
Network Simplification
Ori Lahav | Guy Katz

https://arxiv.org/abs/2105.13649
https://github.com/vbcrlf/redy



01 Introduction



How do we remove a neuron?
1. Convert a neuron activation function into a linear function
2. Merge consecutive linear layers

01 Introduction

Linear



02 Types of Redundancy
Criteria for a redundant neuron



02 Types of redundancy

Which neurons can we remove?
● A neuron which it’s removal does not affect the output of the 

network

● Concretely, we propose 4 different criteria for asserting a neuron can 
be removed



Observation
● These operations will not affect the network output:
- Replacing a ReLU neuron with Zero if it is always inactive (e.g. input ≤ 0)

- Replacing a ReLU neuron with Identity if it is always active (e.g. input ≥ 0)

● Can be generalized to any piecewise-linear activation function
○ We call it Phase-Redundancy

○ Least general category, but is the easiest to calculate!

a. Phase Redundancy

“Give me an input for which the neuron input is less then zero.”



= or ≠?

A

B

● A neuron might not be Phase-Redundant, but still to not affect 
the output

b. Forward Redundancy

● How do we find such neurons using a verification engine?
a. Duplicate the network and remove the neuron in the copy (B)
b. Compare with the original (A)



● In a classification network, what does it mean to not affect the output?
○ For any given input, the ‘winning’ class should be the same
○ e.g. we don’t care if the numerical output is completely different!

c. Result-Preserving Redundancy

Cat: 0.4
Dog: 0.8

Cat: 0.4
Dog: 0.5

⇒Dog!

⇒Dog!



● We discussed replacing a neuron with a one of it’s linear phases
● But our approach allows for replacing a neuron with any linear function!

○ What else can we replace it with?

d. Relaxed Redundancy

● Intuitively, we would want to minimize the maximal error.
○ In the case of ReLU (ub, lb are input bounds for the neuron):



1. Bound estimation using MILP
○ Using these bounds, we can conclude which neurons are Phase-

Redundant.

2. Simulations and Formal Verification
○ Use simulations to eliminate non-redundant neurons
○ Run formal verification queries to find redundant neurons

3. Relaxed Redundant and Error Approximation
○ As a last step, we can remove neurons and approximate the 

maximum output error

03 Strategy



RECAP
● We introduced a few categories of redundancy
● … and a strategy for finding such redundancies

● But we can do better...



04 Slicing
Introducing Redundancies



● Observation:
○ If we constrain the network to a smaller input space, some 

neurons will be redundant.

● The idea:
○ Split the input space to N different subspaces.
○ For each subspace:

■ Run the redundancy removal strategy on the network, 
constrained to that subspace only

● We will end up with many smaller networks.
● On evaluation, we choose the the right network based on the input.

● This technique improves the evaluation time, at the cost of memory.

04 Slicing

X
Y

In
p

u
t 

S
p

a
ce



● We splitted the input space of an ACAS network to about 32K subspaces

● 32K subspaces may sound like a lot, but finding Phase-Redundant 
neurons is relatively quick
○ We ran this step on all 32K subspaces and 67.3% of all neurons 

were found redundant.

○ We ran the full pipeline on 50 random subspaces

○ 82.5% neurons were redundant.

04 SlicingExperimental results

50



Doesn’t work well on all networks, probably...
1. What if the network have a large amount of inputs?
2. We don’t expect this method to work well on image recognition networks

Two possible solutions
1. Find an intelligent way to slice the input space
2. Mid-network slicing:

04 Slicing

X

YIn
p

u
t 

S
p

ac
e

(A) Input Slicing (B) Mid-network slicing

X

Y



1. Slicing

○ Intelligent slicing

○ Explore mid-network slicing

○ Compressed representation of sliced network

2. Forward/Result-Preserving – find a more efficient technique

3. Analytical error bound on neuron removal – tighten the bound

4. Explore techniques other than neuron removal

Future Work
https://arxiv.org/abs/2105.13649 PAPER

https://github.com/vbcrlf/redy CODE

https://arxiv.org/abs/2105.13649
https://github.com/vbcrlf/redy

