Towards Scalable Verification
of Deep Reinforcement Learning

October 2021

&

Traditionally

Computer and networked systems are handcrafted by
domain-specific experts

- /e\ /e Server
Client \e e\e e s
S e X
S@ “

N

\ I

An Emerging Alternative

\- Deep Reinforcement Learning

¥ ' (DRL) solutions

)- Outperform the state-of-the-art
" in various contexts

System Application Domain
Aurora [29] congestion control
NeuroCuts [40] packet classification
[651] SQL optimization
NEO [49] SQL optimization
DeepRM [44] resource allocation
[72] resource allocation
[42] resource & power management
[36] compiler phase ordering
[562] device placement

Placeto [2]

device placement

Decima [48]

spark cluster job scheduling

Pensieve [46]

adaptive video streaming

AuTO [11]

traffic optimizations

Reinforcement Learning (RL)

envlronemn‘t\ ~action; // ageni

4

Reinforcement Learning (RL)

A AOER

sy
» max(E[Yy'r']) “
environemn‘,\ action; / agent

4

Reinforcement Learning (RL)

Infinite Complex Communication
Runs Policies Domain

O % 7

But...

N, Howdo we know a Deep Neural Network trained via

L Reinforcement Learning is safe?

“Testing shows the presence, not the absence of bugs”
Dijkstra, 1969

Challenge: These “black boxes” need to be formally
verified for correct behavior

Our approach: Formal Verification!

Provably guarantee that a learned policy meets our
requirements, or identify concrete violations (bugs)

Example: The Aurora Congestion Controller
[Jay, Rotman, et al., ICML 2019]

'__'L timestep t | = = -

'I latency gradient; !

latency ratio; 2 1
Dsendmg ratio; 21

m s

-~

_j |

S

| increase

I sending rate
|

maintain
sending rate

decrease
| sending rate

Aurora Safety Properties

Safety - “Something bad never happens”
(finite-long violations)

= =)
Network Conditions | Wanted Output

: poor A next-step decrease ,‘:
___________________________________ |

o

Aurora Liveness Properties

Liveness - “Something good eventually happens”
(infinite-long violations)

/

D
>

Network Conditions

=)

Wanted Output

Our Verification Strategy

Defining a state graph
& transition function

% [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Transition System Graph

............... m [\.l

———————————————

state; input; output, state, state,,

Encoding Multiple Transitions

2 OGO e
NG @/ AN X T
x3 “ONAVONAN o AN, ‘

X\ KPR R/ 8 —@- 3
« -O—OK\ _KR@7-@

L

(484

b
s N
X)
N

Our Verification Strategy

= Defining a state graph
A N & transition function
L N [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]
@ «

Running a portfolio approach for checking

k-long violations or k-long provable runs
[Amir-Schapira-Katz, FMCAD 2021]

Bounded Model Checking (BMC)

' Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps

__

Bounded Model Checking (BMC)

Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps

Bounded Model Checking (BMC)

Bounded Model Checking
EA method for checking violations of properties, for a given
'number of k steps

BMC Setbacks

We can’t prove that any properties hold

We can’t analyze complex properties

BMC

Bad State
0 6 7 8
1 =0 > 6 ~
Initial State — > / 1 / 0 / 6
3 2 1 .
4 3 2 1

k =1 step k = 2 steps k = 3 steps

K-Induction

k steps
B
=5

;

(k+ 1) steps

(k + 2) steps

-l
Q
=
©
o
(Vg
©
=
=

Our Verification Strategy

= Defining a state graph
A N & transition function
L N [Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]
@ «

Running a portfolio approach for checking

k-long violations or k-long provable runs
[Amir-Schapira-Katz, FMCAD 2021]

Portfolio Approach

input: Z:ii <+ property

initialization: k=1 step
_________________________ |) /r~/

"

g correctness Yy,
\ %

Kbug - , ex:t@

BMC
- increment: k ++ |

oo':
2

£3589

XTEXX
XXX

$499
X B X

aise
€8s

.® I?o
) © ©

-

¢es s

Aurora Properties

0~
>

Network Conditions

Property 1 i_ excellent &
Property 2 : excellent &

L e e
Property 3 3 poor A

Property 4] poor A

=)

Desired Output

WhiRL 2.0 - Techniques

7 K-Induction

@ Invariant Inference

3 Abstraction

Invariant Inference

 Invariant

A partition of the state space S into two disjoint sets S; and S,
isuch that:

' S{E€ES{ NS, €ES, - (s1,5,) & transtionT

‘., Bad State

Initial State

Invariant Inference

‘ Templates:

\/ use monotonicity of properties
J/ fix inputs or outputs
./ conduct a binary search on the non-fixed variables

\/ dynamic: user-chosen values

#» Strategy: search for the “2" best” behavior

Invariant Inference - Aurora

Execution of invariance inference algorithms based on
the templates

For example, an invariant is found, based on the
following violated property

2 > T\l

Network Conditions Wanted Output Property Holds?

P next-step decrease b _1
Property 3 3 poor X p ’ Xk 1

Invariant Inference - Aurora

o
4% Originally, “poor” network conditions:
2 < sending_ratio, ~

#% We can search for the worst-case sending ratio for the
output to decrease:
output, < 0 9

Invariant Inference - Aurora

‘ Initialization: 0 < output, 2 < sending_ratio, < M.,

‘ Iterate:

_~binary-search the sending _ratio; lower bound
~.callaverifier on the middle point
-update sending_ratio; accordingly

‘ Return: lower bound on worst case sending_ratio,

Invariant Inference - Aurora

* sending_ratio; lower bound for SAT ﬁ‘; 2

{ sending _ratio, lower bound for UNSAT\:~> M

% %

2 5 (2+M) M

1
verifier{sending,,,, € [E (2+M), M|} - SAT

Invariant Inference - Aurora

k& %

— (M+2 M
5 (M+2)

11
verifier{sending,;i,, € [E (E (M+2)+ M), M|} - UNSAT

Invariant Inference - Aurora

Invariant Inference - Aurora

after log (M) iterations:

(
R

M

(2
return: = lower bound on worst-case sending_ratio;

Techniques

7 K-Induction

Invariant Inference

OA@%HQH

See paper for...

Abstraction techniques for generalization

Methods for identifying undesirable policies

Modules for improving interpretability

[Amir-Schapira-Katz, FMCAD 2021]

Summary

A (first?) method for proving properties of
~ RL-driven systems

- o= Automatic invariant inference of “2" best”
~— properties, in chosen scenarios

-+ Explainability and interpretability of bad
" PO licies

Future Steps

/ Improve scalability

ot
ot

/
/

Focus on generalization

Questions

