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In this talk…

• IC3 is a very powerful algorithm for formal hardware verification
• Especially for proving safety properties

• IC3 computes an inductive invariant in CNF over state variables

• But there are designs without a concise invariant over state variables

• We extend traditional IC3 to learn invariants not only in terms of state variables but also in 
terms of internal signals

• The proposed method can learn significantly more compact invariants than IC3, while 
maintaining a highly-efficient CNF representation



Safety Verification

S = <I, X, Init(X), Tr(I, X, X’), Bad(X) >
• I – primary inputs, X – state variables, 
• Init(X) – predicate defining the initial states, Tr(I, X, X’) – predicate defining the transition relation, 

Bad(X) – predicate defining unsafe states,
• X’ – state variables in the next-frame

The problem is UNSAFE if and only if there exists a path from an Init-state to a Bad-state, that is there exists 
a natural number N such that the following formula is satisfiable:

Init(X0)  Tr(I0, X0, X1)  …  Tr(IN-1, XN-1, XN)  Bad(XN)

The problem is SAFE if and only if there exists a safe inductive invariant Inv(X), that is
Init(X)  Inv(X)
(Inv(X)  I . Tr(I, X, X’))  Inv(X’)
Inv(X) Bad(X)



In hardware verification, Init, Tr, Bad are represented as netlists
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Transition Relation as a netlist Transition Relation as CNF

Example:

Safety Verification



Notation

Net: either a state variable (e.g., w, x, y, z), an input (e.g., i), or a logic gate (e.g., g, h) in the netlist

Latches: state variables and their negations

Internal nets (innards): internal logic gates and their negations
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Example 1 (parity)

This is our favorite toy example

• State variables: x1, …, xn

• Reachable states: {x1, …, xn | x1  …  xn = 1}
• Unsafe states:  {x1, …, xn | x1  …  xn = 0}

The only safe inductive invariant over latches has 2n-1 clauses representing x1  …  xn = 1 in CNF:
• For example, there are 4 lemmas for n=3: (x1  x2  x3), (x1  x2  x3), (x1  x2  x3), (x1  x2  x3)
• Every lemma blocks only a single state and cannot be generalized

Yet, for the innard z  = x1  …  xn, there is a safe inductive invariant over latches and innards consisting of a 
single lemma: 
• (z=1)

* A full example (in SMV and AIG formats), as well as other examples, are available at: 
https://github.com/agurfinkel/innard-benchmarks/



Example 2

This example is described “Sequential Verification with Reverse PDR” by Seufert and Scholl

• Two counters that count modulo-2n, with state bits s = (s0, …, sn-1) and t = (t0, …, tn-1), respectively
• Input i
• Initial states: { s  t }
• Transition relation: when i=0, both counters keep their values; when i=1 both counters increment by 1 

modulo 2n

• Bad states: {s = t} 

The above paper argues:
• Any safe inductive invariant over latches must contain at least 2n lemmas
• There is a much smaller safe inductive invariant for the Reverse IC3

• 2n lemmas that are required to represent s = t in CNF

• For the innard z = (s  t), there is an inductive invariant consisting of a single lemma over latches and 
innards
• (z=1)



Example 3

This example illustrates a sequential equivalence checking problem between an original and a retimed design

x2 xnx1

z

…

i2 ini1
… i2 ini1
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…

vOriginal netlist Retimed netlist

• Unsafe states: { z  v}
• 2n lemmas over latches
• 2 lemmas over latches and innards: (z  v), (z  v)



Example 4

• Latches: x1, …, xn, y1, …, yn

• Innards: z1 = x1  y1, …, zn = xn  yn

Assume the lemma C = (z1  …  zn) is inductive

Representing C in CNF requires 2n lemmas.

For example, for n=3: (z1  z2  z3) is equivalent to 8 lemmas:
• (x1  x2  x3), (x1  x2  y3), (x1  y2  x3), (x1  y2  y3),

(y1  x2  x3), (y1  x2  y3), (y1  y2  x3), (y1  y2  y3)

These lemmas are over different sets of variables!

The example is motivated by the benchmark rast-p16 from HWMCC’20



A very brief description of IC3: key data structures

IC3 maintains sets of clauses F0, F1, F2, … called an inductive trace. Each Fk is called a frame. Each clause C 
Fk is called a lemma. IC3 maintains the following invariant:
1. F0 = Init
2. clauses(Fk+1)  clauses(Fk); in particular, Fk+1  Fk

3. Fk  Tr  Fk+1’
Intuitively, an inductive trace stores over-approximations of the states reachable in 1,2,3, … steps from the 
initial states.

