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Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference
Part 1: Decidable Modeling

• The Ivy deductive verification system

• The many-sorted EPR fragment

• Main challenge: expressing interesting systems and properties in EPR

• Expressing transitive closure

• Expressing sets and cardinalities

• Liveness and temporal verification

Part 2: Invariant Inference

• Problem setting

• Survey recent approaches for EPR invariants of distributed protocols

• Primal-dual Houdini

• Induction dependency graph

• New mathematical duality

• New primal-dual algorithm
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Distributed protocols – excellent opportunity 
for verification

• Distributed systems are everywhere

• Safety-critical systems

• Internet scale services

• Cloud infrastructure

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur in rare scenarios

• Testing is costly and not sufficient

3



Best Paper Award

…

SOSP’07

CACM’08

ACM Transactions on Computer Systems ‘09

arXiv:1712.01367 [cs.DC] 2017
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ASPLOS’16



 

Counterexample Proof 

Automatic verification of infinite-state systems

  

Unknown / Diverge

Rice’s Theorem

I can’t 
decide!
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Counterexample Proof 

Automatic verification of infinite-state systems

  

Unknown / Diverge

Rice’s Theorem

I can’t 
decide!

“Formal methods are the future of computer science.  Always have 

been, always will be.”   – William E. Aitken
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Counter-model Proof 

Deductive verification

   

Unknown / Diverge

Church’s Theorem

I can’t 
decide!
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Counter-model Proof 

Deductive verification

   

Unknown / Diverge

Church’s Theorem

I can’t 
decide!

 “Deduction is forever”   – Amir Pnueli

8



Inductive invariants

System State Space Safety 
Property
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Inductive invariants

System State Space Safety 
Property

  

 

 

 

 

 

 

 

translated to VCs
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Counterexample To Induction (CTI)

• States σ,σ’ are a CTI of Inv if:

• σ ∈ Inv 

• σ’ ∉ Inv  

• σ 🡪 σ’

• A CTI may indicate:
• A bug in the system
• A bug in the safety property
• A bug in the inductive invariant

• Too weak
• Too strong

Inv

σ ∈ 
Inv  

σ’ ∉ Inv  
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Simple example: loop invariants
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Simple example: loop invariants

 



Counter-model Proof 

Deductive verification

   

Unknown / Diverge
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Verifying distributed systems is hard
Verdi

Verification of Raft in Coq
50,000 lines of manual proof

IronFleet
Verification of Multi-Paxos in Dafny
12,000 lines and 3.7 person-years

Uses solver for undecidable SMT checks

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems 18



Effects of undecidability

• The verifier may fail on tiny programs

• No explanation when tactics fails
• Counterproofs

• The butterfly effect



The most frustrating recurring problem was proof instability […]
Timeouts are challenging to debug, because the solver generally fails to provide 
useful feedback […]
even once fixed, the proof may easily timeout again due to minor perturbations. 
Worse, minor changes can trigger timeouts in seemingly unrelated proofs

The challenge of automated deduction

from: Ferraiulo, Baumann, Hawblitzel, Parno, “Komodo: Using Verification to 
Disentangle Secure-enclave Hardware from Software”, SOSP ’17

“

”
Gap: deductive power of automated provers is not translating into verification productivity
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Rich logic, Poor logic

Rich SMT Theories

• Linear arithmetic, Bitvectors, Arrays, Strings, Datatypes, …
• Great tools: Yices, Z3, CVC4, Boolector, MathSAT, SMTInterpol, …
• Essential in Dafny, Sage, Klee, F*, ….

• Hides complexity from the user

• But solvers are heuristic, unpredictable, and not transparent



The Ivy deductive verification system – 
design hypotheses
PST

• Predictability: we can reasonably predict solver performance

• Stability (or continuity): small, irrelevant changes do not greatly affect performance

• Transparency: failures have understandable explanations

Hypotheses:
PST productivity

decidability PST

encodings + strategies decidability

22

[PLDI’16] O.P., Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, Sharon Shoham.
                 Ivy: Safety Verification by Interactive Generalization
[CAV’20] O.P., Kenneth L. McMillan. Ivy: A Multi-modal Verification Tool for Distributed Algorithms



Design space for formal verification
Ex

p
re

ss
iv

en
es

s

Automation

Proof Assistants

Ultimately limited by human

proof/code: 
Verdi: ~10
IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction
Finite counterexamples
proof/code: ~0.2
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Ivy’s principles

