
Towards Scalable Verification
of Deep Reinforcement Learning

Guy Amir Michael Schapira Guy Katz

October 2021

Traditionally

2

Computer and networked systems are handcrafted by
domain-specific experts

An Emerging Alternative

3

Deep Reinforcement Learning
(DRL) solutions

Outperform the state-of-the-art
in various contexts

Reinforcement Learning (RL)

𝒔𝒕𝒂𝒕𝒆𝒕

𝒂𝒄𝒕𝒊𝒐𝒏𝒕
𝒂𝒈𝒆𝒏𝒕𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒆𝒎𝒏𝒕

𝒎𝒂𝒙(𝛦[∑𝑡𝛾
𝑡𝑟𝑡])

Reinforcement Learning (RL)

𝒔𝒕𝒂𝒕𝒆𝒕

𝒓𝒆𝒘𝒂𝒓𝒅𝒕

𝒂𝒄𝒕𝒊𝒐𝒏𝒕
𝒂𝒈𝒆𝒏𝒕𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒆𝒎𝒏𝒕

Reinforcement Learning (RL)

Complex
Policies

Infinite
Runs

Communication
Domain

But…

How do we know a Deep Neural Network trained via
Reinforcement Learning is safe?

Challenge: These “black boxes” need to be formally
verified for correct behavior

“Testing shows the presence, not the absence of bugs”

Dijkstra, 1969

Our approach: Formal Verification!

8
+ counter-example

Provably guarantee that a learned policy meets our
requirements, or identify concrete violations (bugs)

Example: The Aurora Congestion Controller
[Jay, Rotman, et al., ICML 2019]

increase
sending rate

maintain
sending rate

decrease
sending rate

𝒔𝒆𝒏𝒅𝒊𝒏𝒈 𝒓𝒂𝒕𝒊𝒐𝒕 ≥ 1
𝒍𝒂𝒕𝒆𝒏𝒄𝒚 𝒓𝒂𝒕𝒊𝒐𝒕 ≥ 1

𝒍𝒂𝒕𝒆𝒏𝒄𝒚 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒕

timestep t

Aurora Safety Properties

Safety - “Something bad never happens”
(finite-long violations)

poor next-step decrease

Network Conditions Wanted Output

excellent next-step increase

Aurora Liveness Properties

Liveness - “Something good eventually happens”
(infinite-long violations)

excellent eventual increase

poor eventual decrease

Network Conditions Wanted Output

Defining a state graph
& transition function
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Our Verification Strategy

Transition System Graph

Defining a 𝒔𝒕𝒂𝒕𝒆𝒕 Defining a 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝒕,𝒕′

𝒔𝒕𝒂𝒕𝒆𝒕 𝒔𝒕𝒂𝒕𝒆𝒕′𝒔𝒕𝒂𝒕𝒆𝒕 𝒊𝒏𝒑𝒖𝒕𝒕 𝒐𝒖𝒕𝒑𝒖𝒕𝒕

Encoding Multiple Transitions

Running a portfolio approach for checking
k-long violations or k-long provable runs

Our Verification Strategy

[Amir-Schapira-Katz, FMCAD 2021]

Defining a state graph
& transition function
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given
number of k steps

Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given
number of k steps

B

Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given
number of k steps

GB

BMC Setbacks

We can’t prove that any properties hold

We can’t analyze complex properties

BMC

Initial State

K-Induction

Initial State

Running a portfolio approach for checking
k-long violations or k-long provable runs

Our Verification Strategy

[Amir-Schapira-Katz, FMCAD 2021]

Defining a state graph
& transition function
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Portfolio Approach

initialization: k=1 step

correctness

bug

input: property

exit

increment: k ++

emulate k steps

BMC

Network Conditions Desired Output Property Holds?

Property 3 poor next-step decrease k=1

Property 1 excellent eventual change

Property 2 excellent eventual increase k=2

Property 4 poor eventual decrease

k=2

k=1

Aurora Properties

K-Induction

Invariant Inference

Abstraction

WhiRL 2.0 - Techniques

Invariant Inference
Invariant
A partition of the state space S into two disjoint sets 𝑺𝟏 and 𝑺𝟐
such that:

𝒔𝟏 ∈ 𝑺𝟏 ∧ 𝒔𝟐 ∈ 𝑺𝟐 → 𝒔𝟏, 𝒔𝟐 ∉ 𝒕𝒓𝒂𝒏𝒔𝒕𝒊𝒐𝒏 𝑻

I

Initial State

B

Bad State

Templates:

Invariant Inference

Strategy: search for the “2nd best” behavior

use monotonicity of properties

fix inputs or outputs

conduct a binary search on the non-fixed variables

dynamic: user-chosen values

Execution of invariance inference algorithms based on
the templates

Network Conditions Wanted Output Property Holds?

Property 3 poor next-step decrease k=1

For example, an invariant is found, based on the
following violated property

Invariant Inference - Aurora

Originally, “poor” network conditions:
𝟐 ≤ 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

We can search for the worst-case sending ratio for the
output to decrease:

𝒐𝒖𝒕𝒑𝒖𝒕𝒕 < 𝟎

Invariant Inference - Aurora

Initialization: 𝟎 ≤ 𝒐𝒖𝒕𝒑𝒖𝒕, 𝟐 ≤ 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 ≤ 𝑴𝒖𝒔𝒆𝒓

Iterate:

binary-search the 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound

call a 𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓 on the middle point

update 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 accordingly

Return: lower bound on worst case 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

Invariant Inference - Aurora

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for SAT

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for UNSAT

2

M

𝟏

𝟐
(2+M)

2

M

𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓{𝒔𝒆𝒏𝒅𝒊𝒏𝒈𝒓𝒂𝒕𝒊𝒐𝒕 ∈ [𝟐,𝑴]} → SAT

𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓{𝒔𝒆𝒏𝒅𝒊𝒏𝒈𝒓𝒂𝒕𝒊𝒐𝒕 ∈ [
𝟏

𝟐
(2+M),𝑴]} → SAT

Invariant Inference - Aurora

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for SAT

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for UNSAT M

2

𝟏

𝟐
(M+2) … M

𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓{𝒔𝒆𝒏𝒅𝒊𝒏𝒈𝒓𝒂𝒕𝒊𝒐𝒕 ∈ [
𝟏

𝟐
(
𝟏

𝟐
(𝑴 + 𝟐) +𝑴),𝑴]} → UNSAT

Invariant Inference - Aurora

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for SAT

𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for UNSAT M

2

𝟏

𝟐
(M+2) … M

Invariant Inference - Aurora

… …

after 𝒍𝒐𝒈 𝑴 iterations:

M

return: = lower bound on worst-case 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

Invariant Inference - Aurora

K-Induction

Invariant Inference

Abstraction

Techniques

See paper for…

Abstraction techniques for generalization

Methods for identifying undesirable policies

Modules for improving interpretability

[Amir-Schapira-Katz, FMCAD 2021]

Summary
A (first?) method for proving properties of
RL-driven systems

Explainability and interpretability of bad
policies

Automatic invariant inference of “2nd best”
properties, in chosen scenarios

Future Steps

Improve scalability

Focus on generalization

Questions