IC3 also maintains a queue of proof obligations. A single proof obligation is a pair <m, k>, where:
• m is a cube over (a subset of) latches
• k > 0 is the obligation’s level
Intuitively, proof obligations are the states that need to be removed from the approximations in order to 
prove safety.

Both proof obligations and lemmas are clauses over latches



A very brief description of IC3: lemmas

Relative inductive: a lemma  is inductive relative to a set of lemmas G iff
1. Init ,
2. G  Tr   ’

Learning new lemmas: At each point of execution, IC3 considers a proof obligation <m, k> and makes
• An initial query: SAT? (Init  m)

• Checks whether a state in m in an initial state
• A predecessor query: SAT? (m  Fk-1  Tr  m’)

• Checks whether a state in m can be reached in one step from a state in Fk-1

When both queries are unsatisfiable, then Init m and Fk-1  Tr  m m’, i.e. m is inductive relative 
to Fk. In this case, IC3 can add the lemma m to all Fj for j ≤ 𝑘

Inductive generalization: For performance, it is crucial to generalize m first: finding a shorter lemma 
  m such that Init  and Fk-1  Tr   ’
• Performed by removing literals from m while the two conditions remain satisfied 

These learned lemmas are used in future predecessor checks and pushing/convergence checks 



A very brief description of IC3: pushing and convergence

Pushing: IC3 periodically pushes all lemmas:
• Given a lemma  in Fk \ Fk+1, it checks if  can be added to Fk+1 as well

Convergence:
• If at any point there is k such that Fk = Fk+1 and Fk Bad, then we can take Inv = Fk as a safe inductive 

invariant



Extending IC3 to reason about innards

So far, we talked about the traditional IC3, and the concepts of a safe inductive invariant, inductive trace, relatively 
inductive were with respect to lemmas over latches. 

But what needs to be changed to reason about innards (such as g)?
Fortunately, not much.
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g'TrinnIn the example, we need to reason about g in the 
initial state and the next state. For instance, we need to 
make sure that the SAT solver used for making inductive 
generalization queries includes the clauses defining g’.

However, once we let Trinn be the part of Tr that defines 
innards and define INIT = Init  Trinn and TR = Tr  Trinn

’, then 
replacing Init by INIT and Tr by TR in all definitions simply 
works!

• There is something to prove here, especially for innards that 
have inputs in combinational COI (such as h)



Proposed approach: learning lemmas over latches and innards

Proof obligations are over latches (the same as in traditional IC3)

Recall: given a proof obligation <m, k+1> over latches such that m is inductive relative to Fk:
• Traditional IC3 computes a lemma  over latches by inductively generalizing m with respect to Fk

• This lemma  is then added to all frames Fj for j <= k+1

We construct an additional lemma  over latches and innards that is inductive relative to Fk

• This additional lemma  is also added to all frames Fj for j <= k+1
(except if  is the same as ) 

In this way, the proposed approach is a form of inductive generalization



Our running example

Init: (w=1)  (x=1)  (y=1)  (z=1)
Tr: (w’ = w)  (x’ = w)  (y’ = w)  (z’ = h)  (h = g  i)  (g = x  y)

Let the set of considered innards be { g }

Let’s suppose the original lemma is  = (w  x) and Fk = T
•  is over latches
•  is inductive relative to T
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g' TR

Recall: this means that
• Init 

•   Tr ’
• Indeed, (w  x)  TR  w’  x’ is unsatisfiable



First step: extending lemma

Idea: 
• Find innards z such that z  (modulo Trinn) and replace  by (  z)
• Equivalently, find innards z such that  z
• Use constant propagation in the Trinn netlist

In our example:
• Start with  = (w  x)
• Set w = 0, x = 0
• Constant propagation implies g = 0
Can replace  by 1 = (w  x  g)

Remarks: 
• It is easy to see that 1 remains inductive relative to Fk

• Extending lemmas with literals that imply it is closely related to asymmetric literal addition in SAT

zx yw

gTrinn

0 0

0

Given a lemma  over latches that is inductive relative to Fk, 
we extend  to a lemma 1 = (  0) over latches and innards such that Trinn (  1)

 and 1 are equivalent modulo Trinn



Second step: generalizing the obtained lemma

Idea: 
• Sort the literals of 1 according to their logic level (latches have the lowest level, deeper nets have higher level)
• Remove literals in the given order one-by-one as long as the lemma remains relatively inductive

