
Robustness between Weak Memory Models

Soham Chakraborty

EEMCS, TU Delft

FMCAD 2021

What is Weak Memory Model?

Traditionally: concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Interleaving
behaviors

(SC)

Relaxed/Weak memory
behaviors

2

What is Weak Memory Model?

Traditionally: concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Interleaving
behaviors

(SC)

Relaxed/Weak memory
behaviors

2

Example: SB

X = Y = 0;

(1) X = 1;
(2) a = Y ;

(3) Y = 1;
(4) b = X ;

Behaviors: SC Interleavings

a = 1, b = 1 3 1-3-2-4, 3-1-4-2, . . .
a = 0, b = 1 3 1-2-3-4
a = 1, b = 0 3 3-4-1-2
a = 0, b = 0 7 -

3

Example: SB

X = Y = 0;

(1) X = 1;
(2) a = Y ;

(3) Y = 1;
(4) b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 3

4

Example: SB+mfences

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 7

5

Examples: SB+mfences and SB

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 7

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 3

Some (not all) programs exhibit additional behaviors on weaker models

6

Checking (SC) Robustness

Check: For a given program P , and a memory model K :
Does running P on K have extra behavior w.r.t. SC?

7

Checking (SC) Robustness

Check: For a given program P , and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K):
Transform P to P ′ such that P ′ is SC-robust.

Example:

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

⇒

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Violates SC-robustness

Enforce SC-robustness

Enable translation of a program from model K to SC

8

Checking and Enforcing (SC) Robustness

Check: For a given program P , and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K):
Transform P to P ′ such that P ′ is SC-robust.

Example:

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

⇒

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Violates SC-robustness Enforce SC-robustness

Enable translation of a program from model K to SC

8

Checking and Enforcing (SC) Robustness

Check: For a given program P , and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K):
Transform P to P ′ such that P ′ is SC-robust.

Example:

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

⇒

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Violates SC-robustness Enforce SC-robustness

Enable translation of a program from model K to SC

8

This Paper

Checking and enforcing robustness of
x86 and ARM (Version 8 and 7) concurrent programs

SC-Robustness
For a given program P , and a memory model K :

Does running P on K have extra behavior w.r.t. SC?

⇓

M-K Robustness
For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

9

M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 ? ?
x86 - ? ?

ARMv8 - - ?

10

M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 3 3
x86 - ? ?

ARMv8 - - ?

11

M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 3 3
x86 - 3 3

ARMv8 - - 3

12

x86 to ARM Translation

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Behaviors: SC x86 ARM

a = 1, b = 1 3 3 3
a = 0, b = 1 3 3 3
a = 1, b = 0 3 3 3
a = 0, b = 0 7 3 3

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
The inserted DMBFULL fences are redundant

13

x86 to ARM Translation

X = Y = 0;

X = 1;
DMBFULL
a = Y ;

Y = 1;
DMBFULL
b = X ;

Behaviors: SC x86 ARM

a = 1, b = 1 3 3 3
a = 0, b = 1 3 3 3
a = 1, b = 0 3 3 3
a = 0, b = 0 7 - 7

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
The inserted DMBFULL fences are redundant

13

M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 3 3
x86 - 3 3

ARMv8 - - 3

Proposed Approach:
1 Identify M-K robustness conditions
2 Statically analyze if a program is M-K robust
3 If not: Insert appropriate fences to enforce robustness

14

SB Execution Graph

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Outcome:
a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

po

W(Y , 1)

R(X , 0)

po

rf rf

fre

co co

po: program order

rf: reads-from

co: coherence-order

fr: from-read

rfe: external-reads-from

coe: external-coherence-order

fre: external-from-read

15

SB Execution Graph

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Outcome:
a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

po

W(Y , 1)

R(X , 0)

po

rf rf

fre

co co

po: program order

rf: reads-from

co: coherence-order

fr: from-read

rfe: external-reads-from

coe: external-coherence-order

fre: external-from-read

15

SB Execution Graph

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

po

W(Y , 1)

R(X , 0)

po

fre

SC-robustness violation by po ∪ fre cycle

16

Some Definitions

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

epo

W(Y , 1)

R(X , 0)

epo

eco

eco = (rfe ∪ coe ∪ fre)+ and

epo = po ∩ (codom(eco)× dom(eco))

17

Proposed Technique

An axiom violation implies a cycle on the execution graph

An axiom violating cycle is of the form:

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

where at least one epo is unordered

M-K Robustness violating cycle:
allowed in model K but disallowed in model M

18

Enforcing Robustness: Breaking the Cycle

Enforce ordering on epo edges

Possible ways to order memory access pairs in architectures:

