Synthesizing Pareto-Optimal Interpretations for Black-Box Models

Hazem Torfah, Shetal Shah, Supratik Chakraborty, S. Akshay, Sanjit A. Seshia

Machine learning components like DNNs are *complex* models that are hard to comprehend

Machine learning components like DNNs are *complex* models that are hard to comprehend

Explaining the behavior of ML components has become a necessity, especially with emerging laws and regulations (e.g. GDPR).

Machine learning components like DNNs are *complex* models that are hard to comprehend

Explaining the behavior of ML components has become a necessity, especially with emerging laws and regulations (e.g. GDPR).

There is an urgent need for tools to *synthesize "targeted"* interpretations of ML components, with *formal guarantees* on their correctness.

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020
- Guidotti et al. A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys. 2018
- Adadi and Berrada. Peeking inside the black-box: A survey on Explainable Artificial Intelligence. IEEE Access 2018

Synthesis of optimal models

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020
- Guidotti et al. A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys. 2018
- Adadi and Berrada. Peeking inside the black-box: A survey on Explainable Artificial Intelligence. IEEE Access 2018

Approaches are based on single-objective formulation of the problem

Synthesis of optimal models

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020
- Guidotti et al. A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys. 2018
- Adadi and Berrada. Peeking inside the black-box: A survey on Explainable Artificial Intelligence. IEEE Access 2018

Structural risk minimization

Approaches are based on single-objective formulation of the problem

Synthesis of optimal models

Structural risk minimization

- Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017
- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020
- Guidotti et al. A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys. 2018
- Adadi and Berrada. Peeking inside the black-box: A survey on Explainable Artificial Intelligence. IEEE Access 2018

Approaches are based on single-objective formulation of the problem

Interpretation synthesis is an optimization problem with "conflicting" objectives: correctness and explainability

Synthesis of optimal models

Verwer and Zhang. Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization. Integration of AI and OR Techniques in Constraint Programming. 2017

- Verhaeghe et al. Learning Optimal Decision Trees using Constraint Programming. IJCAI 2020
- Yu et al. Computing Optimal Decision Sets with SAT. Principles and Practice of Constraint Programming 2020
- Guidotti et al. A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys. 2018
- Adadi and Berrada. Peeking inside the black-box: A survey on Explainable Artificial Intelligence. IEEE Access 2018

Structural risk minimization

Approaches are based on single-objective formulation of the problem

Interpretation synthesis is an optimization problem with "conflicting" objectives:

correctness and explainability

Our goal: exploration of Pareto-optimal interpretations

Outline

- Pareto-optimal interpretation synthesis
 - Example
 - Formal Problem Definition
- In finite domains: A MaxSAT-based solution

- Exploring the Pareto-optimal space of interpretations
- Statistical guarantees for black-box models
- Experimental results

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)
Rain (1)
Initial position (2)
Time of day (4)

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)
Rain (1)
Initial position (2)
Time of day (4)

Explainability: score based on number of nodes and used predicates

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)
Rain (1)
Initial position (2)
Time of day (4)

Explainability: score based on number of nodes and used predicates

Correctness: Prediction accuracy w.r.t. the given sample set

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)
Rain (1)
Initial position (2)
Time of day (4)

Explainability: score based on number of nodes and used predicates

Correctness: Prediction accuracy w.r.t. the given sample set

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)
Rain (1)
Initial position (2)
Time of day (4)

Explainability: score based on number of nodes and used predicates

Correctness: Prediction accuracy w.r.t. the given sample set

E: 0.95 C: 0.61

Decision Module decides to trust ML-component based on:

- Weather conditions: clouds, rain
- Time of day
- Initial configuration: initial positioning, initial heading

Class of interpretations: Decision diagrams

Predicates: Clouds (1)

Rain (1)

Initial position (2)

Time of day (4)

Explainability: score based on number of nodes and used predicates

Correctness: Prediction accuracy w.r.t. the given sample set

E: 0.89 C: 0.90

Pareto-optimal Synthesis

Syntactic class of interpretations: Decision trees, decision rules, ...

Synthesis via weighted MaxSAT

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

$$\phi_{\mathcal{E}} \wedge \phi_{\mathcal{S}} \wedge \phi_{\Delta_{\mathcal{C}}} \wedge \phi_{\Delta_{\mathcal{E}}}$$

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

• Symbolic encoding of decision trees, diagrams,...

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

 Symbolic encoding of decision trees, diagrams,...

Samples:

- Uses variables $m_{(i,o)}$ for each sample (i,o)
- $m_{(i,o)}$ is true iff interpretation satisfying $\phi_{\mathcal{E}}$ produces o on i

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

 Symbolic encoding of decision trees, diagrams,...

