Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference

Tutorial at FMICAD 2022
18 October 2022

Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference

* The Ivy deductive verification system

* The many-sorted EPR fragment

* Expressing transitive closure
* Expressing sets and cardinalities

* Liveness and temporal verification

* Problem setting

Distributed protocols — excellent opportunity
for verification

* Distributed systems are everywhere
e Safety-critical systems
* Internet scale services

* Cloud infrastructure

* Even small protocols can be tricky

* Bugs occur in rare scenarios

* Testing is costly and not sufficient

Best Paper Award

lerance
ulative Byzantine Fault TO
c

SOSP'07
ZyZZWa-' Spe

arXiv:l712.0l367 [CS.DC] 2017
I ?f,-‘\.'i.s'it,m;' Fast py

actica

d on
N tocol base
o replication pre

Iynzyva 1S & state m;whmeemem. (2) view Caests
VZLY 1s: (1) 28 J
o LU @

I Byzantj
ZalNtine K. ik
) v4antine Fault T
€ 1OW proceed

to d
'mech

ANISI i 7
anism in Zyzzyva. does not gy

erance

Cmonstrate th

at the View-

change
arantee safety

Ve By Zan =i ASPLOS'16

Mns ‘(! TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs
¢ SYSt€ in Datacenter Distributed Systems
omp‘“e

10ONS \N We present TaxDC, the largest and most comprehensive

cM Tran \a\‘\\[e BY taxonomy of non-deterministic concurrency bugs in dis-
Z\]\]a" Spece tributed systems. We study 104 distributed concurrency (DC)

(AL (anc
o\e
Fa\,\\\

bugs from four widely-deployed cloud-scale datacenter dis-
tributed systems, Cassandra, Hadoop MapReduce, HBase
and ZooKeeper. We study DC-bug characteristics along sev-

Automatic verification of infinite-state systems

Gystem S PropertyD

Verification
Is there a behavior s - dedel

of S that violates ¢?

v v

Counterexample Unknown / Diverge

Automatic verification of infinite-state systems

Gystem S PropertyD

orification

decide!

_—

v

v

Deductive verification

Gystem S @ariant I@
| can’t

Deductive Verification S = decide!
Is Inv an inductive invariant for S that proves @ ? | | |
= Are the logical verification conditions valid ?

PropertyD

Church’s Theorem

Y \ Y

Counter-model Unknown / Diverge Proof

= 3
, _'_)
P

a 7

Deductive verification

<System S @ariant I@ PropertyD

ive Verification @ - decide!

v v

Counter-model Unknown / Diverge Proof

Inductive invariants

System State Space

Reach

Init

System S is safe if all the reachable states satisfy the property —=Bad

Inductive invariants

System State Space

Inv

Reach

Init

System S is safe if all the reachable states satisfy the property =Bad

System S is safe iff there exists an inductive invariant /711 :
Init € Inv (Initiation)
if o € Invand o —» ¢’ then ¢’ € Inv (Consecution) translated to VCs
Inv N Bad = @ (Safety)

10

Counterexample To Induction (CTl)

e States 0,0" are a CTI of Inv if:
°* 0 € |nv

0’ ¢ Inv

NoRENex

* A CTl may indicate:
* A bugin the system
* A bug in the safety property
* A bugin the inductive invariant
* Too weak
* Too strong

11

Simple example: loop invariants

X =1,
while * do { .
assert —even[x]; <:::::::>
X 1= X + V;
TR
y =y o+ 23 <
} x=3,y =4

Simple example: loop invariants

—even[x]

X :=1;
y = 2;
while * do {
assert —even[x];
TR |X =X+ Y;
y 1=y + 2;
}

Counterexample to\@
induction (CTI)

Simple example: loop invariants

Inv = meven[x] A even[y]

X :=1;
y = 2;
while * do {
assert —even[x];
TR |X =X+ Y;
y 1=y + 2;
}

Simple example: loop invariants

Inv = meven[x] A even[y]

X 1;
y = 2;
while * do {
assert —even[x];
e | X5= O%=y*y)/ (x-y)
y 1=y + 2;
}

Simple example: loop invariants

Inv=y?—2y—4x+4=0

X :=1;
y = 2;
while * do {
assert —even[x];
TR | X =X+ Y;

y 1=y + 2;

}

Deductive verification

Gystem S @ariant ID PropertyD

Deductive Verification

Is Inv an inductive invariant for S that proves ¢ ?
—> Are the logical verification conditions valid ?

Y \ Y

Counter-model Unknown / Diverge Proof

= A)
, —_)
-~

@@ /

17

Verifying distributed systems is hard

Verdi IronFleet
Verification of Raft in Coq Verification of Multi-Paxos in Dafny
50,000 lines of manual proof 12,000 lines and 3.7 person-years

Uses solver for undecidable SMT checks

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct
[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems s

Effects of undecidability

* The verifier may fail on tiny programs

* No explanation when tactics fails
e Counterproofs

* The butterfly effect

The challenge of automated deduction

from: Ferraiulo, Baumann, Hawblitzel, Parno, “Komodo: Using Verification to
Disentangle Secure-enclave Hardware from Software”, SOSP '17

(o
The most frustrating recurring problem was proof instability [...]

Timeouts are challenging to debug, because the solver generally fails to provide
useful feedback |[...]

even once fixed, the proof may easily timeout again due to minor perturbations.

Worse, minor changes can trigger timeouts in seemingly unrelated proofs
’)

Gap: deductive power of automated provers is not translating into verification productivity

20

Rich logic, Poor logic

Rich SMT Theories
* Linear arithmetic, Bitvectors, Arrays, Strings, Datatypes, ...

* Great tools: Yices, Z3, CVC4, Boolector, MathSAT, SMTInterpol, ...
 Essential in Dafny, Sage, Klee, F*,

* Hides complexity from the user

* But solvers are heuristic, unpredictable, and not transparent

The Ivy deductive verification system —
design hypotheses

PST

we can reasonably predict solver performance

small, irrelevant changes do not greatly affect performance
failures have understandable explanations
Hypotheses:

PST . » productivity

decidability » PST

e e e T T T —
—_— —_—
—_— ~

— ~
-

_encodings + strategies » decidability

-~ —

[PLDI’16] O.P., Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, Sharon Shoham.
lvy: Safety Verification by Interactive Generalization

[CAV’20] O.P., Kenneth L. McMillan. lvy: A Multi-modal Verification Tool for Distributed Algorithms

Expressiveness

Design space for formal verification

A

2 "
‘;JEVN

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4 lVy

Decidable deduction
Finite counterexamples
proof/code: ~0.2

Ultimately limited by undecidability

Decidable Models
Model Checking
Static Analysis

Automation

23

lvy’s principles

 Specify systems and properties in decidable fragment of first-order logic
 Allows quantifiers to reason about unbounded sets
* Decidable to check inductiveness

* Finite counterexamples to induction, display graphically or textually

* Interact with the user to find inductive invariants

* Challenge: use restricted logic to verify interesting systems
* Transitive closure: network topology

