
Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference

Oded Padon

VMware Research

Tutorial at FMCAD 2022

18 October 2022

1

Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference
Part 1: Decidable Modeling

• The Ivy deductive verification system

• The many-sorted EPR fragment

• Main challenge: expressing interesting systems and properties in EPR

• Expressing transitive closure

• Expressing sets and cardinalities

• Liveness and temporal verification

Part 2: Invariant Inference

• Problem setting

• Survey recent approaches for EPR invariants of distributed protocols

• Primal-dual Houdini

• Induction dependency graph

• New mathematical duality

• New primal-dual algorithm

2

Distributed protocols – excellent opportunity
for verification

• Distributed systems are everywhere

• Safety-critical systems

• Internet scale services

• Cloud infrastructure

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur in rare scenarios

• Testing is costly and not sufficient

3

Best Paper Award

…

SOSP’07

CACM’08

ACM Transactions on Computer Systems ‘09

arXiv:1712.01367 [cs.DC] 2017

4

ASPLOS’16

Counterexample Proof

Automatic verification of infinite-state systems

Unknown / Diverge

Rice’s Theorem

I can’t
decide!

5

Counterexample Proof

Automatic verification of infinite-state systems

Unknown / Diverge

Rice’s Theorem

I can’t
decide!

“Formal methods are the future of computer science. Always have

been, always will be.” – William E. Aitken

6

Counter-model Proof

Deductive verification

Unknown / Diverge

Church’s Theorem

I can’t
decide!

7

Counter-model Proof

Deductive verification

Unknown / Diverge

Church’s Theorem

I can’t
decide!

 “Deduction is forever” – Amir Pnueli

8

Inductive invariants

System State Space Safety
Property

9

Inductive invariants

System State Space Safety
Property

translated to VCs

10

Counterexample To Induction (CTI)

• States σ,σ’ are a CTI of Inv if:

• σ ∈ Inv

• σ’ ∉ Inv

• σ 🡪 σ’

• A CTI may indicate:
• A bug in the system
• A bug in the safety property
• A bug in the inductive invariant

• Too weak
• Too strong

Inv

σ ∈
Inv

σ’ ∉ Inv

11

Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

…

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

Counterexample to
induction (CTI)x=3, y =4

x=1, y =2

x=1, y =0

…

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

…

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

…

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

…

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Simple example: loop invariants

Counter-model Proof

Deductive verification

Unknown / Diverge

17

Verifying distributed systems is hard
Verdi

Verification of Raft in Coq
50,000 lines of manual proof

IronFleet
Verification of Multi-Paxos in Dafny
12,000 lines and 3.7 person-years

Uses solver for undecidable SMT checks

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems 18

Effects of undecidability

• The verifier may fail on tiny programs

• No explanation when tactics fails
• Counterproofs

• The butterfly effect

The most frustrating recurring problem was proof instability […]
Timeouts are challenging to debug, because the solver generally fails to provide
useful feedback […]
even once fixed, the proof may easily timeout again due to minor perturbations.
Worse, minor changes can trigger timeouts in seemingly unrelated proofs

The challenge of automated deduction

from: Ferraiulo, Baumann, Hawblitzel, Parno, “Komodo: Using Verification to
Disentangle Secure-enclave Hardware from Software”, SOSP ’17

“

”
Gap: deductive power of automated provers is not translating into verification productivity

20

Rich logic, Poor logic

Rich SMT Theories

• Linear arithmetic, Bitvectors, Arrays, Strings, Datatypes, …
• Great tools: Yices, Z3, CVC4, Boolector, MathSAT, SMTInterpol, …
• Essential in Dafny, Sage, Klee, F*, ….