$\phi_{\mathcal{E}} \wedge \phi_{\mathcal{S}} \wedge \phi_{\Delta_{\mathcal{C}}} \wedge \phi_{\Delta_{\mathcal{E}}}$

Samples:

- Uses variables $m_{(i,o)}$ for each sample (i,o)
- $m_{(i,o)}$ is true iff interpretation satisfying $\phi_{\mathcal{E}}$ produces o on i

Correctness measure:

• Add unit clause for each sample $m_{(i,o)}$

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

• Symbolic encoding of decision trees, diagrams,...

Samples:

- Uses variables $m_{(i,o)}$ for each sample (i,o)
- $m_{(i,o)}$ is true iff interpretation satisfying $\phi_{\mathcal{E}}$ produces o on i

$\phi_{\mathcal{E}} \wedge \phi_{\mathcal{S}} \wedge \phi_{\Delta_{\mathcal{C}}} \wedge \phi_{\Delta_{\mathcal{E}}}$

Correctness measure:

• Add unit clause for each sample $m_{(i,o)}$

Explainability measure:

 Add unit clause for each syntactic structure: e.g. predicate used, node used, ...

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

 $\phi_{\mathcal{E}} \wedge \phi_{\mathcal{S}} \wedge \phi_{\Delta_{\mathcal{C}}} \wedge \phi_{\Delta_{\mathcal{E}}}$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

• Symbolic encoding of decision trees, diagrams,...

Samples:

- Uses variables $m_{(i,o)}$ for each sample (i,o)
- $m_{(i,o)}$ is true iff interpretation satisfying $\phi_{\mathcal{E}}$ produces o on i

Correctness measure:

• Add unit clause for each sample $m_{(i,o)}$

Explainability measure:

 Add unit clause for each syntactic structure: e.g. predicate used, node used, ...

Assign appropriate weights to unit clause

Recap weighted MaxSAT

Given a boolean formula $\varphi = \bigwedge_{i=1}^m C_i$ and a weight function $w \colon \{C_1, \dots C_m\} \to \mathbb{R}^{\geq 0}$, the weighted MaxSAT problem is to find an assignment σ which maximizes:

$$\sum_{\{C_i \mid \sigma \models C_i\}} w(C_i)$$

 $\phi_{\mathcal{E}} \wedge \phi_{\mathcal{S}} \wedge \phi_{\Delta_{\mathcal{C}}} \wedge \phi_{\Delta_{\mathcal{E}}}$

Encoding of interpretation synthesis in weighted MaxSat:

Syntactic class:

• Symbolic encoding of decision trees, diagrams,...

Samples:

- Uses variables $m_{(i,o)}$ for each sample (i,o)
- $m_{(i,o)}$ is true iff interpretation satisfying $\phi_{\mathcal{E}}$ produces o on i

Correctness measure:

• Add unit clause for each sample $m_{(i,o)}$

Explainability measure:

 Add unit clause for each syntactic structure: e.g. predicate used, node used, ...

Assign appropriate weights to unit clause

Outcome: Pareto-optimal interpretation with maximum sum of correctness and explainability score

Synthesize initial Pareto-optimal interpretation

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions
- Continue search in regions 3 and 4

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions
- Continue search in regions 3 and 4
 - can be done by setting upper and lower bounds on explainability measure

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions
- Continue search in regions 3 and 4
 - can be done by setting upper and lower bounds on explainability measure

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions
- Continue search in regions 3 and 4:
 - can be done by setting upper and lower bounds on explainability measure
 - if correctness measure higher than previous measure,
 then new PO-interpretation found

- Synthesize initial Pareto-optimal interpretation
- Every PO-interpretation splits space into four regions
- Continue search in regions 3 and 4:
 - can be done by setting upper and lower bounds on explainability measure
 - if correctness measure higher than previous measure,
 then new PO-interpretation found
 - otherwise, repeat process with new explainability threshold

Obtaining an exhaustive set of samples is often not practical

- Obtaining an exhaustive set of samples is often not practical
- How large must the set of samples be to get an interpretation that does not overfit the set of samples (with a certain probability)?