 Sets and cardinalities: Paxos, Byzantine Fault Tolerance, Reconfiguration
* Liveness and temporal properties

24

Effectively Propositional Logic — EPR
a.k.a. Bernays-Schonfinkel-Ramsey class

« Limited fragment of first-order logic without theories
* Relations, but no functions r(a, b)J r(a@

* Restricted quantifier prefix: 3"V ¢,r 3xVy.r(x, y)J

* Finite model property
A formula is satisfiable iff it has a model of size r(x,y)

constant symbols + # existential variables

* Complexity:
* NEXPTIME-complete
« ¥ if relation arities are bounded by a constant

* NP if quantifier prefix is also bounded by a constant

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR Satisfiability

Ax,y.Vz. r(x,z) & r(z,y)
=saT VZ. 17(cy,2) ©1(z,cy)

i —SAT (T(CL c1) < 1(cy, Cz)) A (T(Clr c;) © r(cy, Cz))
N d

=sat (P11 © P12) A (P12 © D22)

Effectively Propositional Logic — EPR
a.k.a. Bernays-Schonfinkel-Ramsey class

« Limited fragment of first-order logic without theories
e Relations, but no functions
* Restricted quantifier prefix: 3"V ¢

* Finite model property
* A formula is satisfiable iff it has a model of size:
constant symbols + # existential variables
* Complexity:
* NEXPTIME-complete
« ¥ if relation arities are bounded by a constant

* NP if quantifier prefix is also bounded by a constant

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

Decidable Fragments in lvy

¢® Many-sorted EPR: allows acyclic functions and quantifier alternations
*Eg,f:A—>Bbutnotg:B - A <
* Maintains finite model property ??g%%%
* Finite complete instantiations, supported by Z3 "

* QFLIA — Quantifier Free Linear Integer Arithmetic 22

* FAU - Finite Almost Uninterpreted [CAV’07] %6;3%
* Allow limited arithmetic + acyclic quantifier alternations %
* Maintains finite complete instantiations 6?,«

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories

Logic-based deductive verification in lvy

@ctive invariant:@ Property ¢ = _I@

@em S: Init, TR .

Verification Condition (VC) Generator

VCs = Is Inv an inductive invariant for S that proves ¢ ?

Fragment Checker

Are the logical VCs in the decidable fragment ?

!

Automated Solver
Are the logical VCs valid ?

Proof

/\ Counterexample to Induction

» Clear Explanation

Transparency

29

Challenge: encoding into EPR

 Many-sorted EPR: allows acyclic functions and quantifier alternations
*Eg.,f:A— Bwithout g:B - A
* Maintains small model property of EPR
* Finite complete instantiations

* But what can you possibly express in such a restricted logic?

[- Transitive closure over deterministic paths]

* Set cardinalities
* Avoiding quantifier alternations

* Encoding liveness and LTL

30

Example: Leader election in a ring

* Unidirectional ring of nodes, unigue numeric ids ext
* Protocol:
* Each node sends its id to the next ext

* Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

* A node that receives its own id becomes a leader

* Theorem: at any given time there is at most one leader
* Inductive?

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of

"2 o aVealeaVelakay al

Example: Leader election in a ring

* Unidirectional ring of nodes, unigue numeric ids ext
* Protocol:
* Each node sends its id to the next ext

* Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

A node that receives its own id becomes a leader

* Theorem: at any given time there is at most one leader

e Inductive? NO
E r q\!&:;‘

\\1 A

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of

"2 o aVealeaVelakay al

Example: Leader election in a ring

* Unidirectional ring of nodes, unigue numeric ids ext
* Protocol:
* Each node sends its id to the next ext

* Upon receiving a message, a node passes it (to the next) if
theic Proposition: This algorithm detects one and only one

. A nochighest number.

Argument: By the circular nature of the configuration
and the consistent direction of messages, any message
must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num-
ber, will not encounter a higher number on its way
around. Thus, the only process getting its own message
back is the one with the highest number.

next

e Theorem

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of

"2 o aVealeaVelakay al

Leader election protocol —first-order logic

*< (ID, ID) — total order on node id’s

*btw (Node, Node, Node) — the ring topology Axiomatized in first-order logic
°id: Node [ID —relate a node to its unique id

*pending(ID, Node) — pending messages

*leader(Node) — leader(n) means n is the leader

protocol state first-order structure

next
3 5,«~—nN

neq ‘n ext 3

n, — 1

2
1 nEXT»G 4 4’n ext

next .-

<ns, Ny, N> € [(btw)

o —>

34

Leader election protocol —first-order logic

*< (ID, ID) — total order on node id’s

*btw (Node, Node, Node) — the ring topology } Axiomatized in first-order logic
°id: Node [ID —relate a node to its unique id

*pending(ID, Node) — pending messages

*leader(Node) — leader(n) means n is the leader

protocol state first-order structure

Specify and verify the protocol for any number of nodes in the ring

Y

Leader election protocol —first-order logic

*< (ID, ID) — total order on node id’s
*btw (Node, Node, Node) — the ring topology

action receive(n: Node, m: ID)
°id: Node [ID —relate a node to its unique id requires pending(m, n)

spending(ID, Node) — pending messages if * then
pending(m, n) := false

*leader(Node) — leader(n) means n is the leader if id(n) = m then

leader(n) := true
action send(n: Node) else if id(n) £ m then
“s := next(n)” “s := next(n)”
pending(id(n),s) := true pending(m, s) := true

TR:
dn,s: Node. “s = next(n)” A Vx:ID,y:Node. pending'(X,y)< (pending(x,y)V(x=1id(n)Ay=s))

Bad:
assert I0 = V x,y: Node. leader(x)aleader(y) » x =y

36

Leader election protocol — inductive invariant

Safety property: I,
I = VX, y: Node. leader(x) A leader(y) — x =y

Inductive invariant: Inv = I, /\I1 /\I2 AL,

I, = Vn;,n,: Node. 1eader'(n2) — 1d[n;] = 1d[n,] The leader has the highest ID

_) : : : Py
I vn,,n,: Node. pending(id[n,],n,) — id[n,] = id[n,] Only the leader can be self-pending

I, =Vn,n,n : Node. btw(n,n,n) A pending(id[n,], n) — id[n,] = id[n,]

Cannot bypass higher nodes

*< (ID, ID) — total order on node id’s

*btw (Node, Node, Node) — the ring topology
*id: Node [J ID —relate a node to its unique id
*pending(ID, Node) — pending messages

*leader(Node) — leader(n) means n is the leader 37

Leader election protocol — inductive invariant

Safety property: I,

VC Generator

Inductive invariant: Inv

I, = Vn,n,: Node. leader(n,) — id[n]

nit(V) A =Inv(V)
Inv(V) ATRWV,V") A =aInv(V")
Inv(V) ABad(V)

<

id[n,]

I, = Vn,n,: Node. pending(id[n,],n,) — id[n] = id[n,]

I, =Vn,n_,n : Node. btw(n,n,n) A pending(id[n,], n,)

I = VX, y: Node. leader(x) A leader(y) — x =y
I, NI, AI, AL

The leader has the highest ID

Only the leader can be self-pending

id[n,]

