Towards Scalable Verification of Deep Reinforcement Learning

October 2021

Guy Amir

Michael Schapira

Guy Katz

THE HEBREW UNIVERSITY OF JERUSALEM

Traditionally

Computer and networked systems are handcrafted by domain-specific experts

An Emerging Alternative

Deep Reinforcement Learning (DRL) solutions

System	Application Domain
Aurora [29]	congestion control
NeuroCuts [40]	packet classification
[51]	SQL optimization
NEO [49]	SQL optimization
DeepRM [44]	resource allocation
[72]	resource allocation
[42]	resource & power management
[36]	compiler phase ordering
[52]	device placement
Placeto [2]	device placement
Decima [48]	spark cluster job scheduling
Pensieve [46]	adaptive video streaming
AuTO [11]	traffic optimizations

Reinforcement Learning (RL)

Infinite Runs

Complex Policies

But...

How do we know a Deep Neural Network trained via Reinforcement Learning is safe?

"Testing shows the presence, not the absence of bugs" Dijkstra, 1969

Challenge: These "black boxes" need to be formally verified for correct behavior

Our approach: Formal Verification!

Provably guarantee that a learned policy meets our requirements, or identify concrete violations (bugs)

Example: The Aurora Congestion Controller [Jay, Rotman, et al., ICML 2019]

Aurora Safety Properties

Safety - "Something bad never happens" (finite-long violations)

Aurora Liveness Properties

Liveness - "Something good eventually happens" (infinite-long violations)

Our Verification Strategy

Defining a state graph & transition function [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Encoding Multiple Transitions

Our Verification Strategy

Defining a state graph & transition function [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Running a **portfolio approach** for checking **k**-long **violations** or **k**-long **provable runs** [Amir-Schapira-Katz, FMCAD 2021]

Bounded Model Checking (BMC)

Bounded Model Checking A method for checking violations of properties, for a given number of k steps

Bounded Model Checking (BMC)

Bounded Model Checking

A method for checking violations of properties, for a given number of k steps

Bounded Model Checking (BMC)

Bounded Model Checking

A method for checking violations of properties, for a given number of k steps

BMC Setbacks

We can't prove that any properties hold

We can't analyze complex properties

BMC

Our Verification Strategy

Defining a state graph & transition function [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Running a **portfolio approach** for checking **k**-long **violations** or **k**-long **provable runs** [Amir-Schapira-Katz, FMCAD 2021]

Portfolio Approach

WhiRL 2.0 - Techniques

K-Induction

Invariant Inference

Abstraction

Invariant Inference

Invariant

A partition of the state space S into two disjoint sets S_1 and S_2 such that:

 $s_1 \in S_1 \land s_2 \in S_2 \rightarrow (s_1, s_2) \notin transtion T$

Invariant Inference

- / use *monotonicity* of properties
- √ fix *inputs* <u>or</u> *outputs*
- conduct a *binary search* on the non-fixed variables
 dynamic: user-chosen values

Strategy: search for the "2nd best" behavior

6

For example, an invariant is found, *based on the following violated property*

We can search for the worst-case sending ratio for the output to decrease:

$output_t < 0$

binary-search the sending_ratio_t lower bound
 call a verifier on the middle point
 update sending_ratio_t accordingly

Seturn: lower bound on worst case *sending_ratio*

 $verifier\{sending_{ratio_t} \in [\frac{1}{2}(\frac{1}{2}(M+2)+M), M]\} \rightarrow UNSAT$

after *log(M)* iterations:

Techniques

See paper for...

Abstraction techniques for generalization

Methods for identifying undesirable policies

Modules for improving interpretability

[Amir-Schapira-Katz, FMCAD 2021]

Summary

A (first?) method for proving properties of RL-driven systems

Automatic invariant inference of "2nd best" properties, in chosen scenarios

Explainability and interpretability of bad policies

Future Steps

Improve scalability

Focus on generalization

Questions

