Robustness between Weak Memory Models J

Soham Chakraborty
EEMCS, TU Delft

FMCAD 2021

What is Weak Memory Model? _

Traditionally: concurrency = thread interleaving

Interleaving
behaviors

(SC)

What is Weak Memory Model?

Traditionally: concurrency = thread interleaving

Reality: more behaviors than thread interleaving

Relaxed /Weak memory
behaviors

Example: SB

Behaviors:

a=1b=1
a=0,b=1
a=1b=0
a=0,b=0

SC

ENENEN

Interleavings

1-3-2-4, 3-1-4-2, ...

1-2-3-4
3-4-1-2

m
)
©
o
S
Q]
X
L

x86

SC

Behaviors:

SS NSNS

SS N X

— — O O

[I T
Qo a2

—_ o - o
[[||

T © O 0

Example: SB+mfences

X=Y=0;

X =1; Y =1;
MFENCE; MFENCE;
a=yY; b=X;
Behaviors: SC x86
a=1b=1 v v
a=0,b=1 v v
a=1,b=0 v v
a=0,b=0 x X

Examples: SB+mfences and SB

X=Y=0 X=Y=0
X =1; Y =1, _ 1. _ 1.
MFENCE; | MFENCE; X;f;t Z;i;
a=Y; b=X: 2= -
Behaviors: SC x86 Behaviors: SC x86
a=1b=1 v v a=bb=l v
a=0b=1 v v
a=0b=1 v v/
a=1b=0 v v
a=1b6=0 v v a=0b=0 X
a=0,b=0 X X T

Some (not all) programs exhibit additional behaviors on weaker models

Checking (SC) Robustness

Check: For a given program P, and a memory model K:
Does running P on K have extra behavior w.r.t. SC?

Checking (SC) Robustness

Check: For a given program P, and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Example:
X=Y=0;
X =1; Y =1;
a=1yY,; b=X;

Violates SC-robustness

Checking and Enforcing (SC) Robustness

Check: For a given program P, and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K):
Transform P to P’ such that P’ is SC-robust.

Example:
X=Y=0 X=Y=0
X =1 Y =1,
—1- —1- = 1 ’
X_ ji Z_ ;i MFENCE; || MFENCE;
=0 - a=Y; b=X;

Violates SC-robustness Enforce SC-robustness

Checking and Enforcing (SC) Robustness

Check: For a given program P, and a memory model K = x86:
Does running P on K have extra behavior w.r.t. SC?

Enforce (if program P violates SC-robustness on K):
Transform P to P’ such that P’ is SC-robust.

Example:
X=Y=0 X=Y=0
X =1, Y =1;
— . — . :> 1 1
X_ ji Z_ ;i MFENCE; || MFENCE;
=0 - a=Y; b=X;
Violates SC-robustness Enforce SC-robustness

Enable translation of a program from model K to SC

This Paper

Checking and enforcing robustness of
x86 and ARM (Version 8 and 7) concurrent programs

SC-Robustness

For a given program P, and a memory model K:
Does running P on K have extra behavior w.r.t. SC?

M-K Robustness

For a given program P, and two memory models M and K: Does
running P on K have extra behavior w.r.t. M?

M-K Robustness

For a given program P, and two memory models M and K: Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

I M-K — | x86 | ARMv8 | ARMv7
SC v ? ?
x86 - ? ?

ARMv8 - - ?

M-K Robustness

For a given program P, and two memory models M and K: Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

I M-K — | x86 | ARMv8 | ARMv7
SC v v v
x86 - ? ?

ARMv8 - - ?

M-K Robustness

For a given program P, and two memory models M and K: Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

} M-K — | x86 | ARMv8 | ARMv7
SC v v 4
x86 - v v

ARMv8 - - v

x86 to ARM Translation

Behaviors: SC x86 ARM

=1 =1 a=0,b=1 v v v
a=Y,; b=X; a=1b=0 v v v/
a=0,b=0 X v v

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
@ The inserted DMBFULL fences are redundant

13

x86 to ARM Translation

Behaviors: SC x86 ARM

X=Y=0
X =1 Y =1, 2=Lb=1 v v v
DMBFULL || DMBFULL a=0b=1 v v v
a=Y: b= X: a=1b=0 v v v
' ' a=0,b=0 X - X

The program is x86-ARM robust

SC-robustness for ARM is too strong for x86 to ARM translation
@ The inserted DMBFULL fences are redundant

13

M-K Robustness

For a given program P, and two memory models M and K: Does
running P on K have extra behavior w.r.t. M?

Existing approaches: M=sequential consistency (SC)

} M-K — | x86 | ARMv8 | ARMv7
SC v v v
x86 - v v

ARMv8 - - v

Proposed Approach:
@ Identify M-K robustness conditions
@ Statically analyze if a program is M-K robust

© If not: Insert appropriate fences to enforce robustness

14

SB Execution Graph

X=Y=0;
X =1 Y =1,
a=yY; b=X;

Outcome:
a=b=0

15

SB Execution Graph

X=Y=0;
X =1; Y =
a=yY,; b=

1;
X;
Outcome:
a=b=0

po: program order
rf: reads-from
: coherence-order

fr: from-read

X =Y =0
W(X,1) A W(Y,1)
po G po
///, ///’//{?r\e\\\\\\ \\\\
oo TN
R(Y,0) R(X,0)

rfe: external-reads-from
: external-coherence-order

fre: external-from-read

15

SB Execution Graph

X=Y=0;
X =1; Y =1;
a=yY,; b=X;

a=b=0

[X =Y =0
—
W(X,1) W(Y,1)
po \\\\\\ /,/// po
//’/f/re\‘x\\
R(Y,0) R(X,0)

SC-robustness violation by po U fre cycle

16

Some Definitions

X =Y =0
—

X=Y=0 W(X,1) W(Y, 1)
X = 1, Y = 1' epo v"~.~..... ““,.-- 7e .
a=Y,; | b=X; P

: ‘eco’
a=>b= 0 :
A2 A\
R(Y,0) R(X,0)

@ eco = (rfe U coe U fre)™ and

@ epo = po N (codom(eco) x dom(eco))

17

Proposed Technique

An axiom violation implies a cycle on the execution graph

An axiom violating cycle is of the form:

a . c
..,
ARRDNE 7 7
: eiL.. eco :
epo : et T &co :epo
: €Co :
Vo T e e \'2
b “d

where at least one epo is unordered

M-K Robustness violating cycle:
allowed in model K but disallowed in model M

18

Enforcing Robustness: Breaking the Cycle

Enforce ordering on epo edges

Possible ways to order memory access pairs in architectures:

Memory accesses are ordered

Preserved-program-orders based on dependencies

Same location memory accesses

@ Intermediate fences

19

Orderings in Model K

Model K =
Ordering
constraints

4

x86 | ARMv8 | ARMv7

Regular Memory accesses v ‘ ‘
synchronizing memory accesses | - ‘ ‘
Dependency based ordering - ‘ ‘
Same location access pairs v ‘ ‘
Intermediate fences v ‘

20

Orderings in Model K

Model K =
Ordering
constraints

4

x86 | ARMv8 | ARMv7

Regular Memory accesses v ‘ X ‘
synchronizing memory accesses | - ‘ v ‘
Dependency based ordering - ‘ v ‘
Same location access pairs v ‘ v ‘
Intermediate fences v | v |

20

Orderings in Model K

Model K =
Ordering
constraints

4

x86 | ARMv8 | ARMv7

Regular Memory accesses v ‘ X ‘ X
synchronizing memory accesses | - ‘ v ‘ -
Dependency based ordering - ‘ v ‘ v
Same location access pairs v ‘ v ‘ X
Intermediate fences | v | v

20

ARMv7 Concurrency

Same location read-write accesses are not always ordered
X=Y=0;

a=2X;
X =1;

Y = X;

X=Y;

ARMV7 allows the following execution

R(X, 1) R(X, 1) R(Y, 1)
ARG 7 7
POy rfe il _ |data o data
_-rfe - -~ _-rfe
W(X, 1) W(Y,1) TW(X,1)

Yet poy is included in SC-ARMv7 condition

21

ARMv7 Concurrency

Dependencies are not strong enough relation (unlike ARMv8)

X=T,

‘X:2;

‘ Y = X;

‘Z:Y;

‘Zzl;

‘ T=727;

ARMv7 allows the following execution

W(X,1) W(Y.2) W(Z,2) W(T,1)

The execution is NOT SC-ARMv7 even if all epo edges are ppo

22

Robustness Conditions

Conditions for M-K Robustness: all epo edges are ordered

Model K =
Ordering
constraints

x86 | ARMv8 | ARMv7

Regular Memory accesses v \

synchronizing memory accesses | - ‘ ‘
Dependency based ordering - ‘ X ‘
Same location access pairs v ‘ v ‘
Intermediate fences v | |