Proof

EPR Solver

|

38

Principle: first-order abstractions

Concept Intention First-order abstraction

Node ID’s Integers

Next edges +
Transitive
closure

Ring Topology

39

Key idea: representing deterministic paths
[Shachar Itzhaky PhD, SIGPLAN Dissertation Award 2016]

Alternative 1: maintain n
* n" defined by transitive closur
* not definable in first-order logic

ternative 2: maintain n”

n defined by transitive reduction of n*
e Unique due to outdegree <1

* Definable in first order logic

n(x,y) =n*(x,y) Ax # y A

Vzn*(x,z) > z=yVz=x
g

h t
First order expressible

Sound and complete™® axiomatization of

deterministic paths

Forest, Tree, Graph with out degree 1,
Line Ring Acyclic partial function General partial function
btw(x,Vy, z) 7))

For every class C of finite graphs above:
— universally quantified
— 1 universal quantifier
— Dyn-EPR

Every graph of class C satisfies the axioms of C
Edges agree with successor formula

Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of
deterministic paths

o>0>0 Universally quantified formulas
0 finite model property

Line Ring Ad Completeness Thm. for finite structures

< (x,y) btw(x,y, z)
Sound and complete automatic
For every class C of finite graphs above deductive verification

* Axioms for path relation — universally ¢
* Successor formula =1 universal quantifier
* Update formulas for node / edge addition and removal — Dyn-EPR

* Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

* Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C »

Challenge: encoding into EPR

* But what can you possibly express in such a restricted logic?
* Transitive closure over deterministic paths
[*Set cardinalities]

* Avoiding quantifier alternations

* Encoding liveness and LTL

43

Paxos

* Family of distributed consensus protocols

* let nodes maintain consistent state under crashes and packet loss
* Variants for different tradeoffs and extra features

* Active research and extensive industry use

* Pervasive approach to fault-tolerant distributed computing

44

Sets and cardinalities in EPR

¢ Consensus algorithms use set cardinalities action propose(r:Round) {

. N
e Wait for messages from more than N / 2 nodes require |{n|p(m)} > 2

e Set Cardinalities + Arithmetic + Uninterpreted > EPR? |}

* |Insight: set cardinalities are used to get a simple effect ‘

action propose(r:Round) {
require Jg.vn.m(n,qg) — @(n)

Can be modeled in first-order logic and EPR!

e Axiomatize quorums in first-order logic:
sort Quorum }
relation m(Node, Quorum)

— set membership (2"-order logic in first-order) J EPR
axiom Vg, g,: Quorum.3n: Node.m(n,q,) Am(n,g,)

[OOPSLA’17] O.P,, Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed45ProtocoIs

Principle: first-order abstractions

Concept

Intention

First-order abstraction

sNeer:\V;/(r:’Eilz ‘. relation start msg(Round)
. relation join msg(Node, Round, Round, Value)
Messages |dropping :
L relation propose msg(Round, Value)
duplication :
. relation vote msg(Node, Round, Value)

reordering
Quorums |Majority sets
Byzantine

Quorums

2/3 Majority

46

8 @ =1 5 o o W RS e

P T
O |

Paxos in first-order logic

sort node, quorum, round, valwe

relation < : round, round
axiom bodal_onden(<)
constant L : round

relation memiber : node, quorum
axiom ¥ q. g0 : quorum. Jn - node. member{n, ;) A memben(n, qq)

relation sart_round msg : round

relation join_gook_ msp : node, round, round, value
relation propose msg : round, value

relation vote_msg - node, round, value

relation dectsion : node, round, valwe

init ¥r. ~start_round msg(r)

init Vn, ry, ry, ©. —~join_ack_msg{n, ry, ry, ©)
init ¥Wr, ©. ~propose_msg(r, ©)

init Wn, r, v. ~vate msgin, r, v)

init W'n. r. v —decsionin. rooon

25
26
¥
28
29
50
3l
32
33
34
c |
36
L F)
I8
30
W0

action stART_RouND(r : round) {
assume r# L
start_round_ msg(r) -= true
i
action jorn_Rounodn - node, r: round) |
ASSUME T # L
assume stant_round msg(r)
assume —-3r', F', v. > rA Join_ack_msgin, &, e,)

find maximal round in which n voted, and the corresponding vote.

maxr = L and v is arbitrary when n never voted.
local maxr, v := max {(r’, ©') | vote_msp(n, v, ')A r" < 1)
Jotn_ack_msg(n, r, maxr, v) == true
|
action rropose(r : round, q : quorem) |
assume r# L
assume Y. ~propose msgir, o)
1b from guorim q
assume W n. member(n, q) — 3r', v. jotn_ack_msp(m, r, ',)
find the maximal round in which a node in the quorum reported

a1
LH
a3
L]
45
6
a7
L1]
L1

54

56
57
Sh

voling, and the corresponding wote.
v is arbitrary if the nodes reported not voling,
local maxr, v :== max {(r’, ') | n. membenn, q)
mjoin_ack_msglm, r, ', A = L}

fropose_msglr, v) = trwe # propose value v

[

action vore(n - node, r: round, v value) |
assume r # L
asswme ropose msg(r, v)
assume ~3r', r", v. r' > rajom_ack msgin, ', r. ©)
vote msgin, r, v} = true

I

action Leans(n - node, r - round, v : value, q: quorem) |
assume r# L
2b from gquornam ¢
assume ¥n. member(m, q) — vl msglm, , v)
deciston{n, r, v) = true

i

¥ni,ny : node,ry.rz : round, vy, vy : value. decision(ny,ry.vy) A decision(nga.ra.vz) — v = U
Yr:
Vn:
Yr
Yn:
Vn :
Vn :

¥n : node,v : value. —vote_msg(n, L,v)

Vry,ro : round. vy, vp : value,q : quorum. propose_msg(ra,v2) Ary < rp AUy # Up —

3n : node,r’,r" : round,v : value. member(n,q) A =vote_msg(n,ry,v1) Ar’ > ry A join_ack_msg(n,r’,r"" v)

round, vy, vg : value. propose_msg(r,v1) A propose_msg(r,vz) — v = Ug

node,r : round, v : value. vote_msg(n,r,v) — propose_msg(r,v)

: round, v : value.(3n : node. decision(n,r,v)) — Iq : quorum.¥n : node. member(n,q) — vote_msg(n.r.v)
node, r.r’ : round, v,v" : value. join_ack_msg(n,r, L.v) Ar’ < r — —vote_msg(n,r’,v")

node, r.r’ : round, v : value. join_ack_msg(n,r,r’,v) Ar" # L — r’ < r A vote_msg(n,r’,v)

node, r.r’.r” : round, v,v" : value_join_ack_msg(n.r.r’.v) Ar" # LAr <r” <r — =vote_msg(n.r”,v")

VCs in first-order logic

47

Challenge: encoding into EPR

* But what can you possibly express in such a restricted logic?
* Transitive closure over deterministic paths

e Set cardinalities

['Avoiding guantifier alternations]

* Encoding liveness and LTL

48

Quantifier alternation cycles

* Axiom
VvV q,,q,: Quorum. I n: Node. ...

e Action precondition
... ¥Vn:Node. ... —» 3dr:Round,v:Value. ...

