
F

Refinement-Based Verification of
Device-to-Device Information Flow

Ning Dong, Roberto Guanciale, Mads Dam
KTH Royal Institute of Technology

Email: {dongn, robertog, mfd}@kth.se

Formal Methods in Computer-Aided Design 2021

1

Background

I/O devices: a bridge but bring challenges
• poorly written drivers cause OS crashes [1]
• vulnerable to side-channel attacks [2]
• threats for data stream integrity and confidentiality

1. Chou, Andy, et al. "An empirical study of operating systems errors." Proceedings of the eighteenth ACM symposium on Operating systems
principles. 2001.
2. Schmidt, Jörn-Marc, et al. "Side-channel leakage across borders." International Conference on Smart Card Research and Advanced
Applications. Springer, Berlin, Heidelberg, 2010.

2

re

Serial Peripheral Interface

Serial Peripheral Interface (SPI)
• a single controller – multiple peripherals architecture
• full-duplex and half-duplex data transmissions
SCK: serial clock
SDO/SDI: serial data output/input
CS: chip select

3

Motivating Example

Hardened random number generator using an external source of
physical randomness[1]

4

1. J. Liebow-Feeser, “Lavarand in production: The nitty-gritty technical details,” Apr 2021. [Online]. Available: https://blog.cloudflare.com/
lavarand-in-production-the-nitty-gritty-technical-details

re

Motivating Example

Threats in the host device, (external device applied also)
• data exfiltration and tampering by the environment
• integrity/confidentiality violation by driver or hardware

5

re

Motivating Example

Threats in the host device, (external device applied also)
• data exfiltration and tampering by the environment
• integrity/confidentiality violation by driver or hardware

5

re

Motivating Example

Threats in the host device, (external device applied also)
• data exfiltration and tampering by the environment
• integrity/confidentiality violation by driver or hardware

Q: how to protect data streams from integrity and confidentiality
attacks considering SPI?

5

re

Contribution

Our work has been carried out in HOL4
• Formal model of SPI and its driver
• Abstract model for I/O devices and their drivers
• Establish a weak bisimulation relation between

models at different levels
• System properties
• Information flow analysis

6

re

Model Overview

Abstract and concrete models: CCS style (e.g., 𝑟𝑑 𝑎 𝑣, 𝑟𝑑 𝑎 𝑣)

7

memory operations (driver-to-device): ∆!" ∆"#

data transmissions (device-to-device): ∆#$%

driver ’s interface (software-to-driver): ∆#"

re

Formal Models

Concrete model:
𝑠 = (𝑟𝑒𝑔𝑠, 𝑠𝑟𝑒𝑔, 𝑐)→

&
𝑠′

𝑑 = 𝑏1, 𝑏2, 𝑖𝑑𝑥, 𝑙𝑎𝑠𝑡_𝑟𝑒𝑎𝑑_𝑣, 𝑐 →
&
𝑑'

𝑑 𝑠 \(∆!" ∪ ∆"#)

Abstract model: describe visible effects of the subsystem

𝑎 = 𝑡, 𝑐 →
&
𝑎' 𝑤ℎ𝑒𝑟𝑒 𝑡 = (𝑏1, 𝑏2, 𝑖𝑑𝑥, 𝑣)

Functionalities: initialization, transmission, reception, full-duplex synchronous transfer

8

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Full-duplex synchronous transfer: data sending and receiving simultaneously
black: transition labels
blue: side effects
red: enabling conditions

9

Driver synchronous transfer automaton Hardware synchronous transfer automaton

re

Control Automaton

Memory-mapped registers: CCT (channel control), CST (channel status),
TX0 (transmit buffer), RX0 (receive buffer)
Bits of CST: TXS(transmitter register status), RXS(receiver register status)
𝜏: internal operations

10

re

Control Automaton

Same automaton in the abstract model:
describe the expected results of I/O device and its driver ’s executions

11

re

Refinement

𝜏: driver/hardware internal, read and write operations.

