Exploiting Isomorphic Subgraphs in SAT

OFER STRICHMAN, TECHNION, ISRAEL

ALEXANDER IVRII, IBM-HAIFA, ISRAEL

CLAUSE REPLICATION

- Recall clause replication [S'01,S'04] for BMC.
 - Enhances learning with extra clauses, not related to the current path.
 - Based on the regular structure of BMC formulas.

- Our contributions here:
 - Identify this property in many other problem domains
 - Theory: Show how it extends dynamic symmetry handling [DBB'17,TD'19]
 - Practice: Experiments with various learning / forgetting strategies.

CLAUSE REPLICATION IN BMC [S'01,S'04]

- BMC (of safety properties): BMC_k $\equiv I(S_0) \land \bigwedge_{i=0,k-1} T(S_i, S_{i+1}) \land \neg P(S_k)$
- At the CNF level $T(S_i, S_{i+1})$ is the same for each i, up to renaming.
- This can be exploited for learning additional clauses:

Clause replication in BMC [S'01,S'04]

Maintain additional clause header data:

- I. Is this clause 'replicable'?
- 2. (min,max) cycle used for deriving this clause:

When learning a new clause c from antecedents S (i.e., $S \vdash c$):

If all of S clauses are marked:

- I. Mark *c*.
- 2. Record (min,max) cycle indices in S.
- 3. Learn c^i for $i \in -min...(k max)$.

EXAMPLE

$$s = (-x_2 y_5), (x_2 y_5 z_3 w_4)$$
 $(min, max) = (2,5), k = 6$

THE SAME PRINCIPLE APPLIES TO MANY OTHER FORMULAS

- In previous works:
 - Bounded model checking [S'01,S'04]
 - Planning with neural networks [SDNS'20]
- Here we apply it to various problems that drew attention in recent years:
 - Van-Der Waerden numbers
 - Pythagorean triples
 - The 'Sweep' problem
 - The 'Anti-bandwidth' problem
 - Cardinality constraints

EXAMPLE I:VAN-DER WAERDEN NUMBERS

- The van der Waerden number W(k) is the smallest integer n such that every 2-coloring of 1..n has a monochromatic arithmetic progression of length k.
- E.g., a bad coloring for n = 9, k = 3

- It can be shown that W(3) = 9.
- We have a witness for W(3) > 8

EXAMPLE I:VAN-DER WAERDEN NUMBERS

- For a sequence length n, define n variables
 - x_i for $1 \le i \le n$, location i is with color '1'.
- Suppose k = 3, n = 10. Then:
 - No 3 consecutive literals with gap 1 are all '0': (1 2 3) (2 3 4) (3 4 5) ... (8 9 10)
 - No 3 consecutive literals with gap 2 are all '0': (1 3 5) (2 4 6) (3 5 7) ... (6 8 10)
 - No 3 consecutive literals with gap 3 are all '0': (1 4 7) (2 5 8) (3 6 9) (4 7 10)
 - No 3 consecutive literals with gap 4 are all '0': (159) (2610)
- + same for all color '1': negate all literals, e.g.,

$$(-1, -2, -3) (-2, -3, -4) (-3, -4, -5) \dots (-8, -9, -10)$$

EXAMPLE 2: PYTHAGOREAN TRIPLES

- Triples (a, b, c) such that $a^2 + b^2 = c^2$
- Q: for a given $n \in \mathbb{N}$, can 1.. N be separated to two sets, such that no set contains a Pythagorean triple ?
- Example CNF for n=17 (3 4 5) (-3 -4 -5) (5 12 13) (-5 -12 -13) (6 8 10) (-6 -8 -10) (9 12 15) (-9 -12 -15) (8 15 17) (-8 -15 -17)

EXAMPLE 2: PYTHAGOREAN TRIPLES

Symmetry emanates from factoring triples

- Going left: divide c by a common divisor of the antecedents
- Going right: multiply c by a factor f, as long as $f \cdot \max \le n$ (max = maximal literal in c's antecedents).