* Inductive invariant
V' r:Round, v:Value. ... —» 3 g:Quorum. ...

49

Modularity

modular decomposition

[PLDI 2018] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, O. P., Mooly Sagiv, Sharon Shoham, James R. Wilcox, Doug
Woos 50

[\ P I [P T o A [- [TR ol R [P T S oL L B PR |- T TR [R JER T [T

Inductive invariant of Paxos

invariant

invariant

invariant

invariant

invariant

invariant

invariant

invariant

invariant

decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposal(R,V1) & proposal(R,V2) -> V1 = V2

vote(N,R,V) -> proposal(R,V)

forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

one_b max_vote(N,R2,none,V1) & ~le(R2,R1l) -> ~vote(N,R1,V2)

one_b max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

one_b max_vote(N,R,RM,V) & RM ~= none & ~le(R,R0) & ~le(RO,RM) -> ~vote(N,RO,VO)

~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left rnd(N,R1) & ~vote(N,R1,V1)

one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)

Paxos made EPR: experimental evaluation

Protocol Model Invariant
[LOC] [Conjectures]

Paxos 2.2 0.1
Multi-Paxos 98 12 2.6 0.1
Vertical Paxos™ 123 18 2.2 0.2
Fast Paxos™ 117 17 6.2 1.6
Flexible Paxos 88 11 22 0

Stoppable Paxos™ 132 16 54 0.9

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed.Protocols

Paxos made EPR: experimental evaluation

Protocol Model Invariant
[LOC] [Conjectures]

Proof / code ratio:

IronFleet: ~4
Paxos Verdi: ~10
Multi-Paxos 98 12 2.6 0.1 lvy: ~0.2
Vertical Paxos™ 123 18 2.2 0.2
Fast Paxos™ 117 17 6.2 1.6
Flexible Paxos 88 11 22 O
Stoppable Paxos™ 132 16 54 0.9

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed.Protocols

Paxos made EPR: experimental evaluation

IR

[LOC] [C°"’eCt“reS] o — std. deviation
Paxos 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos™ 123 18 2.2 0.2

Fast Paxos™ 117 17 6.2 1.6

Flexible Paxos 88 11 22 0

Stoppable Paxos™ 132 16 54 0.9

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed.Protocols

Paxos made EPR: experimental evaluation

Model Invariant
[LOCI [C°"Jecturesl M-

Paxos 2.2 0.1 1.2 0.1

| Multi-Paxos 98 12 26 01 | 4 18 04 O
Vertical Paxos™ 123 18 2.2 0.2 8 107 129 30%
Fast Paxos™ 117 17 6.2 1.6 16 229 110 70%
Flexible Paxos 88 11 22 0 Multi-Paxos in FOL
Stoppable Paxos™ 132 16 54 0.9

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed.Protocols

Paxos made EPR: experimental evaluation

Model Invariant
[LOCl [C°"Jecturesl M-

Paxos 2.2 0.1 186 123 50%

Multi-Paxos 98 12 2.6 0.1 4 300 O 100%

Vertical Paxos* 123 18 2.2 0.2 8 300 O 100%

Fast Paxos™ 117 17 6.2 1.6 16 300 O 100%

Flexible Paxos 88 11 22 0 Stoppable Paxos in FOL
| Stoppable Paxos™ 132 16 54 0.9 |

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed.Protocols

Appendix: The Proof of Correctness

We now prove that Stoppable Paxos satisfies its safety and liveness ¢
ties. For clarity and conciseness, we write simple temporal logic n.
with two el opersors. O messing o, snd O messing
ally [13]. We use a lincar-time logic, so © can be defined by OF & -
for any formula F.

ariant, meaning that it is true for every reachable state
temporal formula 0P asserts that at some point in the execution, £
from that point onward.

We define a predicate P to be stable iff it satisfies the following con
if P is true in any reachable state s, then P is true in any state rea
from s by any action of the algorithm. We let stable P be the assertic
state predicate P is stable. It is clear that a stable predieate is inval
i is true in the initial state. Because stability is an assertion only
reachable states s, we can assume that all invariants of the algoritl
truc in state s when proving stability.

Our proofs are informal, but careful. The two complicated, mul
proofs are written with a hierarchical numbering scheme in whid
the nm 4% step of the current level-z proof [0]. Although
appear intimidating, this kind of proof is casy to check and helps tc

r a state prcdluﬂt P, the formula OP assert

A1 The Proof of Safety

We mow prove that Consistency and Stapping ase imvians of Sto
Pasos. First, we define

VotChoosable (i, b,v) 2
3Q :Va& Q: (balla] > b) A(votes[a][b
V (3 < i, w € StopCmd : Done2a(j, b, w))

‘wemane-cmen have been chosen

We next prove a number of simple invariance and st
algorithm.

e 1dea of the algorithm is not complicated, getting the details right was not

2.¥i by O((Doneali b o) A Done2a(i b
3.Vi,b,a,v : O((zoteal[b] = v) = Done2a(i, b,

. easy.

Stoppable Paxos

alkhi Leslie Lamport

April 28, 2008

4 4 o

the j*® command for

some j < 1. Although the bacslc 1L‘,Iifl,‘;..L'if;i'lT;'LLZ.L;Z“;”Z".“TL“"“

Lidong Zhou

some more definitions, culminating in the key invariant

2 Ye<b, wv : NotChoosable(i, e, w)

(i, b)
b, w € StopCmd : NotGhoosabie(j. c,)

frer(i b,v) 2

nd)=+Vj > i, c< b, w : NotOhoosable(j, ¢, w)

2 Done2a(ibv) = Sefedt(i, b, v)
NoReconfigBefore i,)

A NoneChoosableAfter(i, b,v)

safety proof i the following proof that, Propfnu is invariant

i,b,v : Propinu(i,b,v))
Fmplmvh byv) s true in the initial state because Done2a(....)
W thocfor pood only show tha it i sable. Wo do tha by
na staie s and proving it is true in siate &, For any state
¥ b ia vl in s a aud # be it value n s ¢

¥i.eow : Proplu(.c,
{15 Tancn mmsbony 3 Bl ben, v & conumend, and
Q2 gom:

— ¢ is a Phaseda(1. b, v. Q) step,

it suffices to prove it for a partic

that ean possbly make Prophu(i,b,1) else
) true. We can therofore assume 5

Tworun . Formla (b, Q) hods Tlduc
(5, b,v, Q) action

‘movE" clause of (1)1 are proved as steps (1)3,
0 steps are used in their proof

= Donet

(3, mbal2a(j, b, Q), val2a(s, 5, Q)

