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Traditionally

Computer and networked systems are handcrafted by
domain-specific experts
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An Emerging Alternative

\- Deep Reinforcement Learning

¥ ' (DRL) solutions

)- Outperform the state-of-the-art
" in various contexts

System Application Domain
Aurora [29] congestion control
NeuroCuts [40] packet classification
[651] SQL optimization
NEO [49] SQL optimization
DeepRM [44] resource allocation
[72] resource allocation
[42] resource & power management
[36] compiler phase ordering
[562] device placement

Placeto [2]

device placement

Decima [48]

spark cluster job scheduling

Pensieve [46]

adaptive video streaming

AuTO [11]

traffic optimizations




Reinforcement Learning (RL)
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Reinforcement Learning (RL)
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Reinforcement Learning (RL)

Infinite Complex Communication
Runs Policies Domain
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But...

N, Howdo we know a Deep Neural Network trained via

L Reinforcement Learning is safe?

“Testing shows the presence, not the absence of bugs”
Dijkstra, 1969

Challenge: These “black boxes” need to be formally
verified for correct behavior



Our approach: Formal Verification!

Provably guarantee that a learned policy meets our
requirements, or identify concrete violations (bugs)




Example: The Aurora Congestion Controller
[Jay, Rotman, et al., ICML 2019]
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Aurora Safety Properties

Safety - “Something bad never happens”
(finite-long violations)
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Aurora Liveness Properties

Liveness - “Something good eventually happens”
(infinite-long violations)
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Our Verification Strategy

Defining a state graph
& transition function

% [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]




Transition System Graph
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Encoding Multiple Transitions
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Our Verification Strategy

= Defining a state graph
A N & transition function
L N [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]
@ «

Running a portfolio approach for checking

k-long violations or k-long provable runs
[Amir-Schapira-Katz, FMCAD 2021]




Bounded Model Checking (BMC)

' Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps

__________________________________________________________________________________



Bounded Model Checking (BMC)

Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps




Bounded Model Checking (BMC)

Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps




BMC Setbacks

We can’t prove that any properties hold

We can’t analyze complex properties



BMC

Bad State
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K-Induction
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Our Verification Strategy

= Defining a state graph
A N & transition function
L N [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]
@ «

Running a portfolio approach for checking

k-long violations or k-long provable runs
[Amir-Schapira-Katz, FMCAD 2021]




Portfolio Approach
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Aurora Properties
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WhiRL 2.0 - Techniques

7 K-Induction

@ Invariant Inference

3 Abstraction




Invariant Inference

 Invariant

A partition of the state space S into two disjoint sets S; and S,
isuch that:

' S{E€ES{ NS, €ES, - (s1,5,) & transtionT

‘., Bad State

Initial State



Invariant Inference

‘ Templates:

\/ use monotonicity of properties
J/ fix inputs or outputs
./ conduct a binary search on the non-fixed variables

\/ dynamic: user-chosen values

#» Strategy: search for the “2" best” behavior



Invariant Inference - Aurora

Execution of invariance inference algorithms based on
the templates

For example, an invariant is found, based on the
following violated property
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Invariant Inference - Aurora

o
4% Originally, “poor” network conditions:
2 < sending_ratio, ~

#% We can search for the worst-case sending ratio for the
output to decrease:
output, < 0 9



Invariant Inference - Aurora

‘ Initialization: 0 < output, 2 < sending_ratio, < M.,

‘ Iterate:

_~binary-search the sending _ratio; lower bound
~.callaverifier on the middle point
-update sending_ratio; accordingly

‘ Return: lower bound on worst case sending_ratio,



Invariant Inference - Aurora

* sending_ratio; lower bound for SAT ﬁ‘; 2

{ sending _ratio, lower bound for UNSAT\:~> M
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Invariant Inference - Aurora
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Invariant Inference - Aurora




Invariant Inference - Aurora

after log (M) iterations:

(
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(2
return: = lower bound on worst-case sending_ratio;



Techniques

7 K-Induction

Invariant Inference
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See paper for...

Abstraction techniques for generalization

Methods for identifying undesirable policies

Modules for improving interpretability

[Amir-Schapira-Katz, FMCAD 2021]



Summary

A (first?) method for proving properties of
~ RL-driven systems

- o= Automatic invariant inference of “2" best”
~— properties, in chosen scenarios

-+ Explainability and interpretability of bad
" PO licies




Future Steps

/ Improve scalability

ot
ot

/
/

Focus on generalization



Questions




