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Traditionally

2

Computer and networked systems are handcrafted by 
domain-specific experts



An Emerging Alternative

3

Deep Reinforcement Learning 
(DRL) solutions

Outperform the state-of-the-art 
in various contexts
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Reinforcement Learning (RL)

Complex 
Policies

Infinite 
Runs

Communication 
Domain



But…

How do we know a Deep Neural Network trained via 
Reinforcement Learning is safe?

Challenge: These “black boxes” need to be formally 
verified for correct behavior

“Testing shows the presence, not the absence of bugs” 

Dijkstra, 1969



Our approach: Formal Verification!

8
+ counter-example

Provably guarantee that a learned policy meets our 
requirements, or identify concrete violations (bugs)



Example: The Aurora Congestion Controller
[Jay, Rotman, et al., ICML 2019]

increase
sending rate

maintain
sending rate

decrease
sending rate

𝒔𝒆𝒏𝒅𝒊𝒏𝒈 𝒓𝒂𝒕𝒊𝒐𝒕 ≥ 1
𝒍𝒂𝒕𝒆𝒏𝒄𝒚 𝒓𝒂𝒕𝒊𝒐𝒕 ≥ 1

𝒍𝒂𝒕𝒆𝒏𝒄𝒚 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒕

timestep t



Aurora Safety Properties

Safety - “Something bad never happens” 
(finite-long violations)

poor next-step decrease

Network Conditions Wanted Output

excellent next-step increase



Aurora Liveness Properties

Liveness - “Something good eventually happens” 
(infinite-long violations)

excellent eventual increase

poor eventual decrease

Network Conditions Wanted Output



Defining a state graph
& transition function 
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]

Our Verification Strategy



Transition System Graph

Defining a 𝒔𝒕𝒂𝒕𝒆𝒕 Defining a 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝒕,𝒕′

𝒔𝒕𝒂𝒕𝒆𝒕 𝒔𝒕𝒂𝒕𝒆𝒕′𝒔𝒕𝒂𝒕𝒆𝒕 𝒊𝒏𝒑𝒖𝒕𝒕 𝒐𝒖𝒕𝒑𝒖𝒕𝒕



Encoding Multiple Transitions



Running a portfolio approach for checking 
k-long violations or k-long provable runs

Our Verification Strategy

[Amir-Schapira-Katz, FMCAD 2021]

Defining a state graph
& transition function 
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]



Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given 
number of k steps



Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given 
number of k steps

B



Bounded Model Checking (BMC)

Bounded Model Checking
A method for checking violations of properties, for a given 
number of k steps

GB



BMC Setbacks

We can’t prove that any properties hold

We can’t analyze complex properties



BMC

Initial State



K-Induction

Initial State



Running a portfolio approach for checking 
k-long violations or k-long provable runs

Our Verification Strategy

[Amir-Schapira-Katz, FMCAD 2021]

Defining a state graph
& transition function 
[Eliyahu-Kazak-Katz-Schapira, SIGCOMM 2021]



Portfolio Approach

initialization: k=1 step

correctness

bug

input: property

exit

increment: k ++

emulate k steps

BMC



Network Conditions Desired Output Property Holds?

Property 3 poor next-step decrease k=1

Property 1 excellent eventual change

Property 2 excellent eventual increase k=2

Property 4 poor eventual decrease

k=2

k=1

Aurora Properties



K-Induction

Invariant Inference

Abstraction

WhiRL 2.0 - Techniques



Invariant Inference
Invariant 
A partition of the state space S into two disjoint sets 𝑺𝟏 and 𝑺𝟐
such that:

𝒔𝟏 ∈ 𝑺𝟏 ∧ 𝒔𝟐 ∈ 𝑺𝟐 → 𝒔𝟏, 𝒔𝟐 ∉ 𝒕𝒓𝒂𝒏𝒔𝒕𝒊𝒐𝒏 𝑻

I

Initial State

B

Bad State



Templates: 

Invariant Inference

Strategy: search for the “2nd best” behavior

use monotonicity of properties

fix inputs or outputs

conduct a binary search on the non-fixed variables

dynamic: user-chosen values



Execution of invariance inference algorithms based on 
the templates

Network Conditions Wanted Output Property Holds?

Property 3 poor next-step decrease k=1

For example, an invariant is found, based on the 
following violated property

Invariant Inference - Aurora



Originally, “poor” network conditions:
𝟐 ≤ 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

We can search for the worst-case sending ratio for the 
output to decrease:

𝒐𝒖𝒕𝒑𝒖𝒕𝒕 < 𝟎

Invariant Inference - Aurora



Initialization: 𝟎 ≤ 𝒐𝒖𝒕𝒑𝒖𝒕, 𝟐 ≤ 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 ≤ 𝑴𝒖𝒔𝒆𝒓

Iterate:

binary-search the 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound

call a 𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓 on the middle point

update 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 accordingly 

Return: lower bound on worst case 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

Invariant Inference - Aurora



𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕 lower bound for SAT
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Invariant Inference - Aurora
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… …

after 𝒍𝒐𝒈 𝑴 iterations:

M

return: = lower bound on worst-case 𝒔𝒆𝒏𝒅𝒊𝒏𝒈_𝒓𝒂𝒕𝒊𝒐𝒕

Invariant Inference - Aurora



K-Induction

Invariant Inference

Abstraction

Techniques



See paper for…

Abstraction techniques for generalization

Methods for identifying undesirable policies

Modules for improving interpretability

[Amir-Schapira-Katz, FMCAD 2021]



Summary
A (first?) method for proving properties of             
RL-driven systems

Explainability and interpretability of bad 
policies 

Automatic invariant inference of “2nd best” 
properties, in chosen scenarios



Future Steps

Improve scalability

Focus on generalization



Questions