1

PROOF: Asumo mbul2a(s, b, Q) # —cc. By dofinition of mbal2a, this implios
val2a(j, b, Q) is & command (and not T). Since Ei(b,Q) bolds by
tion (1)1.4, the definitions of méal2a and val2a imply tha
0 Q bas s @ (16", a b, (mbat2a(, b, Q) val2a(i. b, @)
smplies oteyallmbut2als, b, Q) = vai2alj, b. Q) when the message was seut.
Lomma 1.3 then implies Done2a(;, mbai2af ala(j, b
the message was sent, and is sill true because Donea(
(3. Vi, e < b, w (c < mbal2a(j, b, Q)) A(w # val2a(j,b,Q)
NotChoosable(s, c,)
Proor: Wo assume ¢ £ mbal2a(j,bQ) and w 7 val2a(3.5.Q) a
mbal

‘E‘

wo prove NotChoosable(s, e, w). Sinco —so < 12a(3, b,
i b,Q), val2a(j,b, Q)). By assumption (11
his ,,..Pl.@ Safedi(s, mbldals, b, @), wal3als b G)) Tho. sssumption ¢
bal“ ol Q) mmhu with spion (D14 ‘and Lemma 13 (which
m The assumption w / mmu 5 Q) and
mmru i3, b, O, vai2al b Qv: then imply NotChaos:
(IM. V5, ¢ < b, w: (sval2a(i,b, q, T) = NotChoosable(j, c,

ProOF: We asume c and _svala(j, b.Q) T and prove
HokGloosable’,c). Wo splc lhr proof into two cases
(1. Cast: mbal2 1

PRoor: The caso mlmp\vnn implis mbal2a(j,b, Q) < ¢, so asumption
1714 Lo 8 ety Nothmasabi sy

(2. Case: mbor2as. b, Q;
Pacior o & b, 6 o R (B it s e o 1 e
@)1 mlai2a(i,6,Q) < ¢ < b
oo Hy mpion (1) 14 the cas asoumption asd Lamma 3 fmply
NotChoosable(s, .

(2. Cas: e< mhﬂlln[/ b.Q) and w # 1ai2a(j, 5, Q)

113,

Puoor: By (1]
Cask: ¢ < mbal2a(j, b, Q) and w = vai2a(i, . @)
(L el) € fopmand s ko, 513/t the
mbal2a(k, b. Q 5.Q).
s ey “al2a(3b) € StopCrad and such . exims
the (2)2 case assumption, the ssumption. sval2a(j, b, @) — T, and
the definition of s
(#)2. Done2a(k, mbal2a(k, b, Q). wi2a(k.b. @)
Proor: The ()3 cam smumpion and ()1 imply mécl2a(k. . @) # ~co.
1)2 then proves (4)2.

Choosable(j, ¢,)

PRoOF: Amimption (VL1 (with 7. k, ¢ — mbal2a(k, b, Q), and w -

vaiZalk,b,Q)) and ()2 imply .vurmn/u,m/.,mt. gk Q)

Step (4)1 asents j < k case asumption (33 and (1 imply
18

© £ mbalda(k,b,Q); and (41 and caso asumption (33 imply
w € StopCmd. Therofore, NoReconfigBefore (k, mbaia(k, b, Q) implics
NoC Moosael .)

s, safedtt,
Proor: Wo # v and prove NotChoosable(By
i 17 ol pm\e \'o!LAMruNrH o ey s ek b

1. CasE: swai2ali,b,Q) = T
PROOE: (1}4 (substituting § —) implies NotChoasable(1, ¢,).
2)2. Case: sval2a(t,b,Q) £ T
PROOF: Sinea ¢ < b, we can brak the proof into two sub.cases.
(3)1. CaSE: mbatda(s, b, Q)
RooF: Assumption (1)1.4 and Lemma 3 imply NotChoosable(s, c. u)
¢ < mbal2
sumption u,\ A e R & it W ammrglionn 6
i,b,Q,») impl mlta(s b, G) (m assumptior

i e s imply © Q) 1
(31, thas s , i it 018 wmk»m.mmxl — i) thn imply
NolChoosable(i, c, w).-

. NoReconfiytefoe(, Y

PROOF: Wo assume < and wo prove

Nu.”monﬂllh\],z w)". By Lemma 1.7, it suffices to prove namw.,amj e w)

Since ¢ < b, we noed consider only the following two cascs.

Pm..

b=c
Proor: Assumption {1)1.3 implies Done2a(i, b, and
w & StopEimd. this implies the third disjunct of ‘mHthM{!J bw)f (sub-
stituting # and v for the existentially quantified variables), which by the case
assumption proves NotChoosable(j,

Casiz e< b
Phoor: W consider ovo s cass.
(8)1. Case: sval2a(3. b,

P10OE: (1)4 and case assumpion

19a(3,8,Q) # T

By case umption (212 we have the folowing ono sub-cases.

moal2a(j.5,Q) < ¢

PRoOF: Asmpion (114, the case assumption, and Lemma 3

NotChoosable(,

1)2. Case: Mmrum b.Q)

Proor: Assumption (1)1.3 1mp\14‘i E6(1,6,Q). The (32 case
d B9

imply NotChoosable(J. c.).

mply

Phes 1 seatsals, b, Q). By the (32 case sneamption and tho deh

19

miion of ot o then have v walZali, b, Q). The (2 can as
sumption (which implics mval2a(j, b, Q) # —oc) and (1)3 then imply
NotChoosable(j. <,)
(1)7. NomeChoosabieAfter(1, b, v)"
P00F: Wo nsstmo 2 & StopCmd, j > i, ¢ < b, and w any command and wo prove
NotChoosable(J, ¢, u)'. By Lemma. 1.7, it suffices to prove NotChoasable(J. ¢, u).
Wo split the proof into two cases.
1. Cask: swai2a(t,5,Q) =T
Proor: Asumpen (13 implis BA(1.5.Q.0). s ihe assmpiin
€ SunOnd \mph-\\ FA(ib.Q.v). The ctm arution, the ssumpion
1> 1, and 5,Q.v) imply stala(j, b, Q) — T. The asumption ¢ < b
and step uw et ety Kot lm»-nhh(}).
2. Cask: soal2as,5.Q) # T
(3)1. sal2ali, b, Q) = val2ali, b, Q) = v
vmmr Jamipin ()i
5.)= . oo o i e g i
e aisatt . @)
Donefali, mbol2a(s . Q).
00 (31, menimption (1/L4, asd tho dafition of val2e imply
wote, allmbaf3a(, b, Q)] — v for some accopeor a in @, which by Lommna 1.3
nplies Done2a(i, mbai2a(i, b, Q). v).
By the accumption ¢ < . sufoes ta consider the followng 1o cass,
(3. Case: ¢ < mbal2a(s. b. Q)
Proor: Stp (§2 ond asumption (L1 imply
NoneChoosabieAfter(s, mbala(s, b, @), v). By the case assumption and the
assumptions v € StopCrmd and j > i, this implios NotCheosable(j, ¢,)
(4. Cask: mbaia(i,b,Q) < < b

1)1, mbalda(j. b, Q) < mbaia(s. b, Q)
PRoOF: Tho asumption v @1 imply
svalda(i, b, Q) € StopCmd.. and the dofini.

