

—Hardware Security
_eak Detection by
Symbolic Simulation

Neta Bar Kama
Roope Kaivola

FMCAD 2021

2

INntroduction

In the aftermath of the Spectre and Meltdown
vulnerabilities, security has become a greater focus area
for validation.

* Formal verification of arithmetic data-paths has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994

= The primary vehicle for FV in the execution cluster (EXE) on
an Intel Core processor is symbolic simulation.

= Anovelusage of symbolic simulation led to discoveries of
oreviously unknown potential data leakages in the EXE
cluster.

Intel provides these materials as-is, with no express or implied warranties. Intel processors might contain design defects or errors known as errata, which might cause
the product to deviate from published specifications. No product or component can be absolutely secure. Intel, Intel Core, Intel Atom, Pentium and Intel logo are |ntel
trademarks of Intel Corporation. Other names and brands might be claimed as the property of others. © Intel Corporation .

Execution Cluster

intel. -

;

|

€ ELTELALLEE L L LR R
A BEEErERREIEIDASEIEE

an (il 2T

R e N R
“ L

o ,#,L

Exrrrsirsrrry ¥
ITTTIacIraaas o

=--l- b aky;

y
titth

e

MR

230U €3 EA8 L9 LA s

{
o

agiiH

L

thifiidiii

ShOEELLL i

Al

qterrsees

| |
’,_T.

|

ik
.m.m..t
T
Hil

) _j

e
ST TR T s e

i nrnnnrns e
A e B E LR AR Tt

r. v Iy
'V T
S E T TR]

5

intel.

£ gan vl

% re—

MR Mk b

e

NEHE A R HHE N

.

oo [E 0ol o [o L JRSSRSLE OORE 00

CRCRON)
(U

8

W' ll‘ | e m

FUOLUM I
Bl 1
1y IR

L)
tesel

taed DHhydii

(M

vt
e Aﬂ<
22

g

g Tk

3AA
0whe

e CR

©
"

BHS) bk

U

I

1}

tus
bbb

ot
bast

"

e p
Lt sl

e

LA R L LT
{ET4 N FF -

L]
|

TN L
) faxl

)
|

"

.
.

e 4|
a1

“TrrrTrTrTirne

W L|

LT ._.c. c.o. c.... ara cih sun. '&.cﬂx.,
G

ﬁ,.

IFaFatars 1101819981 8181 09

1 ad @

L LI I)

I

[¥
|22 B e

T AT AT
RIS IO ______ m
hane e tetene el Inpeporety L1 0

| | = w

.
T O)
{5 R R R S R R B R

Lo A

T ENERERE

6

intel.

—xecution Cluster

= ~5000 micro-operations in Intel Core Processor EXE cluster.
= Arithmetic, logic, branch operations, address calculations and more.

= Hundreds of thousands of lines of hardware description language
code.

= No prior knowledge of where security vulnerabilities are hiding.

intel.

—xecution Cluster

Write Back

= The execution cluster (EXE) is a pipelined machine.
= Receives streams of micro-operations (Lops).

Data calculations are performed on input sources and result
goes to the write-back output.

intel. =

—xecution Cluster

= Same data-path is used for secret and non-secret data.
= No awareness of what a secret is — it is context dependent.
= \When clocks are powered down, data lingers in internal flops.

= [his data may be exposed by a later operation, if its result is
undefined.

intel.

Stale Data

All clocks toggling all the time = data flows freely

intel

Stale Data

Clocks shut down = data can get stuck

intel

The Undefined Space

 Many micro-operations do not have a fully defined expected
result.
= e.g., divide by zero, writing only flags
* The challenge: how do you define a verification goal and catch
a problem without a specification?

= Therisk: the cluster output is not checked in these cases. We
do not know what kind of data is exposed on the cluster
interface when these operations are issued.

intel. =

The Undefined Space

Example
uop B
pop B data
D>
clock-enable
gated by uop B
Security property:

¥

pnop A

Every pop’s result depends only on its own inputs

Shared
Output

intel.

13

Symbolic Simulation

intel.

Symbolic Simulation

Problem: verify that circuit C satisfies the specification S

C S
»

() inl

out ()]

Q in2 = -

() in3

* Traditional simulation:
* I[nject random values and compare result to reference model.
= 2" simulations to cover an n-bit wide logic.

intel. =

Symbolic Simulation

Problem: verify that circuit C satisfies the specification S

S

* Symbolic simulation:
* Inject symbols and compare result to reference model.
* | simulation to cover all inputs.

intel.

Symbolic Simulation

* What are symbolic expressions?

