
Thread-Parallel Vampire
the really dark side of theorem proving

Michael Rawson, Giles Reger

Vampire?

Vampire

● A fully-automatic theorem prover for classical first-order logic with equality.
○ Plus “theories”, induction, higher-order logic

● Not really just one theorem prover, but a collection of techniques
○ Parameterised by options

● Glued together by strategies and schedules
● Mature, large, and successful
● Mostly C++
● Integrates Z3, MiniSAT
● BSD 3-Clause Licence
● https://vprover.github.io/

Core Vampire Technology

● Preprocessing for efficient clausal form
○ May introduce additional symbols as names for subformulas

● Saturation loop
○ Compute closure of initial clauses under some inference system using best-first search

● Superposition/Resolution - Term Orderings
○ Restrict inferences to producing `smaller’ clauses (without losing completeness)

● Redundancy Elimination
○ Remove clauses that aren’t needed (without losing completeness)

● Clause splitting using SAT/SMT solvers (AVATAR)
○ Control search space by selecting consistent sub-problems

Opportunities and Challenges for Parallelism!

Strategies in Vampire

● Proof often found quickly (seconds), or not at all
● Therefore, stop after a while and try a different strategy
● Precompute schedule of strategies
● If you have multiple cores, use them
● Unreasonably effective for first-order logic
● Different schedules available for different settings

Parallelism in Vampire

● Vampire is already parallel!
● A problem is loaded and left (mostly) unmodified
● For each strategy:

○ Fork entire process, duplicating (CoW) system state
○ In new process:

■ Preprocess problem according to strategy
■ Try and prove problem according to strategy
■ Exit strategy, leaving original state clean

Thread-Parallel Vampire

Motivation

● Want to communicate, learn from other strategies (past or present)
● Can send or share e.g. clauses, simplifications, ground information
● Need to exchange information somehow
● Not especially convenient/efficient with disjoint-memory processes...

Threading Model

● Share code, data between threads of execution
● Allows convenient communicating by sharing memory

○ Rather than sharing memory by communicating?
● Portable (ish) as of C++11
● So...just use threads?

No

● Vampire is a large, complex codebase
● Components interact (unsynchronised) in non-obvious ways
● Implicit invariants
● Global, mutable state
● Performance critical for success
● Bugs hard to find even normally

○ May subtly affect soundness, completeness
● Bugs almost certainly present even beforehand!
● Processes (!) receive signals to e.g. enforce time limits
● Widespread use of static temporaries to avoid allocations
● ...

Actually yes

● Tooling can help find bugs
● Language features help where they can
● Core data structures in Vampire are frequently immutable
● Not everything has to be shared
● Coarse locks frequently acceptable
● Hubris

Approach

● Could try and squint/static-analyse/whiteboard our way out of this
○ Not at all feasible: too big, too hard, too scary
○ Static analysis nonetheless useful

● Could write a new theorem prover!
○ Not unreasonable for e.g. SAT
○ First-order/saturation more involved, sadly
○ Safer languages? Reasoning-as-a-toolkit? Maybe for the next edition of Vampire…

● Reality: just add threads, see what breaks
● A lot of things break, often very quietly and far from the issue
● Tooling: ThreadSanitiser

Fixing It

● Diagnose root cause
● Usually, something is shared that shouldn’t be
● In order of preference:

○ Use an atomic (but only if it’s e.g. a counter, freshener)
○ Make it thread_local (thank you, C++11!)
○ Coarse lock (if you don’t break external invariants)
○ Finer locks (if you also don’t break internal invariants)
○ Actually fix it properly (ugh)

Architecture

● Share:
○ Problem symbols, which occur in
○ Terms - useful for
○ Shared Information - our motivator!

● Also lock proof output
● Don’t share anything else!

Retrospective: multithreaded Vampire

● Multithreaded Vampire (mostly?) works
● Non-trivial effort!
● Difficult to balance performance, correctness, clarity
● Most important: decide how to segregate data and enforce it

Communicating Strategies

Persistent Grounding

● Idea: different strategies derive different facts
● Ground everything we derive and stick it in a SAT solver
● Keep it there as strategies come and go
● Occasionally solve, UNSAT means we’re done. :-)
● Not especially interesting, but provides supporting evidence for...

CAPS: the Collaborative Architecture for Proof Search

● AVATAR: the Advanced Vampire Architecture for Theories and Resolution
○ Idiosyncratic combination of saturation, clause splitting and SAT solving
○ Central incremental SAT solver “organises proof search”
○ Allows refuting certain parts of the search space
○ Very effective!
○ Usually per-strategy

● Idea: share the SAT solver between threads?
● One strategy might refute a certain part faster than others
● Pick up where another left off
● Future Work - currently working, if buggy

Wrap Up

● Converting an existing system to be multithreaded hard, but not impossible
● Allows interesting new proof techniques, heuristics
● Plenty of room for engineering questions:

○ How do you make a shared term index fast?
○ What’s the fastest way to maintain shared perfect term sharing?
○ Can we reuse introduced symbols (Skolems, definitions…) from other attempts?

Questions