Memory accesses are ordered

Preserved-program-orders based on dependencies

Same location memory accesses

Intermediate fences

19

Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3

7 7

synchronizing memory accesses -

3 -

Dependency based ordering -

3 3

Same location access pairs 3

3 7

Intermediate fences 3

3 3

20

Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7

7

synchronizing memory accesses - 3

-

Dependency based ordering - 3

3

Same location access pairs 3 3

7

Intermediate fences 3 3

3

20

Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7 7

synchronizing memory accesses - 3 -

Dependency based ordering - 3 3

Same location access pairs 3 3 7

Intermediate fences 3 3 3

20

ARMv7 Concurrency

Same location read-write accesses are not always ordered

X = Y = 0;

a = X ;
X = 1;

Y = X ; X = Y ;

ARMv7 allows the following execution

R(X , 1)

W(X , 1)

po`

R(X , 1)

W(Y , 1)

data

R(Y , 1)

W(X , 1)

data
rfe rfe

rfe

Yet po` is included in SC-ARMv7 condition

21

ARMv7 Concurrency

Dependencies are not strong enough relation (unlike ARMv8)

X = T ; X = 2; Y = X ; Z = Y ; Z = 1; T = Z ;

ARMv7 allows the following execution

R(T , 1)

W(X , 1)

W(X , 2)

R(X , 2)

W(Y , 2)

R(Y , 2)

W(Z , 2)

W(Z , 1)

R(Z , 1)

W(T , 1)

The execution is NOT SC-ARMv7 even if all epo edges are ppo

22

Robustness Conditions

Conditions for M-K Robustness: all epo edges are ordered

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7 7

synchronizing memory accesses - 3 -

Dependency based ordering - 3 3 7

Same location access pairs 3 3 7 3

Intermediate fences 3 3 3

23

Static Robustness Checking

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently
Thread functions which may create multiple threads

- Construct memory-access pair graph (MPG)

- Identify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo

24

Static Robustness Checking

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently

- Construct memory-access pair graph (MPG)

- Identify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo

24

Static Robustness Checking

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently

- Construct memory-access pair graph (MPG)

- Identify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo

24

Static Robustness Checking

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently

- Construct memory-access pair graph (MPG)

- Identify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo

24

Implementation and Experiments

Fency: a tool for static robustness analysis and enforcement

x86, ARMv8, ARMv7 programs

Based on LLVM code generation phase

Parameterized programs

Experiments

Several concurrent data structures and algorithms

Compared to Trencher: an existing SC-x86 robustness analyzer

25

Fency vs Naive for SC-x86 robustness

Fency ensures SC-x86 robustness with less fences

Prog. Naive Fency
Barrier 6 2

Dekker-TSO 20 4
Peterson-SC 14 2
Lamport-SC 17 4
Spinlock 14 0
Ticketlock 12 0
Seqlock 7 0

RCU-offline 33 7
Cilk-TSO 22 2
Cilk-SC 22 0

26

Fency vs Trencher for SC-x86 robustness

Checking results and # inserted fences

Prog. Fency Trencher
Barrier 7 2 7 2

Dekker-TSO 3 0 3 0
Peterson-SC 7 2 7 2
Lamport-SC 7 4 7 4
Spinlock 3 0 3 0
Ticketlock 3 0 3 0
Seqlock 3 0 3 0

RCU-offline 7 3 7 -
Cilk-TSO 3 0 3 0
Cilk-SC 3 0 7 2

27

Analysis time: Fency vs Trencher

Prog. Fency
result 〈seconds

Trencher
result 〈seconds

Barrier 7 |2 〈0.005 7 |2 〈0.004
Dekker-TSO 3 |0 〈0.002 3 |0 〈0.007
Peterson-SC 7 |2 〈0.004 7 |2 〈0.013
Lamport-SC 7 |4 〈0.019 7 |4 〈0.107
Spinlock 3 |0 〈0.004 3 |0 〈0.007
Ticketlock 3 |0 〈0.004 3 |0 〈0.006
Seqlock 3 |0 〈0.004 3 |0 〈0.582

RCU-offline 7 |3 〈0.038 7 |- 〈0.246
Cilk-TSO 3 |0 〈0.011 3 |0 〈2.039
Cilk-SC 3 |0 〈0.010 7 |2 〈6.322

28

Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
Independent memory access pairs are unordered

29

Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
Independent memory access pairs are unordered

Enforcing non-SC robustness often requires less fences than
enforcing SC-robustness.

Robustness analyses between weak memory models are useful !

29

Conclusion and Future Work

Robustness analysis and enforcement
x86, ARMv8, ARMv7 programs

Fency: static robustness checking and enforcement

Available at:
https://www.st.ewi.tudelft.nl/sschakraborty/
Fency-FMCAD21.zip

Going forward:
New architectures, features, precise and scalable analysis tools

Thank you !

30

https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip
https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip

Conclusion and Future Work

Robustness analysis and enforcement
x86, ARMv8, ARMv7 programs

Fency: static robustness checking and enforcement

Available at:
https://www.st.ewi.tudelft.nl/sschakraborty/
Fency-FMCAD21.zip

Going forward:
New architectures, features, precise and scalable analysis tools

Thank you !
30

https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip
https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip

