
Sound and Automated Verification of
Real-World RTL Multipliers

Mertcan Temel1,2

mert@centtech.com

Warren A. Hunt, Jr.1

hunt@cs.utexas.edu

1University of Texas at Austin, Austin, TX, USA

2Centaur Technology, Inc., Austin, TX, USA

October 19-22, 2021 (FMCAD 2021)

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 0 / 13

mert@centtech.com
hunt@cs.utexas.edu

Introduction

o Integer multipliers are ubiquitous components.

o Wallace-tree and Booth Encoding are complex algorithms to design efficient
integer multipliers.

o Verification of these multipliers is a difficult problem.

o This work proposes a more efficient, rewrite-based method that is:
I widely applicable (tested for 250+ benchmarks),
I scalable (1024x1024-bit multipliers proved in 5 minutes),
I provably correct (multiplier verification procedure is verified using ACL2)

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 1 / 13

Overview

1 Review of Integer Multipliers

2 Related Work

3 The Method

4 Experiments

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 2 / 13

Review: Integer Multipliers

3x3-bit signed multiplication

with Wallace-tree

o Integer multipliers have two stages:
1. Partial Product Generation

(e.g., Simple, Baugh-Wooley, Booth Encoding)
2. Partial Product Summation

(e.g., Array, Wallace-tree, Dadda-tree)

o Booth encoding and Wallace-tree are preferred
methods for their gate-delay benefits but they are
more difficult to verify.

o Designs may involve: rounding, saturation, trunca-
tion, right-shifting.

o Some use cases: multiply-accumulate, dot-
product, floating-point multiplication.

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 3 / 13

Review: Integer Multipliers (cntd.)

A Multiply-Accumulate (MAC)

implementation with large gate delay

Another way to implement a MAC module

with less gate delay

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 4 / 13

Related Work

o Computer algebra based methods have shown a lot of progress. However:
I Only tested for isolated multipliers (or for only simple architectures)
I Problems verifying truncated multipliers
I Limited discussion on the correctness of the verification tools themselves

o Industrial designs are verified mostly manually.

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 5 / 13

Specification

Our goal is to prove such conjectures:

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (svl-run (list a b) <signed_64x64_mult>)

(truncate 128
(* (signext 64 a)

(signext 64 b))))))

o ACL2 is an interactive and automated theorem proving system.

o RTL-level hierarchical designs are translated from System Verilog to SVL format

o We prove that the circuit implements truncated multiplication of two sign-extended
(or zero-extended) numbers.

o Specification (right-hand side) can be modified by the user to suit the design

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 6 / 13

Overview of the Method

Our goal is to prove such conjectures:

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (svl-run (list a b) <signed_64x64_mult>)

(truncate 128
(* (signext 64 a)

(signext 64 b))))))

1. Before working on this conjecture, we reason about the adder modules

2. Then we submit the above event and:
I Replace instantiations of adder modules with their specification from Step 1.
I Simplify terms from summation tree algorithms.
I Simplify terms from partial product generation algorithms.
I Rewrite RHS to a form that syntactically matches the simplified form in LHS.

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 7 / 13

Step 1: Adder Module Proofs

Before the multiplier proof, a lemma for each adder module is proved:

(defthm adder_module_is_correct
(implies (and (integerp a)

(integerp b))
(equal (svl-run (list a b) <an-adder-module>)

(spec-of-the-adder a b))))

Specification for some adders per output bit:

Adder out3 out2 out1 out0

Half-adder - - c(a0 + a1) s(a0 + a1)

Full-adder - - c(a0 + a1 + a2) s(a0 + a1 + a2)

Vector adders s(a3 + b3

+c(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a2 + b2

+c(a1 + b1

+c(a0 + b0)))

s(a1 + b1

+c(a0 + b0))
s(a0 + b0)

where s(x) = mod2(x) and c(x) =
⌊

x
2

⌋

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 8 / 13

Step 2: Multiplier Module Proofs

Prove this conjecture:

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (svl-run (list a b) <signed_mxn_mult>)

(truncate 128
(* (signext 64 a)

(signext 64 b))))))

Both LHS and RHS should be rewritten to the same form. For example:

out3 out2 out1 out0

s(a0b3 + a1b2 + a2b1 + a3b0

+c(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a0b2 + a1b1 + a2b0

+c(a1b0 + a0b1

+c(a0b0)))

s(a1b0 + a0b1

+c(a0b0))
s(a0b0)

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 9 / 13

Step 2: Simplify Summation Trees

The 4th LSB of the Wallace-tree multiplier with simple partial products:

s(s(s(a3b0 + a2b1 + a1b2)
+a0b3

+c(a2b0 + a1b1 + a0b2))
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Goal: Simplify such terms with a set of lemmas.

Nested instances of s can be cleared with the following lemma.

Lemma 1 ∀x , y ∈ Z s(s(x) + y) = s(x + y)

When this lemma applied to the example above, we get:
s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 10 / 13

Step 2: Simplify Summation Trees (cntd.)

The current term:
s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Some c instances can be rewritten with the below lemma.

Lemma 2 ∀x , y ∈ Z c(s(x) + y) = c(x + y)− c(x)

When this lemma is applied to the example above, we get:
s(a3b0 + a2b1 + a1b2 + a0b3

+c(a2b0 + a1b1 + a0b2

+c(a1b0 + a0b1)))

This matches the target final form. This rewriting method works for much larger
terms as well.

Booth encoding might yield complex partial product bits. They are simplified with
another set of lemmas that work together with Lemmas 1-2. They are omitted here.

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 11 / 13

Experiments

Table: Average proof-time results in seconds with success rate for various multiplier designs

Size AMi DKii Our Tool
Success Time Success Time Success Time

64x64 34/34 44 34/34 18.5 34/34 1.7

128x128 14/16 510.5 14/16 238 16/16 2.5

256x256 4/16 8918 14/16 3855 16/16 10.1

512x512 0/12 - 8/12 1602 12/12 47

1024x1024 0/12 - 8/12 13906 12/12 246

o Success rate={verified}/{all benchmarks}. Unsuccessful results due to time-out.
Only successful results are included in averages.

o Other tests include: multiply-accumulate, dot-product, multipliers with control
logic, truncated or right-shifted outputs, rounding, multipliers with arbitrary
operand sizes. Also verified private real-world designs in Centaur Technology.
Total of 250+ example designs.

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers.
DAC ’19

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD ’19

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 12 / 13

Conclusions

o An efficient method to verify integer multipliers. Compared to the other state-
of-the-art tools:

I it can verify large multipliers in a much shorter amount of time,
I it has wider applicability,
I used in real-world designs,
I and it is verified

o A distinctive verification approach for its scale.

M. Temel et al. (UT Austin) Formal Verification of Multipliers October 19-22, 2021 (FMCAD 2021) 13 / 13

	Review of Integer Multipliers
	Related Work
	The Method
	Experiments

