Thread-Parallel Vampire

the really dark side of theorem proving

Michael Rawson, Giles Reger

Vampire”?

Vampire

e A fully-automatic theorem prover for classical first-order logic with equality.
o Plus “theories”, induction, higher-order logic

e Not really just one theorem prover, but a collection of techniques
o Parameterised by options

Glued together by strategies and schedules
Mature, large, and successful

Mostly C++

Integrates Z3, MiniSAT

BSD 3-Clause Licence
https://vprover.github.io/

Core Vampire Technology

e Preprocessing for efficient clausal form
o May introduce additional symbols as hames for subformulas

e Saturation loop
o Compute closure of initial clauses under some inference system using best-first search

e Superposition/Resolution - Term Orderings
o Restrict inferences to producing “smaller’ clauses (without losing completeness)

e Redundancy Elimination
o Remove clauses that aren’t needed (without losing completeness)

e Clause splitting using SAT/SMT solvers (AVATAR)

o Control search space by selecting consistent sub-problems

Opportunities and Challenges for Parallelism!

Strategies in Vampire

Proof often found quickly (seconds), or not at all
Therefore, stop after a while and try a different strategy
Precompute schedule of strategies

If you have multiple cores, use them

Unreasonably effective for first-order logic

Different schedules available for different settings

Parallelism in Vampire

e \ampire is already parallel!
e Aproblem is loaded and left (mostly) unmodified

e For each strategy:
o Fork entire process, duplicating (CoW) system state
o In new process:
m Preprocess problem according to strategy
m Try and prove problem according to strategy
m Exit strategy, leaving original state clean

Thread-Parallel Vampire

Motivation

Want to communicate, learn from other strategies (past or present)
Can send or share e.g. clauses, simplifications, ground information
Need to exchange information somehow

Not especially convenient/efficient with disjoint-memory processes...

Threading Model

e Share code, data between threads of execution

e Allows convenient communicating by sharing memory
o Rather than sharing memory by communicating?

e Portable (ish) as of C++11
e So...just use threads?

Vampire is a large, complex codebase

Components interact (unsynchronised) in non-obvious ways
Implicit invariants

Global, mutable state

Performance critical for success

Bugs hard to find even normally
o May subtly affect soundness, completeness

Bugs almost certainly present even beforehand!
Processes (!) receive signals to e.g. enforce time limits
Widespread use of static temporaries to avoid allocations

Actually yes

Tooling can help find bugs

Language features help where they can

Core data structures in Vampire are frequently immutable
Not everything has to be shared

Coarse locks frequently acceptable

Hubris

Approach

e Could try and squint/static-analyse/whiteboard our way out of this

o Not at all feasible: too big, too hard, too scary
o Static analysis nonetheless useful

e Could write a new theorem prover!

o Not unreasonable for e.g. SAT
o First-order/saturation more involved, sadly
o Safer languages? Reasoning-as-a-toolkit? Maybe for the next edition of Vampire...

e Reality: just add threads, see what breaks
e Alot of things break, often very quietly and far from the issue
e Tooling: ThreadSanitiser

Write of size 4 at 0x000001551f4c by thread T2:
#0 set_x(int) test/basic-data-race.cpp:11:5 (basic-data-race+0x4bc654)
#1 thread2() test/basic-data-race.cpp:19:3 (basic-data-race+0x4bc6c6)
#2 void std:: 1invoke impl<void, void (*)()>(...) include/c++/8/bits/invoke.h:60:14 (basic-data-race+0x4bd39d)
[

Previous read of size 4 at 0x000001551f4c by thread T1:
#0 print_x() test/basic-data-race.cpp:7:27 (basic-data-race+0x4bc5c8)
#1 threadl1() test/basic-data-race.cpp:15:3 (basic-data-race+0x4bc685)
#2 void std:: 1invoke impl<void, void (*)()>(...) include/c++/8/bits/invoke.h:60:14 (basic-data-race+0x4bd39d)
=il

Location is global 'x' of size 4 at 0x000001551f4c (basic-data-race+0x000001551f4c)

Thread T2 (tid=16503, running) created by main thread at:
#0 pthread_create <null> (basic-data-race+0x427e96)
#1 std::thread:: M start thread(std::unique ptr<...> >, void (*)()) <null> (libstdc++.s0.6+0xbd994)
#2 main test/basic-data-race.cpp:24:15 (basic-data-race+0x4bc70c)

Thread T1 (tid=16502, finished) created by main thread at:
#0 pthread _create <null> (basic-data-race+0x427e96)
#1 std::thread:: M start_thread(std::unique_ptr<...> >, void (*)()) <null> (libstdc++.s0.6+0xbd994)
#2 main test/basic-data-race.cpp:23:15 (basic-data-race+0x4bc6f7)

SUMMARY: ThreadSanitizer: data race test/basic-data-race.cpp:11:5 in set x(int)

ThreadSanitizer: reported 1 warnings

Fixing It

e Diagnose root cause
e Usually, something is shared that shouldn’t be

e In order of preference:

Use an atomic (but only if it's e.g. a counter, freshener)
Make it thread_local (thank you, C++11!)

Coarse lock (if you don’t break external invariants)
Finer locks (if you also don'’t break internal invariants)
Actually fix it properly (ugh)

o O O O O

Architecture

Share:

o Problem symbols, which occur in

o Terms - useful for
o Shared Information - our motivator!

Also lock proof output
Don’t share anything else!

Input Problem

‘ Parsing

Initial Formulas with Shared Signature

M= Portfolio

Strategy

Scheduler

Proof |
Printing

Threads:

1 2 3

7N
e T2

<strategy>
Preprocessing

[extended
signature]

Proof Search

Term Indices

8 Term Sharing (shared)

Retrospective: multithreaded Vampire

Multithreaded Vampire (mostly?) works

Non-trivial effort!

Difficult to balance performance, correctness, clarity

Most important: decide how to segregate data and enforce it

Communicating Strategies

Persistent Grounding

|ldea: different strategies derive different facts

Ground everything we derive and stick it in a SAT solver

Keep it there as strategies come and go

Occasionally solve, UNSAT means we’re done. :-)

Not especially interesting, but provides supporting evidence for...

CAPS: the Collaborative Architecture for Proof Search

e AVATAR: the Advanced Vampire Architecture for Theories and Resolution

o Idiosyncratic combination of saturation, clause splitting and SAT solving
o Central incremental SAT solver “organises proof search”

o Allows refuting certain parts of the search space

o \Very effective!

o Usually per-strategy

Idea: share the SAT solver between threads?

One strategy might refute a certain part faster than others
Pick up where another left off

Future Work - currently working, if buggy

Wrap Up

e Converting an existing system to be multithreaded hard, but not impossible
e Allows interesting new proof techniques, heuristics

e Plenty of room for engineering questions:
o How do you make a shared term index fast?
o What's the fastest way to maintain shared perfect term sharing?
o Can we reuse introduced symbols (Skolems, definitions...) from other attempts?

Questions