• Specify systems and properties in decidable fragment of first-order logic

• Allows quantifiers to reason about unbounded sets 

• Decidable to check inductiveness

• Finite counterexamples to induction, display graphically or textually

• Interact with the user to find inductive invariants

• Challenge: use restricted logic to verify interesting systems

• Transitive closure: network topology

• Sets and cardinalities: Paxos, Byzantine Fault Tolerance, Reconfiguration

• Liveness and temporal properties
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Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

•  

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

 



EPR Satisfiability
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Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

•  

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930



Decidable Fragments in Ivy

•  

Protocol

D
esigns

System

Im
plem

entations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories



Logic-based deductive verification in Ivy

   

Counterexample to Induction
Proof 

 

Automated Solver
 Are the logical VCs valid ?

Fragment Checker
 Are the logical VCs in the decidable fragment ?

Clear Explanation 

29

Transparency



Challenge: encoding into EPR

•  
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Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if 

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: at any given time there is at most one leader
• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of 
processes

3 5

2

4

1

6

2
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Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if 

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: at any given time there is at most one leader
• Inductive? 
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Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if 

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of 
processes
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Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state
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Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state
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Specify and verify the protocol for any number of nodes in the ring
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Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

action receive(n: Node, m: ID)
  requires pending(m, n)
  if * then
    pending(m, n) := false
  if id(n) = m then
    leader(n) := true
  else if id(n) ≤  m then
    “s := next(n)”
    pending(m, s) := true  

action send(n: Node)
  “s := next(n)”
  pending(id(n),s) := true
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Safety property: I
0

I
0
 = ∀x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I
0
 ∧I

1
 ∧I

2
 ∧I

3

I
1
 = ∀n

1
,n

2
: Node. leader(n

2
) → id[n

1
] ≤ id[n

2
]

I
2
 = ∀n

1
,n

2
: Node. pending(id[n

2
],n

2
) → id[n

1
] ≤ id[n

2
]

I
3
 =∀n

1
,n

2
,n

3
: Node. btw(n

1
,n

2
,n

3
) ∧ pending(id[n

2
], n

1
) → id[n

3
] ≤ id[n

2
]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader 37



Safety property: I
0

I
0
 = ∀x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I
0
 ∧I
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1
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3
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2
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The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

EPR Solver
 Proof

I can decide 
EPR!

VC Generator
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Principle: first-order abstractions
Concept Intention First-order abstraction

Node ID’s Integers

Ring Topology 
Next edges + 
Transitive
closure
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Key idea: representing deterministic paths
[Shachar Itzhaky PhD, SIGPLAN Dissertation Award 2016]
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h t
Not first order expressible

First order expressible



For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula  – 1 universal quantifier

• Update formulas for node / edge addition and removal – Dyn-EPR

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of 
deterministic paths 
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For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula  – 1 universal quantifier

• Update formulas for node / edge addition and removal – Dyn-EPR

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of 
deterministic paths 

  
  

Universally quantified formulas
� finite model property

+ Completeness Thm. for finite structures
--------------------------------------------------------

Sound and complete automatic
deductive verification
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Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

43



Paxos

• Family of distributed consensus protocols

• let nodes maintain consistent state under crashes and packet loss

• Variants for different tradeoffs and extra features

• Active research and extensive industry use

• Pervasive approach to fault-tolerant distributed computing

44



Sets and cardinalities in EPR
•   

 

45

≫EPR?

EPR

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols



Principle: first-order abstractions

Concept Intention First-order abstraction

Messages

Network 
semantics:
dropping
duplication
reordering

relation start_msg(Round)
relation join_msg(Node, Round, Round, Value)
relation propose_msg(Round, Value)
relation vote_msg(Node, Round, Value)

Quorums Majority sets

Byzantine 
Quorums

2/3 Majority
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Paxos in first-order logic

VCs in first-order logic
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Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

48



• Axiom
∀q

1
,q

2
: Quorum. ∃n: Node. …

• Action precondition
... ∀n:Node. … → ∃r:Round,v:Value. …

• Inductive invariant
∀r:Round, v:Value. … → ∃q:Quorum. …

Round

Value

NodeQuorum

49

Quantifier alternation cycles

Quantifier Alternation Cycle



Modularity

[PLDI 2018] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, O. P., Mooly Sagiv, Sharon Shoham, James R. Wilcox, Doug 
Woos

    Modularity for decidability of deductive verification with applications to distributed systems

50

 
modular decomposition



Inductive invariant of Paxos
# safety property

invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

# proposals are unique per round

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2

# only vote for proposed values

invariant vote(N,R,V) -> proposal(R,V)

# decisions come from quorums of votes:

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

# properties of one_b_max_vote

invariant one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

# property of choosable and proposal

invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

# property of one_b, left_rnd

invariant one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)
51



Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols52



Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Proof / code ratio:
IronFleet: ~4
Verdi: ~10
Ivy: ~0.2

53[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols



Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!
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Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds T.O.