8 ©

1 0]

8 ©

1 0

intel. v

Symbolic Simulation

= |n ‘real’ life

source_datal[7:0]
result_datal[7:0]

source_data2[7:0]

\a\\a[O]II}D;VIb[O] \a\\a[O]i’]:’/Ib[O]]

0000 opcode[3:0]

1 valid

MU clock

Symbolic Simulation

ambp Constants driven to Symbols driven to
control signals data signals

----- o2H(7:0 e on
s
i { W BIOLS
; B ‘ 1“a[0]"&!"a[1]"&...!“b[7]"
S whzerofl_304 Every bitis
s , ‘ 0 .0 “a . al0 h[O a BOOIQ.an
expression

Symbolic expressions
sampled at the outputs

intel. »

Symbolic Simulation

intel. o

Symbolic Simulation

The special trait of symbolic simulation:

Every variable has a name

Circuit output: al @@
Dependency list: @@@

intel. =

The Undefined Space

= The challenge: how do you define a verification goal and catch
a failure without a specification?

= OQur solution: the dependency list tells us what propagated to
the output, without having to know the specification!

Dependency list: @@@

Every variable has a name

intel. >

Data Leakage

intel. 2

Data Leakage Analysis
How does it work?
= |[dentify micro-operations (uops) that do not have a fully-
defined write-back result.

* Run symbolic simulation, sample the write-back, and extract
the list of dependencies.
* Remember: no need for specification to get the dependency list!

» |[dentify expected vs. suspicious variables in dependency list.

* Each variable has a name — easy to filter automatically.

* Debug —where did the suspicious variable come from?

intel.

24

Results and Examples

Intel. 2

Results

* Focus: write-back data interface buses of ~2000 micro-
operations, for which these buses are relevant.

» 89.4% of these were completely specified and 10.6% of had a
fully or partially undefined write-back result.

* Symbolic dependency analysis found that only 2.2% failed the
symbolic dependency check.
-2 8.4% of micro-operations are undefined, but proven to have only
expected data.

" |In 6-8 weeks, several potential data leakage mechanisms were
detected, all previously unknown.

intel.

26

—xample |

pop B data

uop B

lla4"
ub3n
11C8"

clock-enable
gated by pop B

HOP
control

Shared
Output

l

Depend-list:
[“a4”, “b3", “c8", X1

intel.

27

—xample |

Replacing X with a ‘ad”
unique named variable “b3”
"eg”
Shared
—
Hop B Output
pop B data X
Depend-list:
clock-enable [“a4” “b3" “c8"]
gated by pop B .
control

The same name is

observable in the output
dependency list

intel. =

—xample 2

'a[o]] Srcl_302H[15:0]
., "b[0] "] src2_302H[15:0] whzerofl_304H

] 0x08 wb_304H[15:8]
R: 0x08 uopcode_302H[7:0] | AL
1 uopvalid_302H wb_304H[7:0]

M dk whbvalid 304H

uopvalid_302H \

"
=2
3
£
prar}
"

src2_302H[15:0]

whbvalid_304H

whzerofl_304H

response

wh_304H[15:0] »

Safe: unused upper bits
are zeroed.

uopcode_302H[7:0] * = ‘ "al15T, . "alo]']
srcl_302H[15:0] 1 F— - y

intel.

29

—xample 2

w
3
<3 |
E
=
w

response

] srcl_302H[15:0}
1 src2_302H[15:0}

src2_302H[15:0] »

srcl_302H[15:0] =

whb_304H[15:8]»

wb_304H[7:0]

uopcode_302H[7:0)

uopvalid_302H

| wheerof]_304H
whb_304H[15:8]
wb_304H[7:0] — ["al7]7+""B(7]"

whbvalid 304H

Unsafe: upper bits are X

intel.

30

—xample 2

Replaced X with a symbol:
a unique named variable

stimulus

response

Internal Stimurs

rci[15]g23" Sxci[B] 23

3 s
srcl :‘ ’7 - e
srci_303H[15 8]
0

src2_302H[15:0] »

srcl_302H[15:0]

whb_304H[15:8]

wh_304H[7:0]

wb_304H[15:5]

Observed same namein
output dependency list

D

intel.

31

—xample 2

Shared by multiple
operations

Symbolic values
driven to external
source bus

| SB's are always
passed on

k always
ggling

is valid

5 30 . 16-bit
=

Internal source bus

MSB's are

intel.

32

—xample 2

stimulus

internal

results

Uop :alé-t

operation

Uop © : al6-bit
operation

uopvalid_302H

uopcode_302H[7:0]

srcl_302H[15:0]

srcl_303H[15:8]

srcl_303H[7:0]

whb_304H[15:8]

whb_304H[7:0]

D) [®] [©)

302H 303H

1]
21

intel.

33

Summary

» Cluster level coverage, 6-8 weeks of work

* Found that 9/.8% of micro-operation pose no risk, including
8.4% that were not fully defined.

* Failures were mapped to several potential data leakage
mechanisms, all previously unknown.

intel. s«

Acknowledgments

» Arkady Neyshtadt for his security analysis

» Gilad Holzstein, Robert Jones, Alex Levin, Yoav Moratt and Nir
Shildan for interesting discussions on security

 Annette Upton for detailed feedback on the paper

* David Turner, Yaniv Dana and Alon Flaisher for the opportunity
to carry out this work

* Orly Cohen, Joe Leslie-Hurd, Chris Gaines, Michael Libby and
Jesse Bingham for presentation feedback

intel. s

