclauses.

______Symmetry | Aimost Symmetry

Usage Static, dynamic Dynamic

Formula @ P1 U @
Requires o) =¢ a(@2) = ¢,

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Consider the resolution process (root clauses in green):

(—a,b) (a,c)

(b,c) (a,—b,d)

(a,c,d)

The subgraph induced by the resolution process is a union of
* The subgraphs corresponding to the root clauses
* The edges of the resolved variables

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Consider the resolution process (root clauses in green):

(—a,b) (a,c)

(b,c) (a,—b,d)

(a,c,d)

Any subgraph isomorphic to this one, corresponds to a legal resolution. So what ?
Subgraph isomorphism is
NP-hard!

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Consider the resolution process (root clauses in green):

(—a,b) (a,c)

(b,c) (a,—b,d)

(a,c,d)

Isomorphic subgraphs < isomorphic subformulas. So what ?
Subgraph isomorphism is
NP-hard!
Q: How can this fact be used?
A: look for formulas in which this property can be detected statically

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Consider the resolution process (root clauses in green):

(—a,b) (a,c)

(b,c) (a,—b,d)

(a,c,d)

Isomorphic subgraphs < isomorphic subformulas.

Q: How can this fact be used?
A: look for formulas in which this property can be detected statically

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Q: How can this fact be used?
A:look for formulas in which this property can be detected statically

* Let ¢ = 91 U @ U @3 and let ¢ be a partial map such that o(¢;) = @3

* Typically ¢, N @3 # Q.

Symmetry Almost This work
Symmetry

Usage Static, dynamic Dynamic Dynamic

Formula @ ®1 U @y ®1 U @y U @3
Requires o(p)=¢ a(p2) = ¢, o(p2) = @3

THE SUBGRAPH INDUCED BY A RESOLUTION PROCESS

Q: How can this fact be used?
A:look for formulas in which this property can be detected statically

* Let ¢ = 91 U @ U @3 and let ¢ be a partial map such that o(¢;) = @3

* Typically ¢, N @3 # Q.

* Examples:
Maptype | @i | 92 | 93
+ j 1(0),P(k) c€T(,i+1) cdJeT@i+j,i+j+1)
Van-Der Waerden + CEQ cl € ¢

Pyth. triples * j CEQ c* € ¢

THE E-CLAUSES: WHAT KIND OF CLAUSES ARE THESE ?

* They are loosely related to the search
* On the one hand, they refer to a different set of variables than the current focus

* On the other, they build a clause structure (proof?) which is symmetric to the learned one.

* In that sense, they are not ‘arbitrary’ implied clauses.

* Does adding them as additional learned clauses improve performance!?

ADDITION / DELETION STRATEGY FOR E-CLAUSES

* Addition:
* During search / restart: restart

* Maximal size: 20
* Maximal (partial*) LBD: 6

* Measured with respect to the current trail

* It does not necessarily include a full assighment of the e-clause.

* Maximal # of non-false literals: 3

* Deletion:
* |nitial score: 0.8x

» Category (core / Tier-2 / Local): Local

* Deletion ratio (% of local clauses removed during ‘reduceDB’): 66%

RESULTS

Symmetry Replication Time (par-2) Conflicts e-clauses

v 111.2 1,079,719 30568
static 149.8 2,110,472 0
190.4 2,112,666 0
dynamic v 198.5 1,963,104 500618
dynamic 233.2 2,477,840 6,729

30 non-trivial instances, |6 unsat.
Includes eclause filtering. -

CONCLUSIONS

* Future work:

* Better adaptation of solvers to this extra information

* “Symbolic clauses” — generate eclauses lazily.

