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What is Weak Memory Model?

Traditionally: concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Interleaving
behaviors

(SC)

Relaxed/Weak memory
behaviors
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Example: SB

X = Y = 0;

(1) X = 1;
(2) a = Y ;

(3) Y = 1;
(4) b = X ;

Behaviors: SC Interleavings

a = 1, b = 1 3 1-3-2-4, 3-1-4-2, . . .
a = 0, b = 1 3 1-2-3-4
a = 1, b = 0 3 3-4-1-2
a = 0, b = 0 7 -
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Example: SB

X = Y = 0;

(1) X = 1;
(2) a = Y ;

(3) Y = 1;
(4) b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 3
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Example: SB+mfences

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 7
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Examples: SB+mfences and SB

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 7

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Behaviors: SC x86

a = 1, b = 1 3 3
a = 0, b = 1 3 3
a = 1, b = 0 3 3
a = 0, b = 0 7 3

Some (not all) programs exhibit additional behaviors on weaker models

6



Checking (SC) Robustness

Check: For a given program P , and a memory model K :
Does running P on K have extra behavior w.r.t. SC?
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Checking (SC) Robustness

Check: For a given program P , and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K ):
Transform P to P ′ such that P ′ is SC-robust.

Example:

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

⇒

X = Y = 0;

X = 1;
MFENCE;
a = Y ;

Y = 1;
MFENCE;
b = X ;

Violates SC-robustness

Enforce SC-robustness

Enable translation of a program from model K to SC
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This Paper

Checking and enforcing robustness of
x86 and ARM (Version 8 and 7) concurrent programs

SC-Robustness
For a given program P , and a memory model K :

Does running P on K have extra behavior w.r.t. SC?

⇓

M-K Robustness
For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?
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M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 ? ?
x86 - ? ?

ARMv8 - - ?
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M-K Robustness

For a given program P , and two memory models M and K : Does
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M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 3 3
x86 - 3 3

ARMv8 - - 3
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x86 to ARM Translation

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Behaviors: SC x86 ARM

a = 1, b = 1 3 3 3
a = 0, b = 1 3 3 3
a = 1, b = 0 3 3 3
a = 0, b = 0 7 3 3

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
The inserted DMBFULL fences are redundant
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x86 to ARM Translation

X = Y = 0;

X = 1;
DMBFULL
a = Y ;

Y = 1;
DMBFULL
b = X ;

Behaviors: SC x86 ARM

a = 1, b = 1 3 3 3
a = 0, b = 1 3 3 3
a = 1, b = 0 3 3 3
a = 0, b = 0 7 - 7

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
The inserted DMBFULL fences are redundant
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M-K Robustness

For a given program P , and two memory models M and K : Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

↓ M-K → x86 ARMv8 ARMv7
SC 3 3 3
x86 - 3 3

ARMv8 - - 3

Proposed Approach:
1 Identify M-K robustness conditions
2 Statically analyze if a program is M-K robust
3 If not: Insert appropriate fences to enforce robustness
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SB Execution Graph

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

Outcome:
a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

po

W(Y , 1)

R(X , 0)

po

rf rf

fre

co co

po: program order

rf: reads-from

co: coherence-order

fr: from-read

rfe: external-reads-from

coe: external-coherence-order

fre: external-from-read
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SB Execution Graph

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

po

W(Y , 1)

R(X , 0)

po

fre

SC-robustness violation by po ∪ fre cycle
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Some Definitions

X = Y = 0;

X = 1;
a = Y ;

Y = 1;
b = X ;

a = b = 0

[X = Y = 0]

W(X , 1)

R(Y , 0)

epo

W(Y , 1)

R(X , 0)

epo

eco

eco = (rfe ∪ coe ∪ fre)+ and

epo = po ∩ (codom(eco)× dom(eco))
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Proposed Technique

An axiom violation implies a cycle on the execution graph

An axiom violating cycle is of the form:

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

where at least one epo is unordered

M-K Robustness violating cycle:
allowed in model K but disallowed in model M
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Enforcing Robustness: Breaking the Cycle

Enforce ordering on epo edges

Possible ways to order memory access pairs in architectures:

Memory accesses are ordered

Preserved-program-orders based on dependencies

Same location memory accesses

Intermediate fences

19



Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3

7 7

synchronizing memory accesses -

3 -

Dependency based ordering -

3 3

Same location access pairs 3

3 7

Intermediate fences 3

3 3
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Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7