In our example:
• Start with 1 = (w  x  g) which is inductive relative to T; the literals are already sorted 
• Cannot remove w as (x  g) is not relatively inductive
• Can remove x as (w  g) is relatively inductive; shrink to (w  g)
• Cannot remove g as (w) is not relatively inductive
Can replace 1 by 2 = (w  g)

Remark: 
• This is an expensive procedure, but see the paper for certain useful optimizations

Given a lemma 1 over latches and innards that is inductive relative to Fk, 
Inductively generalize 1 by removing literals, while prioritizing removal of latches / shallower nets



Our running example

To recap:

• We started with the lemma  = (w  x) over latches constructed by traditional IC3
• We extended it 1 = (w  x  g) over latches and innards
• We obtained 2 = (w  g) by inductive generalization, 2 is over latches and innards

Remarks:

• As g = x  y, the lemma 2 = (w  g) is equivalent to (w  x)  (w  y)
• The new lemma over latches and innards is equivalent to two different lemmas over latches
• These two lemmas are over different sets of variables

• As  is equivalent to 1 modulo Trinn, and as 2 is obtained by removing literals from 1, then Trinn  (2 ) 
• 2 is stronger than  (i.e., 2 blocks the same states and maybe more than )



Experimental Results

• Implemented in IBM’s formal verification tool

• IC3 is the default variant of IC3 used by the tool 
• IC3-INN is the variant with additional learning of lemmas over innards (with innards restricted to internal nets 

with no inputs in combinational COI)

• Benchmark sets are explained on the following slides; all the instances either are or expected to be unsatisfiable



IBM-AOD-SEC benchmarks

Benchmarks checking sequential equivalence between two designs in the Aspect Oriented Design flow at IBM
• Includes retiming and clock-gating

The SEC problem is very challenging, and traditionally solved using a combination of techniques:
• Using speculative reduction to reduce the problem into multiple simpler (but still hard) sub-problems
• Dedicated engine configuration consisting of combinational rewriting, k-induction, localization, and eventually a 

proof-based technique, such as Interpolation (IMC) or IC3

• Interpolation: generally, works well, but is not stable
• IC3 performs very poorly
• IC3-INN is amazing  

* unfortunately, this benchmark set cannot be released



6s119-SEC, 6s22-SEC benchmarks

Sequential equivalence checking benchmarks manually created from publicly available benchmarks
• Checking equivalence between the original design and the retimed designed
• Applying the sequential equivalence checking flow described previously 
• Available at https://github.com/agurfinkel/innard-benchmarks/

6s119-SEC:
• 364 rather easy problems
• IC3-INN is about 2.4x faster than IC3
• Interpolation: cannot solve 64 of these (within 600 s)

6s22-SEC:
• 310 problems
• IC3-INN solves 278 and IC3 solves 262 (within 600 s)
• Interpolation: significantly worse



HWMCC benchmarks

Publicly available Hardware Model Checking Competition Benchmarks

• In general, IC3-INN performs worse than IC3
• A few benchmarks where IC3-INN is significantly better than IC3

• E.g., rast-p16: IC3 times out, IC3-INN solves within 2 s; exposes the pattern from Example 4



Related and Future Work

• In the presented approach, proof obligations are over latches, while lemmas are over latches and innards
• In the work “Using cubes of non-state variables with property directed reachability”, Backes and Riedel consider 

proof obligations over certain internal signals
• Innards on the boundary between input-free and non input-free parts of the netlist
• Allows to generalize proof obligations

• Q: The two approaches are quite different, but maybe one can somehow combine them?

• In the presented approach, the design is fixed, and we use internal signals that are already available
• An interesting direction to extend the approach to learn lemmas over signals that are not present in the original 

netlist
• Closely related to “IC3 modulo theories via implicit predicate abstraction”, by Cimatti, Griggio, Mover and 

Tonetta
• The framework allows such an extension

• Q: How to decide which additional logic/additional innards to include in the netlist

• What about learning lemmas over arbitrary formulas, not restricted to clauses in CNF?
• Common in SMT-based extensions of IC3, such as Sally or Spacer
• However, these techniques seem difficult to port efficiently to hardware model checking



Conclusions
• The presented technique is an extension of regular IC3 that simply learns an additional lemma during inductive 

generalization

• Easy to integrate in an existing IC3 implementation
• The main technical point is to replace Init by INIT and Tr by TR

• Currently, the technique seems more beneficial for (unsatisfiable) sequential equivalence checking benchmarks 
• We probably need more of such benchmarks in HWMCC competitions

• Opens many interesting questions and directions for further work
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