2 1.2 0.1 0

4 1.8 0.4 0

8 107 129 30%

16 229 110 70%

Multi-Paxos in FOL

55[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols
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Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds T.O.

2 186 123 50%

4 300 0 100%

8 300 0 100%

16 300 0 100%

Stoppable Paxos in FOL

56[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9
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Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL
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Liveness properties

• Liveness property: “something good eventually happens”

• Often depend on fairness assumptions

• Typically proven by ranking functions, well-founded relations

• Well beyond EPR, or not?

59

[POPL’18] O. P., Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
                  Reducing Liveness to Safety in First-Order Logic
[FMCAD’18] O. P., Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
                       Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems.



Lasso & Dynamic Abstraction

 

Finite State
Parameterized
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Finite State
Parameterized

Infinite State

Lasso & Dynamic Abstraction

  

Finite Abstraction

61



Infinite State

Lasso & Dynamic Abstraction

Dynamic Abstraction

  

Finite State
Parameterized

 

Finite Abstraction

62

All expressible in 
EPR



Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL
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Finite Counterexample to InductionProof 

 

Automated Solver
 Are the logical VCs valid ?

Fragment Checker
 Are the logical VCs in the decidable fragment ?

64

  
 

Logic-based deductive verification in Ivy

Quantifier Alternation Cycle

EPR 🡪 Transparency



Part 1: Conclusion

•  
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Part 1: Open Questions

•  
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Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference
Part 1: Decidable Modeling

• The Ivy deductive verification system

• The many-sorted EPR fragment

• Main challenge: expressing interesting systems and properties in EPR

• Expressing transitive closure

• Expressing sets and cardinalities

• Liveness and temporal verification

Part 2: Invariant Inference

• Problem setting

• Survey recent approaches for EPR invariants of distributed protocols

• Primal-dual Houdini

• Induction dependency graph

• New mathematical duality

• New primal-dual algorithm

67



Problem setting

Several Ivy papers provide:

• A collection of examples with manually written invariants

• Invariant checking is decidable, typically ~1s, complex protocols ~10s

• Counterexamples are finite

• Invariants aren’t too large or too complex
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IC3PO

[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
                                  Property-Directed Inference of Universal Invariants or Proving Their Absence.

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah.
                   I4: incremental inference of inductive invariants for verification of distributed protocols.

[PLDI’20] Jason Koenig, O. P., Neil Immerman,  and Alex Aiken.
                  First-Order Quantified Separators.

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
                  Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
                  DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols.

[NSF’21] Aman Goel and Karem Sakallah.
                On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
                     Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
                  DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.
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UPDR

I4

FOL-IC3

SWISS

DistAI

DuoAI

FOL-IC3



Interesting ideas

• Generalize from finite instances
• I4
• IC3PO

• Explicitly enumerate candidate invariants
• SWISS
• DistAI
• DuoAI

• Generalize IC3/PDR by adapting lemma generation
• UPDR
• FOL-IC3
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Generalize from finite instances (I4)
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Finite-state 
model 

checker

Generalize 
Invariant

EPR Check for 
unbounded 

protocol

Inductive 
Invariant 
for finite 
instance

Finite 
protocol 
instance

Increase  instance size

  

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah.
                   I4: incremental inference of inductive invariants for verification of distributed protocols.

[TACAS’01] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck.

                     Automatic deductive verification with invisible invariants.



Generalize from finite instances (IC3PO)
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Finite-state model checker

Generalize Invariant
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[NSF’21] Aman Goel and Karem Sakallah.
                On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.

 

 



Explicitly enumerate invariants (SWISS)

•  

73

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
                  Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.



Explicitly enumerate invariants (SWISS)
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[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
                  Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.
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Safety 
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Invariants & proof of 
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Partial invariants
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Find any invariant
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Many small invariants One big invariant



Explicitly enumerate invariants (SWISS)

75

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
                  Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

Candidate 
invariant 

space

Number of candidate 
invariants

Symmetries Counter-exa
mple filters

Removing 
redundant 
invariants

Invariant 
predicates

Finisher 6 terms ~ 99,000,000,000,000 ~ 200,000,000,000 155 155 5

Breadth 3 terms ~ 820,000,000 ~ 3,000,000 ~ 900,000 2,250 801

Exploring the space of candidate invariant predicates for Paxos

100 ms on average
Brute force is not feasible

Counterexample-guided synthesis:
When one predicate fails to be inductive, use it 
to narrow your search space.