- Obtaining an exhaustive set of samples is often not practical
- How large must the set of samples be to get an interpretation that does not overfit the set of samples (with a certain probability)?
- Answer: Probably Approximately Correct (PAC) Learnability

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

15

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

• for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,

15

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

- for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,
- when running the algorithm on $m \geq m_{\mathcal{E}}(\epsilon, \delta)$ i.i.d. samples generated according to D,

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

- for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,
- when running the algorithm on $m \geq m_{\mathcal{E}}(\epsilon, \delta)$ i.i.d. samples generated according to D,
- the algorithm returns an interpretation E s.t. $Pr(|L_D(E) \min_{E' \in \mathcal{E}} |L_D(E')| \le \epsilon) \ge 1 \delta$ where $L_D(E) = \mathbb{E}_{z \sim D}[\ell(E,z)]$

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

- for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,
- when running the algorithm on $m \geq m_{\mathcal{E}}(\epsilon, \delta)$ i.i.d. samples generated according to D,
- the algorithm returns an interpretation E s.t. $Pr(|L_D(E) \min_{E' \in \mathcal{E}} |L_D(E')| \le \epsilon) \ge 1 \delta$ where $L_D(E) = \mathbb{E}_{z \sim D}[\ell(E,z)]$

• Every finite class of interpretations is PAC-learnable

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

- for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,
- when running the algorithm on $m \geq m_{\mathcal{E}}(\epsilon, \delta)$ i.i.d. samples generated according to D,
- the algorithm returns an interpretation E s.t. $Pr(|L_D(E) \min_{E' \in \mathcal{E}} |L_D(E')| \le \epsilon) \ge 1 \delta$ where $L_D(E) = \mathbb{E}_{z \sim D}[\ell(E,z)]$

- Every finite class of interpretations is PAC-learnable
- Our MaxSAT-based algorithm satisfies PAC-learnability since it minimizes $\frac{\sum_{z \in \mathcal{S}} \ell(E,z)}{|\mathcal{S}|}$

PAC Learnability

A class of interpretations $\mathcal E$ is PAC-learnable with respect to the set of samples $\mathcal S$ and a loss function ℓ , if there exists a function $m_{\mathcal E}\colon (0,1)^2\to \mathbb N$ and an algorithm such that:

- for every $\delta, \epsilon \in (0,1)$ and distribution D over \mathcal{S} ,
- when running the algorithm on $m \geq m_{\mathcal{E}}(\epsilon, \delta)$ i.i.d. samples generated according to D,
- the algorithm returns an interpretation E s.t. $Pr(|L_D(E) \min_{E' \in \mathcal{E}} |L_D(E')| \le \epsilon) \ge 1 \delta$ where $L_D(E) = \mathbb{E}_{z \sim D}[\ell(E,z)]$

- Every finite class of interpretations is PAC-learnable
- Our MaxSAT-based algorithm satisfies PAC-learnability since it minimizes $\frac{\sum_{z \in \mathcal{S}} \ell(E,z)}{|\mathcal{S}|}$
- The number of samples can be determined in terms of $|\delta,\epsilon,|\mathcal{E}|$

AutoTAXI

Experimental Results

Experimental Results

Bench			Explored	min	max	median	unsat
mark	δ,ϵ	$ \mathcal{S} $	(PO, TNP)	time (s)	time (s)	time (s)	time (s)
Auto	0.05, 0.05	333	7, 25	1.709	388.527	5.696	< 1
TAXI (3)	0.05, 0.03	555	5, 26	2.513	616.520	11.222	< 1
Bank	0.05, 0.05	365	7, 27	1.927	387.599	8.975	< 1
Loan (4)	0.05, 0.03	608	4, 27	2.855	1299.196	17.998	< 1
Theorem	0.05, 0.05	338	4, 20	0.767	3.392	1.138	< 1
Prover (6)	0.05, 0.03	703	3, 28	2.051	18.148	3.643	< 1

Performance

• Pareto-optimal interpretation synthesis

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability
- For technical details: https://arxiv.org/pdf/2108.07307.pdf

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability
- For technical details: https://arxiv.org/pdf/2108.07307.pdf
- Future work:

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability
- For technical details: https://arxiv.org/pdf/2108.07307.pdf
- Future work:
 - > extended to work with interpretation classes of infinite cardinality but finite VC dimension

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability
- For technical details: https://arxiv.org/pdf/2108.07307.pdf
- Future work:
 - ► extended to work with interpretation classes of infinite cardinality but finite VC dimension
 - ► investigating oracle-guided approaches for refining interpretation

- Pareto-optimal interpretation synthesis
- Pareto optimality is the best we can hope for when synthesizing interpretations
- A MaxSAT-based solution for finite domain
- Algorithm for exploring the Pareto-optimal space
- Statistical guarantees based on PAC learnability
- For technical details: https://arxiv.org/pdf/2108.07307.pdf
- Future work:
 - > extended to work with interpretation classes of infinite cardinality but finite VC dimension
 - ► investigating oracle-guided approaches for refining interpretation

Thank you!