23

Static Robustness Checking

a C
..,
D v A
: el eco :
epo: e T eco :epo
: €CO :
Vo T e e A2
b “d

Static checking of the semantic robustness property

Steps:

- |dentify program components which may run concurrently

@ Thread functions which may create multiple threads

24

Static Robustness Checking

a c
..,
R - T
: eil.. eco :
€po: et Tl €co : €po
: €Co :
Vo T e e 2
b “d

Static checking of the semantic robustness property

Steps:
- Identify program components which may run concurrently

- Construct memory-access pair graph (MPG)

Static Robustness Checking

a C
€.,
D v A
: el eco :
epo: e T eco :epo
: €CO :
Vo T e e A2
b “d

Static checking of the semantic robustness property

Steps:
- Identify program components which may run concurrently
- Construct memory-access pair graph (MPG)

- |dentify the access pairs on the cycle

Static Robustness Checking

a C
..,
D ¥ A
: el eco :
epo : et TR eco : epo
: €CO :
Vot e T v
b “d

Static checking of the semantic robustness property

Steps:

- Identify program components which may run concurrently
- Construct memory-access pair graph (MPG)

- |dentify the access pairs on the cycle

- Check if any access pair on the cycle may create an unordered epo

Implementation and Experiments

Fency: a tool for static robustness analysis and enforcement
@ x86, ARMv8, ARMv7 programs
@ Based on LLVM code generation phase

o Parameterized programs

Experiments
@ Several concurrent data structures and algorithms

e Compared to Trencher: an existing SC-x86 robustness analyzer

25

Fency vs Naive for SC-x86 robustness

Fency ensures SC-x86 robustness with less fences

Prog. Naive|Fency
Barrier 6 2
Dekker-TSO| 20
Peterson-SC| 14
Lamport-SC| 17

Spinlock 14
Ticketlock | 12
Seqlock 7
RCU-offline| 33
Cilk-TSO | 22
Cilk-SC 22

ol ~N|o|lo|ol 2 s

Fency vs Trencher for SC-x86 robustness

Checking results and # inserted fences

Prog. Fency | Trencher
Barrier X 2 X 2
Dekker-TSO | v O v/ 0
Peterson-SC | x 2 X 2
Lamport-SC | x 4 X 4
Spinlock s/ 0 s/ 0
Ticketlock v/ 0 v/ 0
Seqlock s/ 0 s/ 0
RCU-offline | x 3 X -
Cilk-TSO v/ 0 v/ 0
Cilk-SC v/ 0 X 2

27

Analysis time: Fency vs Trencher

Prog Fency Trencher
' result (seconds result ~ (seconds
Barrier X [2 (0.005 X |2 (0.004
Dekker-TSO v [0 (0.002 v/ |0 (0.007
Peterson-SC X |2 (0.004 X 2 (0.013
Lamport-SC X |4 (0.019 X |4 (0.107
Spinlock v/ |0 (0.004 /|0 (0.007
Ticketlock v/ |0 (0.004 v/ |0 (0.006
Seqglock v/ |0 (0.004 /|0 (0.582
RCU-offline X |3 (0.038 X |- (0.246
Cilk-TSO v |0 (0.011 v/ [0 (2.039
Cilk-SC v/ [0 (0.010 X |2 (6.322

28

Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
@ Independent memory access pairs are unordered

29

Other Observations from Empirical Evaluation

Most of the ARM (8 and 7) programs violate robustness criteria
@ Independent memory access pairs are unordered

Enforcing non-SC robustness often requires less fences than
enforcing SC-robustness.

@ Robustness analyses between weak memory models are useful !

29

Conclusion and Future Work

Robustness analysis and enforcement
@ x86, ARMv8, ARMv7 programs

Fency: static robustness checking and enforcement

Available at:
https://www.st.ewi.tudelft.nl/sschakraborty/
Fency-FMCAD21.zip

Going forward:
@ New architectures, features, precise and scalable analysis tools

30

https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip
https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip

Conclusion and Future Work

Robustness analysis and enforcement
@ x86, ARMv8, ARMv7 programs

Fency: static robustness checking and enforcement

Available at:
https://www.st.ewi.tudelft.nl/sschakraborty/
Fency-FMCAD21.zip

Going forward:
@ New architectures, features, precise and scalable analysis tools

Thank you !

30

https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip
https://www.st.ewi.tudelft.nl/sschakraborty/Fency-FMCAD21.zip