7

synchronizing memory accesses - 3

-

Dependency based ordering - 3

3

Same location access pairs 3 3

7

Intermediate fences 3 3

3
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Orderings in Model K

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7 7

synchronizing memory accesses - 3 -

Dependency based ordering - 3 3

Same location access pairs 3 3 7

Intermediate fences 3 3 3
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ARMv7 Concurrency

Same location read-write accesses are not always ordered

X = Y = 0;

a = X ;
X = 1;

Y = X ; X = Y ;

ARMv7 allows the following execution

R(X , 1)

W(X , 1)

po`

R(X , 1)

W(Y , 1)

data

R(Y , 1)

W(X , 1)

data
rfe rfe

rfe

Yet po` is included in SC-ARMv7 condition
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ARMv7 Concurrency

Dependencies are not strong enough relation (unlike ARMv8)

X = T ; X = 2; Y = X ; Z = Y ; Z = 1; T = Z ;

ARMv7 allows the following execution

R(T , 1)

W(X , 1)

W(X , 2)

R(X , 2)

W(Y , 2)

R(Y , 2)

W(Z , 2)

W(Z , 1)

R(Z , 1)

W(T , 1)

The execution is NOT SC-ARMv7 even if all epo edges are ppo
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Robustness Conditions

Conditions for M-K Robustness: all epo edges are ordered

Model K ⇒

⇓ Ordering
constraints

x86 ARMv8 ARMv7

Regular Memory accesses 3 7 7

synchronizing memory accesses - 3 -

Dependency based ordering - 3 3 7

Same location access pairs 3 3 7 3

Intermediate fences 3 3 3
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Static Robustness Checking

a

b

· · ·

· · ·

c

d

epo epo
eco

ecoeco

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently
Thread functions which may create multiple threads

- Construct memory-access pair graph (MPG)

- Identify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo
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Implementation and Experiments

Fency: a tool for static robustness analysis and enforcement

x86, ARMv8, ARMv7 programs

Based on LLVM code generation phase

Parameterized programs

Experiments

Several concurrent data structures and algorithms

Compared to Trencher: an existing SC-x86 robustness analyzer
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Fency vs Naive for SC-x86 robustness

Fency ensures SC-x86 robustness with less fences

Prog. Naive Fency
Barrier 6 2

Dekker-TSO 20 4
Peterson-SC 14 2
Lamport-SC 17 4
Spinlock 14 0
Ticketlock 12 0
Seqlock 7 0

RCU-offline 33 7
Cilk-TSO 22 2
Cilk-SC 22 0
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Fency vs Trencher for SC-x86 robustness

Checking results and # inserted fences

Prog. Fency Trencher
Barrier 7 2 7 2

Dekker-TSO 3 0 3 0
Peterson-SC 7 2 7 2
Lamport-SC 7 4 7 4
Spinlock 3 0 3 0
Ticketlock 3 0 3 0
Seqlock 3 0 3 0

RCU-offline 7 3 7 -
Cilk-TSO 3 0 3 0
Cilk-SC 3 0 7 2
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Analysis time: Fency vs Trencher

Prog. Fency
result 〈seconds

Trencher
result 〈seconds

Barrier 7 |2 〈0.005 7 |2 〈0.004
Dekker-TSO 3 |0 〈0.002 3 |0 〈0.007
Peterson-SC 7 |2 〈0.004 7 |2 〈0.013
Lamport-SC 7 |4 〈0.019 7 |4 〈0.107
Spinlock 3 |0 〈0.004 3 |0 〈0.007
Ticketlock 3 |0 〈0.004 3 |0 〈0.006
Seqlock 3 |0 〈0.004 3 |0 〈0.582

RCU-offline 7 |3 〈0.038 7 |- 〈0.246
Cilk-TSO 3 |0 〈0.011 3 |0 〈2.039
Cilk-SC 3 |0 〈0.010 7 |2 〈6.322
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Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
Independent memory access pairs are unordered
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Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
Independent memory access pairs are unordered

Enforcing non-SC robustness often requires less fences than
enforcing SC-robustness.

Robustness analyses between weak memory models are useful !
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Conclusion and Future Work

Robustness analysis and enforcement
x86, ARMv8, ARMv7 programs

Fency: static robustness checking and enforcement

Available at:
https://www.st.ewi.tudelft.nl/sschakraborty/
Fency-FMCAD21.zip

Going forward:
New architectures, features, precise and scalable analysis tools

Thank you !
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