A THEORETICAL FRAMEWORK

- Static (full) symmetry
 - Static symmetry breaking [Shatter, BreakID] Statically adding Symmetry-Breaking constraints.
 - Dynamic symmetry handling [e.g., SEL (DBB'17)] Given a learned clause c, adding extra clauses ("eclauses") based on symmetry data.

- This talk we find eclauses regardless of static symmetry.
 - The theory is based on isomorphic subgraphs

THE CNF INCIDENCE GRAPH

• The colored literals incidence graph of (-a,b,c) (a,-b):

- Opposite literals are connected
- A clause node is connected to its literals
- Literals have one color, clauses another.

STATIC SYMMETRY IN CNF, BY EXAMPLE

$$\varphi: C_1: (-a, b, c)$$
 $\varphi: C_2: (a, -b, -c)$
 $C_3: (-b, c)$

Syntactic equivalence up to clause/literals reordering

Find a Boolean-consistent map σ between the labels, such that $\sigma(\varphi) \equiv \varphi$.

Example: σ : $(a, -a)(b, -c)(C_1, C_2)$

$$\sigma(\varphi): \frac{(a,-c,-b)}{(-a,c,b)}$$

$$(c,-b)$$

STATIC SYMMETRY IN CNF, BY EXAMPLE

$$\varphi \colon \begin{array}{c} C_1 \colon (-a,b,c) \\ \varphi \colon C_2 \colon (a,-b,-c) \\ C_3 \colon (-b,c) \end{array}$$

Find a Boolean-consistent map σ between the labels, such that $\sigma(\varphi) \equiv \varphi$.

Example: σ : $(a, -a)(b, -c)(C_1, C_2)$

 α :

Hence, if $\alpha \vDash \varphi$ then $\sigma(\alpha) \vDash \varphi$

STATIC SYMMETRY BREAKING

- So σ in our example has the property that $\forall \alpha. \alpha \vDash \varphi \Rightarrow \sigma(\alpha) \vDash \varphi$.
- We only need one representative to maintain satisfiability.
- Shatter/BreakID find such mappings, and add symmetry-breaking constraints.
 - How? See Crawford et al [CGLR96].

DYNAMIC SYMMETRY HANDLING*

Suppose we learned a new clause C_4 .

Hence
$$\varphi \vdash_{res} C_4$$

 $\Rightarrow \sigma(\varphi) \vdash_{res} \sigma(C_4)$
 $\Rightarrow \varphi \vdash_{res} \sigma(C_4)$

Conclusion: we can learn also $\sigma(C_4)$

Note that:

- 1. This does not break the symmetry; all solutions remain.
- 2. The map σ was built statically, according to symmetries in φ .

* Used by SEL [BDB'17], SLS [BNOS'10], SP [BBDDM'12]

"ALMOST SYMMETRIES" [CBMS14,...]

- Suppose we have $\varphi \equiv \varphi_1 \cup \varphi_2$
 - ϕ_1 prevents symmetry.
 - But there is still a mapping σ such that $\sigma(\varphi_2) \equiv \varphi_2$

• If we learn a clause c from φ_2 , we can also add the eclause $\sigma(c)$.

Our work: a weaker condition for eclauses.

	Symmetry	Almost Symmetry	
Usage	Static, dynamic	Dynamic	
Formula	arphi	$\varphi_1 \cup \varphi_2$	
Requires	$\sigma(\varphi) \equiv \varphi$	$\sigma(\varphi_2) \equiv \varphi_2$	

Consider the resolution process (root clauses in green):

$$\frac{(-a,b) \qquad (a,c)}{(b,c) \qquad (a,-b,d)}$$

$$\frac{(a,c,d)}{(a,c,d)}$$

The subgraph induced by the resolution process is a union of

- The subgraphs corresponding to the root clauses
- The edges of the resolved variables

Consider the resolution process (root clauses in green):

$$\frac{(-a,b) \qquad (a,c)}{(b,c) \qquad (a,-b,d)}$$

$$(a,c,d)$$

Any subgraph isomorphic to this one, corresponds to a legal resolution.

So what ?
Subgraph isomorphism is
NP-hard!

Consider the resolution process (root clauses in green):

$$\frac{(-a,b) \qquad (a,c)}{(b,c) \qquad (a,-b,d)}$$

$$(a,c,d)$$

Isomorphic subgraphs \Leftrightarrow isomorphic subformulas.

Q: How can this fact be used?

Consider the resolution process (root clauses in green):

$$\frac{(-a,b) \qquad (a,c)}{(b,c) \qquad (a,-b,d)}$$

$$(a,c,d)$$

Isomorphic subgraphs \Leftrightarrow isomorphic subformulas.

Q: How can this fact be used?

Q: How can this fact be used?

- Let $\varphi \equiv \varphi_1 \cup \varphi_2 \cup \varphi_3$ and let σ be a partial map such that $\sigma(\varphi_2) \equiv \varphi_3$
- Typically $\varphi_2 \cap \varphi_3 \neq \emptyset$.

	Symmetry	Almost Symmetry	This work
Usage	Static, dynamic	Dynamic	Dynamic
Formula	arphi	$\varphi_1 \cup \varphi_2$	$\varphi_1 \cup \varphi_2 \cup \varphi_3$
Requires	$\sigma(\varphi) \equiv \varphi$	$\sigma(\varphi_2) \equiv \varphi_2$	$\sigma(\varphi_2) \equiv \varphi_3$

Q: How can this fact be used?

- Let $\varphi \equiv \varphi_1 \cup \varphi_2 \cup \varphi_3$ and let σ be a partial map such that $\sigma(\varphi_2) \equiv \varphi_3$
- Typically $\varphi_2 \cap \varphi_3 \neq \emptyset$.
- Examples:

Problem	Map type	$arphi_1$	$oldsymbol{arphi}_2$	$oldsymbol{arphi}_3$
ВМС	+ <i>j</i>	I(0), P(k)	$c \in T(i, i+1)$	$c^j \in T(i+j,i+j+1)$
Van-Der Waerden	+ <i>j</i>		$c \in \varphi$	$c^j \in \varphi$
Pyth. triples	* <i>j</i>		$c \in \varphi$	$c^{*j} \in \varphi$

THE E-CLAUSES: WHAT KIND OF CLAUSES ARE THESE?

- They are loosely related to the search
 - On the one hand, they refer to a different set of variables than the current focus
 - On the other, they build a clause structure (proof?) which is symmetric to the learned one.
 - In that sense, they are not 'arbitrary' implied clauses.

Does adding them as additional learned clauses improve performance?

ADDITION / DELETION STRATEGY FOR E-CLAUSES

- Addition:
 - During search / restart: restart
 - Maximal size: 20
 - Maximal (partial*) LBD: 6
 - Measured with respect to the current trail
 - It does not necessarily include a full assignment of the e-clause.
 - Maximal # of non-false literals: 3
- Deletion:
 - Initial score: 0.8x
 - Category (core / Tier-2 / Local): Local
 - Deletion ratio (% of local clauses removed during 'reduceDB'): 66%

RESULTS

Symmetry	Replication	Time (par-2)	Conflicts	e-clauses
	✓	111.2	1,079,719	30568
static		149.8	$2,\!110,\!472$	0
		190.4	2,112,666	0
dynamic	\checkmark	198.5	1,963,104	50618
dynamic		233.2	2,477,840	6,729

30 non-trivial instances, 16 unsat. Includes eclause filtering.

CONCLUSIONS

- Future work:
 - Better adaptation of solvers to this extra information
 - "Symbolic clauses" generate eclauses lazily.