Explicitly enumerate invariants (DistAI, 
DuoAI)
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[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
                  DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
                 DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.

Protocol 
Simulator 
(Random 
testing)

 

EPR Check for 
unbounded 

protocol

Example
reachabl

e
states

More “abstractly reachable states”

Candidate
invariant

Enlarge predicate search space



Adapt IC3/PDR (UPDR, FOL-IC3)

•  
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[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
                                  Property-Directed Inference of Universal Invariants or Proving Their Absence.

[PLDI’20] Jason Koenig, O. P., Neil Immerman,  and Alex Aiken.
                 First-Order Quantified Separators.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
                    Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.



Induction Duality and Primal-Dual Houdini

• Induction Duality
• Formal symmetric connection between execution traces and 

incremental induction proofs

• Primal-Dual Houdini

• Houdini + Dual Houdini = Primal-dual invariant inference
• Interesting theoretical properties
• Promising empirical results for distributed protocols
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Induction Duality

[POPL’22] O. P., James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.
                  Induction Duality: Primal-Dual Search for Invariants.



Execution vs Incremental Induction

 

 

 

 

 

 

 

 

 

 

 

States and 
Transitions

Predicates and
Incremental Induction
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Formalizing symmetric incremental induction

•  
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Executions vs Incremental Induction: 
Symmetry
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Executions vs Incremental Induction: Symmetry
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Executions vs Incremental Induction: Symmetry
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Induction Duality Structure
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Concept Induction dual

k-provable invariant

reachable k-abstractly-reachable

k-abstractly-reachable reachable

Invariant k-provable

dual-inductive

inductive
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Concept Induction dual

reachable: k-provable invariant

k-provable: reachable k-abstractly-reachable

invariant: k-abstractly-reachable reachable

k-abstractly-reachable: invariant k-provable

inductive: dual-inductive reachable

dual-inductive: inductive k-provable



Houdini and Dual Houdini

•  

  

  

 

    

  

  

    

 

Dual-CTI
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Primal-Dual Houdini
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Houdini Dual Houdini

Induction Duality

new states (CTIs)

new predicates
(Dual-CTIs)



Galois Connection and Induction Duality
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Lattice of sets 
of predicates

Lattice of sets 
of states

Vertical flip: Galois Connection

Horizontal flip: Induction Duality



Example: Toy Consensus Protocol
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Induction Edges
•  
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Primal-Dual Houdini: Theorems

• Exploration: every iteration discovers new states and predicates

• Possible Progress: 
• If k-provable, every iteration can discover a new useful predicate
• If unsafe, every iteration can discover a new useful state

• Termination by Stratification: if states and predicates are discovered in a stratified 
manner, then the algorithm terminates for k-provable or unsafe cases
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Example pdH UPDR FOL-IC3 SWISS IC3PO DistAI
ring ✓ ✓ ✓ ✓ ✓ ✓
cons ✓ ✓ ✓ ✓ ✓ ✓
paxos ✓ ✓ ✓
spaxos ✓ ✓
paxos-h ✓
spaxos-h
locksrv ✓ ✓ ✓ ✓ ✓ ✓
skv ✓ ✓ ✓ ✓ ✓
skvr ✓
cache ✓

[POPL’22] O. P., James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.
                  Induction Duality: Primal-Dual Search for Invariants.



Conclusion (Primal-dual Houdini)

• Goal: symmetric primal-dual invariant inference

• Key idea: bounded incremental induction

• Result 1: Induction duality

• Result 2: Primal-Dual Houdini

• New synthesis task: check dual-inductiveness
and find induction edges

• Future directions

• Application to more domains

• Primal-dual version of more advanced algorithms
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Conclusion
• Using undecidable reasoning is powerful, but at a price

• Decidable logic (EPR) offers a different tradeoff
• More effort in encoding systems and properties
• More reliable automation

• Reliable invariant checking opens the path to invariant inference
• Many recent ideas (and new adaptations of old ideas)
• We are exhausting the benchmark set – progress would 

come from new benchmarks!

• Induction duality
• Promising new idea
• May be applicable in other domains

• Reach out to discuss more or collaborate!
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