tion of metla then imply mbal2a(k,b,Q) < mbal2a(i,b,Q) for all
k>

4)2. \nHTArm(anUJ,H)
PROOF: (4)1 and case assumption (3)4 imply méal2a(j, b, Q) < ¢ < b.
By asumpion (114, Lomma 3 mples NotChoosableGc.w). U
Theorem 1 O Consistency
PR0Or: by s of Comstency, it s 1 e Choen(.0.0) nd

Chasn(t,c.) 10 10 prove 3 = u. Without o of ganealey, we can samme
o thon have two cascs.
asE: be

Proor: We assume v 7 w and obtsin a contradiction. Lemma 11
and Chosen(s,oy0) imply Domedalivcow). By Lomma 3 this implics

Sofedt(i,c,w). The assamptions b an v # w then im.
Py Not€Thootable(s,b,u). By Lomima 2, this contradics tho assmpiion
Chasen(i, b,

2. Ca: b=z
Proor: Lemma 1 A implies Done2a(i. b,v) A Done2a(t, c,w), which by
Lemama 1.2 implies b = c. 0

Theorem 2 O Stopping

FXCOR, By duiia, or, Mo it sufces to asume Chasen({, b, v),
Chosent.c. o), o € StopCmd, and > 1 2nd 10 obtain + contraciction: Wo sl
tho proof into two cases

sad Lemma 11 uply Dovedalinboo). This and
.amﬂmmbhm ri, b,v), which by the mnsunlpuunand
cibes o & Sopfloid w1 { I WoiCRoeabiti, £y o], The e
sumption Chasents, . 0) and Lemma2 thom provid the rquired concradicion
9. Cas: e b
Proor: Glowenlc.v) und Lemma 1.1 imply Doneta(s,c.u). Lanma 4
then implies .wzwmmwmv casa assumption, as
sumptions v € StopCmd and and Roliconfgliforet).) imply
NeChomastutt brcy o mamptiom oot 2 thon
vida tho roquired contradietion.

A.2 The Proof of Progress.

Theorem 3 ¥5,Q : Progress(b, Q)

Proor: Wo assume P1(b, Q). d P3()

exists a v such that either SChasen(. b,) or (

for soma 7 < ¢

(1)L C0E1(b,Q)
Proor: P1(b.Q) implies that the ballot b leader eventually executes a
Phasela(b) action. By P2(b, Q), every acceptor a in Q eventually receives the
Phasela messages. Because falla] i set 10 a value ¢ only by receiving a ballot ¢
messags, asumption P3(0) implies balla) < b. Henoe, @ must eventualy receive
tho Phasela messago and exceute Phaselb(a,b). By P2(b,Q), the Phaselb
‘message it sends is eventually roceived by the leader.

(1)2. ¥i,w : O(Done2a(s, b, w) = <Chosen(i, b.w))
PROOF: Dome2a(s, b, w) means that u Phase2a(s. b, w) action bas been executed
sending a (23 e 0 cvory aexcptor 3. [aein §, then asmmpien
P2(b, Q) implies that it evenmally receives that message. Assumption P3(b)
implies alla] < b, s P1(b, Q) implics that every @ in eventually execut
Phasedh(i, a,b, w), setting vote,[al[t] to w. Hence, eventually Chasen(, b, z)
becomes true.

and wo must provo that thore
€ StopCmd) A OChosent(s. b, v),

21

b/

Challenge: encoding into EPR

* But what can you possibly express in such a restricted logic?
* Transitive closure over deterministic paths
*Set cardinalities

* Avoiding quantifier alternations

[* Encoding liveness and LTL]

58

Liveness properties

* Liveness property: “something good eventually happens”

e Often depend on fairness assumptions

e Typically proven by ranking functions, well-founded relations

[POPL'18] O. P, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
Reducing Liveness to Safety in First-Order Logic

[FMCAD’18] O. P., Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
Temporal Prophecy for Proving Temporal Properties of Infinite-State System:s.

59

Lasso & Dynamic Abstraction

Finite State
Parameterized

BN BN IR AN
L0 0 000

00000
L0 00000
00 Oy 0600

000000
0 &0 00

Liveness & No Lasso

Lasso & Dynamic Abstraction

Finite State Infinite State

Parameterized Finite Abstraction
o000 0O0O0

...’»..

S pe

;

Liveness & No Lasso Liveness < No Lasso
Problem: Spurious Lasso

All expressible in

Lasso & Dynamic Abstraction EPR
Finite State Infinite State , ,
Parameterized Finite Abstraction Dynamic Abstraction \

o’ooooooo Lad |

Liveness < No Lasso Liveness < No Lasso Liveness < No Lasso
Problem: Spurious Lasso Qewer Spurious Lassos
62

Challenge: encoding into EPR

* Transitive closure over deterministic paths
* Set cardinalities
* Avoiding quantifier alternations

* Encoding liveness and LTL

Logic-based deductive verification in Ivy

Module 1 Module N
Properties, Invariants Properties, Invariants

Verification Condition (VC) Generator

VCs = Do the invariants prove the properties ? N .
Quantifier Alternation Cycle

Fragment Checker
Are the logical VCs in the decidable fragment ?

!

Automated Solver
Are the logical VCs valid ?

/\ Finite Counter

EPR [] Transparency

Proof xample to Induction

64

O

Part 1: Conclusion

|
Fragment Checker %@j ‘
.o N . l
¢ \Verification in EPR Automateds,o.ver EDO N §’>j
* Deduction is decidable

* Finite counterexamples

* Transparent failures

* Powerful encodings
* Transitive closure for deterministic paths
* Set cardinalities
* Modular decomposition to battle V3 cycles

* Liveness and temporal properties

Part 1: Open Questions

¢* What cannot be proven with EPR?
* Proof theory
* Why are solvers stable on EPR?
* Can it be generalized?
* Part of why DPLL/CDCL works in practice
* Can it be used beyond a small group of fans?
* Transitive closure ©, , , Breaking V3 cycles ®
* Can you get the benefit of EPR without the costs?
* Bounded quantifier instantiations
* Special case of a more general “simple proofs” principle?

66

Verification of Distributed Protocols:

Decidable Modeling and Invariant Inference
Part 1: Decidable Modeling / \

* The Ivy deductive verification system
* The many-sorted EPR fragment

* Main challenge: expressing interesting pystems and properties in EPR
* Expressing transitive closure
* Expressing sets and cardinalities

* Liveness and temporal verification

Part 2: Invariant Inference

* Problem setting

Problem setting

Several lvy papers provide:

* A collection of examples with manually written invariants
* Invariant checking is decidable, typically ~1s, complex protocols ~10s
e Counterexamples are finite

* Invariants aren’t too large or too complex

e Model Invariant |EPR [sec]
[LOC] [[Conjectures]| u o
85 11 2.2 0.1

Paxos

safety property
invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposals are unique per round

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2
only vote for proposed values
invariant vote(N,R,V) -> proposal(R,V)

MUItl‘PaXOS 98 12 2.6 0.1 # decisions come from quorums of votes:

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

Vertical Paxos 123 18 2.2 0.2 # properties of one_b_max_vote

invariant one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

FaSt PaXOS 117 17 6-2 1-6 invariant one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)
, invariant one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,R0) & ~le(RO,RM) -> ~vote(N,RO,VO)
FIeleIe Paxos 88 11 2'2 O # property of choosable and proposal

Stoppable PaXOS 132 16 5 4 0 9 invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

property of one_b, left_rnd
invariant one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1) 68

[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
Property-Directed Inference of Universal Invariants or Proving Their Absence.

