Ori Lahav | Guy Katz

Network Simplification

fmcad !

https://arxiv.org/abs/2105.13649
https://github.com/vbcrlf/redy




' Ol Introduction

RelLU ReLLU RelLU

. RelLU . . Rel.LU . .

Inputs

Outputs

. RelLU . . RelLU . .

. RelLU . . RelLU . .



Ol Introduction

How do we remove a neuron?

1. Convert a neuron activation function into a linear function
2. Merge consecutive linear layers

y
VYL VYA =
R . RELI{ . R A . Linear _ . R >




O 2 Types of Redundancy

Criteria for a redundant neuron



02

e A neuron which it’s removal does not affect the output of the
network

e Concretely, we propose 4 different criteria for asserting a neuron can
be removed



a. Phase Redundancy

=

5 -050 -0.25 000 025 050 075

These operations will not affect the network output:
Replacing a ReLU neuron with Zero if it is always inactive (e.g. input <0)
Replacing a ReLU neuron with Identity if it is always active (e.g.input=0)

Can be generalized to any piecewise-linear activation function
o Wecallit

Least general category, but is the easiest to calculate!

“Give me an input for which the neuren input is less then zere.”



b. Forward Redundancy

e Aneuron might not be Phase-Redundant, but still to not affect
the output

e How do we find such neurons using a verification engine?
a. Duplicate the network and remove the neuron in the copy (B)
b. Compare with the original (A)

=or#?




c. Result-Preserving Redundancy

e In aclassification network, what does it mean to not affect the output?
o Forany given input, the ‘winning’ class should be the same
o e.g.we don’tcare if the numerical output is completely different!

Outputs

@@

Cat: 0.4

= Dog!
Dog: 0.8 g

Cat: 0.4

= Dog!
Dog: 0.5 g




d.Relaxed Redundancy

e We discussed replacing a neuron with a one of it’s linear phases
e Butourapproach allows for replacing a neuron with any linear function!
o What else can we replace it with?

e Intuitively, we would want to minimize the maximal error.
o Inthe case of ReLU (ub, [b are input bounds for the neuron):

ub —Ib-ub

@) = T T St — by : R




O3 Strategy

1. Bound estimation using MILP

o Usingthese bounds, we can conclude which neurons are Phase-
Redundant.

2. Simulations and Formal Verification
o Use simulations to eliminate non-redundant neurons
o Run formal verification queries to find redundant neurons

3. Relaxed Redundant and Error Approximation

o As alast step, we can remove neurons and approximate the
maximum output error



Y% RECAP

e Weintroduced a few categories of redundancy
e ...and astrategy for finding such redundancies

e Butwe can do better...




04 Slicing

Introducing Redundancies



04

e Observation:
o If we constrain the network to a smaller input space, some

neurons will be redundant. L.
Y q = =

e Theidea: ‘
o Splitthe inputspace to N different subspaces. .. 3:8&¢ ..

o For each subspace: S e

B Run the redundancy removal strategy on the network

constrained to that subspace only

4

Input Space

o0

[} .‘ ®

e We will end up with many smaller networks.
® On evaluation, we choose the the right network based on the input.

e Thistechnique improves the evaluation time, at the cost of memory.



Experimental results 04

e We splitted the input space of an ACAS network to about 32K subspaces

e 32Ksubspaces may sound like a lot, but finding Phase-Redundant
neurons is relatively quick

o We ran this step on all 32K subspaces and 67.3% of all neurons
were found redundant.

o We ran the full pipeline on 50 random subspaces
o 82.5% neurons were redundant.

Phase-Redundant Phase-Redundant
by MILP _—y MILP
Phase-Redundant Phase-Redundant
— by Formal Verification . by F rm al Verificatios
' Result Preserving Result Preserving
/' e Non-Redundant s Non-Redundant
T% i

mmm  Unknown (Timeouts) mmm Unknown (Timeo

. . Fig. 10: An “almost” linear sub-domain (left) vs. a complex sub-
Fig. 9: Redundant neuron removal, averaged over 50 ACAS Xu input dc%n ain (right). C ine. (left) P
sub-domains.



A
Doesn’t work well on all networks, probably... 04

1. What if the network have a large amount of inputs?
2. We don’t expect this method to work well on image recognition networks

1. Find anintelligent way to slice the input space
2. Mid-network slicing;:

(A) Input Slicing (B) Mid-network slicing

/

Input Space
<
/
R
.OH .

-«




https://arxiv.org/abs/2105.13649 PAPER
https://github.com/vbcrlf/redy CODE

1. Slicing

o Intelligentslicing
o Explore mid-network slicing
o Compressed representation of sliced network

2. Forward/Result-Preserving - find a more efficient technique
3. Analytical error bound on neuron removal - tighten the bound

4. Explore techniques other than neuron removal


https://arxiv.org/abs/2105.13649
https://github.com/vbcrlf/redy