Weak simulation:
given two transition systems (𝑆,→() and (𝑇,→)), a binary relation R is a weak
simulation if for every (𝑝, 𝑞) ∈ 𝑅

• if 𝑝→
*
(𝑝′, then ∃𝑞′. 𝑞

+∗*
) 𝑞′ ∧ (𝑝′, 𝑞′) ∈ 𝑅

• if 𝑝→
+
(𝑝′, then ∃𝑞′. 𝑝 →

+∗

) 𝑝′ ∧ (𝑝′, 𝑞′) ∈ 𝑅
R is a weak bisimulation if both R and 𝑅,(are weak simulations, 𝑆~-𝑇

12

re

Refinement

𝜏: driver/hardware internal, read and write operations.

Weak simulation:
given two transition systems (𝑆,→() and (𝑇,→)), a binary relation R is a weak
simulation if for every (𝑝, 𝑞) ∈ 𝑅

• if 𝑝→
*
(𝑝′, then ∃𝑞′. 𝑞

+∗*
) 𝑞′ ∧ (𝑝′, 𝑞′) ∈ 𝑅

• if 𝑝→
+
(𝑝′, then ∃𝑞′. 𝑝 →

+∗

) 𝑝′ ∧ (𝑝′, 𝑞′) ∈ 𝑅
R is a weak bisimulation if both R and 𝑅,(are weak simulations, 𝑆~-𝑇

Weak bisimulation is transitive, and compositional (parallel composition).
12

re

Refinement

𝑑 𝑠 \{∆!" ∪ ∆"#} ~$ 𝑎

An intermediate model b:
removes memory-mapped registers and related operations, but keeps
the shift register
Lines of code: ~1100 (SPI), ~580 (b), ~330 (𝑎).

𝑑 𝑠 \{∆!" ∪ ∆"#} ~$. 𝑏
𝑏 ~$/ 𝑎

Therefore
𝑑 𝑠 \{∆!" ∪ ∆"#} ~$.∘$/ 𝑎

How to
prove it?

13

re

System Properties of Abstract Model

14

1. transmission, reception, full-duplex synchronous transfer: data flow is correct

2. initialization: done properly

3. no erroneous state: never enters the state ⊥

re

System Properties of Abstract Model

14

1. transmission, reception, full-duplex synchronous transfer: data flow is correct

2. initialization: done properly

3. no erroneous state: never enters the state ⊥

re

System Properties

15

System properties are lifted from the abstract model to the SPI
subsystem via weak bisimulation.

Information Flow Analysis

(weak) bisimulation VS (weak) simulation ?

1. progress-sensitive noninterference (PSNI)[1]:
if for every complete run 𝜋& starting from 𝑠, there exists a complete
run 𝜋' starting from 𝑡 such that 𝑂 𝜋& = 𝑂(𝜋'), and vice versa,
then s and t are PSNI. Here 𝑂 𝜋 extracts observable transition
labels from 𝜋.

Abstract model and SPI subsystem:
avoid malicious driver behaviours, e.g., leak sensitive data by
nonterminating

1. D. Hedin and A. Sabelfeld, “A perspective on information-flow control,” in Software safety and security. IOS Press, 2012, pp. 319–347.
16

while (s)
{/* empty body */}

re

Information Flow Analysis

2. compose with non-deterministic
components safely, for example a
faulty communication medium

17

re

Application

18

Random number generator

re

Application

18

Random number generator

re

Evaluation

19

Lines of source code in HOL4:
• SPI model: ~1150 (hardware ~560, driver ~590)
• Abstract model: ~330
• Proofs: ~6700

Time: ~6 minutes on a 2,2 GHz 6-Core Intel Core i7 CPU with 16GB RAM

10 man-months of work

Hardware reference manual: not enough for the hardware model, e.g.,
order of writing SPI registers is unclear.

re

Conclusion and Future work

20

ü Modelled and verified an SPI
subsystem

ü Proposed a correct-by-construction
abstract model

ü Established a weak bisimulation
relation between our models at
different levels

ü Information flow analysis, PSNI and
safe composition

Ø Binary verification of the
device driver

Ø DMA and interrupts
Ø Information flow analysis

for side channels, e.g.,
timing

Source code: https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad

https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad