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah.
14: incremental inference of inductive invariants for verification of distributed protocols.

[PLDI’20] Jason Koenig, O. P,, Neil Immerman, and Alex Aiken.
First-Order Quantified Separators.

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols.

[NSF'21] Aman Goel and Karem Sakallah.
On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAl: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.

Interesting ideas

 Generalize from finite instances
° |4
* |C3PO

* Explicitly enumerate candidate invariants
* SWISS
* DistAl
* DuoAl

* Generalize IC3/PDR by adapting lemma generation
« UPDR
* FOL-IC3

70

Generalize from finite instance

ore Zuck
Sitvanit Ruah, and Len le invariants.

01] Ami Pnuehdeductlve verification with invisl

Automatic
Increase instance size

[TACAS'

. EPR Check for
Generalize
. unbounded
Invariant
protocol

- Inductive
Finite-state .
Invariant
model o
for finite
checker .
instance

Finite
protocol

instance

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah
. 71

14: incremental inference of inductive invariants for verification of distributed protocols

Generalize from finite instances (IC3PO)

Increase instance size

Finite Finite-state model checker EPR Check for

protocol unbounded
instance protocol

Generalize Invariant

(—|P(n1) Y, —.P(nz)) A
~P(ny)V ~P(n;) P Vx,y.x #y = -P()V-Py) B (=P(n;)V-P(ns)) A
(—uP(nz) \Y; —|P(n3))

[NSF'21] Aman Goel and Karem Sakallah.

On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.
72

Explicitly enumerate invariants (SWISS)

o Typically Inv =py A+ Ap,
* Each p; isn’t too complex, maybe we can explicitly enumerate all of them?
Would that be useful?

* |If we find some p that is inductive, we can learn it as an invariant
* May help make additional p’s inductive

* Ultimately, we want to prove the safety property

[NSDI'21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

73

Explicitly enumerate invariants (SWISS)

Abstract

Invariants & proof of
safety condition

|
SITEIHE, Breadth Finisher

description

Safety

[
[
l
I Cast a “wide net” Find invariant to
: Find any invariant complete proof |
| L l
I Many small invariants One big invariant I
[I o .
I]]] e]] I Partial invariants
i 1> 72° 732 > Tn last I
l
l

property

[NSDI'21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.

Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.)

Explicitly enumerate invariants (SWISS)

Exploring the space of candidate invariant predicates for Paxos

Candidate | Number of candidate Symmetries Counter-exa Removing Invariant
invariant invariants mple filters redundant predicates
space invariants
Finisher 6 terms ~99,000,000,000,000 ~ 200,000,000,000 155 155 5
Breadth 3 terms ~ 820,000,000 ~ 3,000,000 ~ 900,000 2,250 801
/ _—
100 ms on average Counterexample-guided synthesis:
Brute force is not feasible When one predicate fails to be inductive, use it

to narrow your search space.

[NSDI'21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.

Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All. e

Explicitly enumerate invariants (DistAl,
DuoAl)

More “abstractly reachable states”

Protocol Example Compute
Simulator reachabl predicates Candidate
(Random e satisfied by invariant
testing) states states (a)

EPR Check for
unbounded
protocol

Enlarge predicate search space

[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAl: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.

76

Adapt IC3/PDR (UPDR, FOL-IC3)

% Core task for lemma learningin IC3/PDR:
 Given ¥ = p; A -+ A p,, and state s, find p s.t. s ¥ p and postl

* UPDR: for p a forall-only formula, the diagram of s can be used

* FOL-IC3:

* Closely related problem is separation: given s s, and s 5., find » such that
S1 and s- , |

* For forall-exists formulas, separation is NP-complete

* Use a SAT solver!

 Many more techniques to scale to complex protocols
[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
Property-Directed Inference of Universal Invariants or Proving Their Absence.

[PLDI’20] Jason Koenig, O. P., Neil Immerman, and Alex Aiken.
First-Order Quantified Separators.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.

Induction Duality and Primal-Dual Houdini

* Induction Duality

* Formal symmetric connection between execution traces and
incremental induction proofs

* Primal-Dual Houdini

* Houdini + Dual Houdini = Primal-dual invariant inference
* Interesting theoretical properties
* Promising empirical results for distributed protocols

[POPL'22] O. P, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.
Induction Duality: Primal-Dual Search for Invariants. /8

Execution vs Incremental Induction

a, b, ¢ := 0, 0, 0
while * {

assert a > 0

&G, B, & = s, breg, €F]
¥

Loop invariant:
a=20ANb=20Ac=0

Predicates and
Incremental Induction

79

States and
Transitions

Formalizing symmetric incremental induction

* |ntuition: if is invariant, (J is also invariant

* Formally:
post([PIn[@Q])Nn[P]<[Q] & PAQ =wp(P - Q)
* Visually:

S P

transitionbﬂIncluctlon
......... step >0
t 0 /

e Contrast with IC3/PDR relative inductiveness:

post(|P] N [Q]) € |Q] Predicates and

Incremental Induction
80

Executions vs Incremental Induction:

T T
<+ iletiaiaia

Predicates and
Incremental Induction Steps

States and Transitions

81

Executions vs Incremental Induction: Symmetry

Predicates and
Incremental Induction Steps

States and Transitions

82

Executions vs Incremental Induction: Symmetry

Predicates and
Incremental Induction Steps

States and Transitions

83

Induction Duality Structure

I+ finite sets of states Induction Duality I/': finite sets of predicates

Inductlon over bounded proofs Induction over executions
o =1S,SUT)elrV xV|- E,={(P,PUQ) €V xXV"]|.}

Dual-Inductive % % Inductive
=

Transitions Bounded incremental induction
E={S,Su{t}) eVXV|te€post(S)} E'={(P,PUQ)€EE,||Q| <k}

Reachable k-provable

Induction Duality

Induction over bounded proofs Induction over executions
w=16,SuUT)eVxV]|- E, ={(P,PUQ) eV XV"|-}

Dual-Inductive % % Inductive
=

Transitions Bounded incremental induction
E={S,SuU{t}) eVXV|te€post(S)} E'={(P,PUQ) €E/,||Q| <k}

Reachable k-provable

Induction over bounded proofs Induction over executions
E,={,SUT)EV XV |-} EL, ={(P,PUQ)EV' XV"|-}

