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- Obtaining an exhaustive set of samples is often not practical

- How large must the set of samples be to get an interpretation that does not overfit
the set of samples (with a certain probability)?

- Answer: Probably Approximately Correct (PAC) Learnability
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Auto 0.05, 0.05 333 7, 25 1.709 388.527 5.696 <1
TAXI (3) 0.05, 0.03 555 5, 26 2.513 616.520 11.222 <1
Bank 0.05, 0.05 365 7, 27 1.927 387.599 8.975 <1
Loan (4) 0.05, 0.03 608 4, 27 2.855 1299.196 17.998 <1
Theorem 0.05, 0.05 338 4, 20 0.767 3.392 1.138 <1
Prover (6) 0.05, 0.03 703 3, 28 2.051 18.148 3.643 <1
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o Statistical guarantees based on PAC learnability

e For technical details: https://arxiv.org/pdf/2108.07307.pdf

e Future work:
» extended to work with interpretation classes of infinite cardinality but finite VC dimension
» investigating oracle-guided approaches for refining interpretation

Thank you!
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