Dual-Inductive % @. Inductive
UI R : U |

Transitions Bounded incremental induction
E={(S,SuU{th) eVxVI|tEeEpost(S} E'={(P,PuUQ)€E,I||Q| <k}
Reachable k-provable
. Y
Concept Induction dual —
k-provable invariant
reachable k-abstractly-reachable

k-abstractly-reachable reachable
Invariant k-provable
dual-inductive

inductive

86

Induction over bounded proofs

E,={(S,SUT)EV XV |-}

Dual-Inductive
ul

Transitions

E={S,Su{t}) eVxVI|tepost(S)}

Reachable

Induction over executions

. .
., PS4
. **

LA -

E,={(P,PUQ)eV'xV"]|-}

Inductive
ul

Bounded incremental induction
E'={(P,PUQ)€E,I|I|Q| <k}

k-provable

14

_) du al

reachable: E*

k-provable: E™*

invariant: a(E™)
k-abstractly-reachable: y(E™)
inductive: E,

dual-inductive: E

k-provable

reachable
k-abstractly-reachable
invariant
dual-inductive

inductive

invariant
k-abstractly-reachable
reachable

k-provable
2reachable

2k-provable

87

Houdini and Dual Houdini

° Houdini % @ Dual-Houdini
Input: P — set of predicates Input: S — set of states

Py =P CTl MSH =S Dual-CTl
while3(5,5 U {¢}) € E.S PH@ whilee@ E'. Sy E P@

Py={p€Pyltrp} Sy ={s €Sy lskEQ}
(D, Py) € E, (D,5u) € E,

2 @ 0 o HE B B X

-0
- -0

Theorem: all the states in Sy cannot be ruled out by
k-bounded incremental induction (no matter how long)

88

Primal-Dual Houdini

new states (CTIs)

Houdini new predicates Dual Houdini
(Dual-CTls)

89

Galois Connection and Induction Duality

Lattice of sets Lattice of sets
of states of predicates

Vertical flip: Galois Connection

Horizontal flip: Induction Duality

90

Example: Toy Consensus Protocol

v (Node,Value) — votes

b(Node) — bit used by a node to remember if it voted already

d(Value) — decisions
m(Node, Quorum) — membership

axiom Vq, g,: Quorum.3n: Node.m(n, q;) Am(n, q,)

action vote(n: Node, x:value)
requires —b(n)
v(n,x) := true
b(n) := true

action decide(x:value)
requires dqvVn.m(n,q) - v(n,x)
d(x) := true

Safety specification:

Vx,y.d(x) Ad(y) > x =1y

Inductive invariant:

Vx.d(x) » g vn.m(n,q) - v(n, x)

vn,x,y. vin,x) Avin,y) > x =y

vn,x. v(n,x) — b(n)

Induction Edges

¢ Induction edge from P to Q if:
post([P]n[Q]) n[P] < [Q] © PAQEwp(P-Q)

* Intuition: if P is invariant, Q is also invariant
* If a trace violates Q, it must also violate P (no later than the violation of Q)

Cv’n,x.v(n,x) — ~(n))—>C vn,x,y.v(n,x) Av(ny) > x =y)
vn,x,y.v(n,x) Av(ny) > x =1y
Vx.d(x) - 3g Vvn.m(n,q) - v(n,x)

C‘v’n. —b(n) vn,x. =v(n,x)

vx,y. dG) Ad(y) - x = y)

(Vx, y. d(x)Ad(y) - x = y)

Wl

vn,x,y.v(n,x) A v(n,y) > x =y
Vx.d(x) - 3g Vn.m(n,q) - v(n,x)
X p—
(Vn,x.v(n,x) — b(n)) (v x)

Primal Houdini

m(nq,q;) m(ny,q,)
v(n1'v2) v(nlfUZ) (‘v’ . d =)
d(v:) Ay, d(v,) V1, V3. d(vq) (v2) = v = vy

Dual Houdini

bZd C‘v’vl,vz. dlvy) Ad(v,) - vy = v2>

CVn. —b(n) vn,v. v(n, vD

Primal Houdini

m(nq,qq)
v(nlf 172)
d(vy1), d(vy)

CVVLVZ- d(vy) (v2) > vy = 172)

Dual Houdini

CVVLVz-d(Th) ANd(vy) > vy = 172)

vn,v.v(n,v) — b(n)

Primal Houdini

Vy) o Vg = 772)

(VVL vy.d(vy)

[it

vn,v.v(n,v) — b(n)

O

d(vq1), d(vy)
b(ny)

Dual Houdini

(Vo v2.d@) A d(@wy) > vy = v,)

C‘\\:n””(nvwz(n)

Vv d(v) » 3gvn.m(n,q) - v(n, v))

Primal Houdini

(v vz a0 Yo vi = v,)

v(nlivl)
(o

T H vn,v.v(n,v) — b(n) >

Cv’v. d(v) » 3gvn.m(n,q) - v(n, v))

m(ny, qq) m(ny,qq)
v(ny,vy), v(ng, vy) v(ny,vy), v(ny,vy)

d(vy) d(vy), d(vy)
b(n,) b(ny)

Dual Houdini

(Vo v2.d@) A d(@wy) > vy = v,)

INIT

vn,v.v(n,v) — b(n)

Cv’v. d(v) » 3gvn.m(n,q) - v(n, v))

(Vn, vy, v,.v(n,v1) Av(n,vy) - vy = v, ’

Primal Houdini

Vv, v2. d(v1) Ad(v;) = v1 = v,)

‘v’n v.v(n,v) - (n))
\< .d(v) »3gvn.m(n,q) - v(n, v))

y

v(nlivl)
(o

Vn, vy, v,.v(n,v1) Av(n,vy) - vy = v,

Primal-Dual Houdini: Theorems

* Exploration: every iteration discovers new states and predicates

* Possible Progress:

* |If k-provable, every iteration can discover a new useful predicate
* |If unsafe, every iteration can discover a new useful state

* Termination by Stratification: if states and predicates are discovered in a stratified
manner, then the algorithm terminates for k-provable or unsafe cases

103

Evaluation for Distributed Protocols (k = 1)
m-m-mmm

ring
cons
Paxos
Spaxos
paxos-h
Spaxos-h
locksrv
skv

skvr

cache v/

v’ v’ «’

«’
4

NSNS

v

N SAANARE

NS
NS

v
v

NSNS
NS

[POPL'22] O. P, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.

Induction Duality: Primal-Dual Search for Invariants. o

Conclusion (Primal-dual Houdini)

. 7(0) =
* Goal: symmetric primal-dual invariant inference g

* Key idea: bounded incremental induction
* Result 1: Induction duality
* Result 2: Primal-Dual Houdini

* New synthesis task: check dual-inductiveness
and find induction edges

* Future directions
* Application to more domains
* Primal-dual version of more advanced algorithms

105

Conclusion e

 Using undecidable reasoning is powerful, but at a price Fragme“r Checker b‘

* Decidable logic (EPR) offers a different tradeoff Automated Solver
* More effort in encoding systems and properties

* More reliable automation

* Reliable invariant checking opens the path to invariant inference
* Many recent ideas (and new adaptations of old ideas)
* We are exhausting the benchmark set — progress would
come from new benchmarks!
* Induction duality
* Promising new idea
* May be applicable in other domains

e Reach out to discuss more or collaborate!