• Hides complexity from the user

• But solvers are heuristic, unpredictable, and not transparent

The Ivy deductive verification system –
design hypotheses
PST

• Predictability: we can reasonably predict solver performance

• Stability (or continuity): small, irrelevant changes do not greatly affect performance

• Transparency: failures have understandable explanations

Hypotheses:
PST productivity

decidability PST

encodings + strategies decidability

22

[PLDI’16] O.P., Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, Sharon Shoham.
 Ivy: Safety Verification by Interactive Generalization
[CAV’20] O.P., Kenneth L. McMillan. Ivy: A Multi-modal Verification Tool for Distributed Algorithms

Design space for formal verification
Ex

p
re

ss
iv

en
es

s

Automation

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10
IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction
Finite counterexamples
proof/code: ~0.2

23

Ivy’s principles

• Specify systems and properties in decidable fragment of first-order logic

• Allows quantifiers to reason about unbounded sets

• Decidable to check inductiveness

• Finite counterexamples to induction, display graphically or textually

• Interact with the user to find inductive invariants

• Challenge: use restricted logic to verify interesting systems

• Transitive closure: network topology

• Sets and cardinalities: Paxos, Byzantine Fault Tolerance, Reconfiguration

• Liveness and temporal properties

24

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

•

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR Satisfiability

Skole
m

Herbran
d

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

•

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

Decidable Fragments in Ivy

•

Protocol

D
esigns

System

Im
plem

entations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories

Logic-based deductive verification in Ivy

Counterexample to Induction
Proof

Automated Solver
 Are the logical VCs valid ?

Fragment Checker
 Are the logical VCs in the decidable fragment ?

Clear Explanation

29

Transparency

Challenge: encoding into EPR

•

30

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: at any given time there is at most one leader
• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of
processes

3 5

2

4

1

6

2

31

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: at any given time there is at most one leader
• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of
processes

3 5

2

4

1

6

2
3 5

2

4

1

6

NO

32

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:
• Each node sends its id to the next
• Upon receiving a message, a node passes it (to the next) if

the id in the message is higher than the node’s own id
• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of
processes

33

Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

n
1¬L

id
1

 n
2¬L

id
2

n
3¬L

id

3

n
4¬L

 n
5¬L

id
5

id
6

id
4

n
6¬L

n
1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n
5

34

n
3

Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

n
1¬L

id
1

 n
2¬L

id
2

n
3¬L

id

3

n
4¬L

 n
5¬L

id
5

id
6

id
4

n
6¬L

n
1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n
5

rcv(3,

id(3))

rcv(2,
id(3))

≤

1
¬
L next

2
¬L

next
id id

3
¬L

≤

id
next

pnd

1
¬
L next

2
¬L

next
id id

3
L

id
next

rcv(3,

id(3))

rcv(2,
id(3))

1
¬
L next

2
¬L

next
id id

3
¬L

id
next

pnd

1
¬
L next

2
¬L

next
id id

3
L

id
next

rcv(3,

id(3))

rcv(2,
id(3))

1
¬
L next

2
¬L

next
id id

3
¬L

id
next

pnd

≤

1
¬
L next

2
¬L

next
id id

3
L

≤

id
next

rcv(3,

id(3))

rcv(2,
id(3))

≤

1
¬
L next

2
¬L

next
id id

3
¬L

≤

id
next

pnd

…

Specify and verify the protocol for any number of nodes in the ring

35

Leader election protocol – first-order logic
•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader

|

action receive(n: Node, m: ID)
 requires pending(m, n)
 if * then
 pending(m, n) := false
 if id(n) = m then
 leader(n) := true
 else if id(n) ≤ m then
 “s := next(n)”
 pending(m, s) := true

action send(n: Node)
 “s := next(n)”
 pending(id(n),s) := true

36

Safety property: I
0

I
0
 = ∀x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I
0
 ∧I

1
 ∧I

2
 ∧I

3

I
1
 = ∀n

1
,n

2
: Node. leader(n

2
) → id[n

1
] ≤ id[n

2
]

I
2
 = ∀n

1
,n

2
: Node. pending(id[n

2
],n

2
) → id[n

1
] ≤ id[n

2
]

I
3
 =∀n

1
,n

2
,n

3
: Node. btw(n

1
,n

2
,n

3
) ∧ pending(id[n

2
], n

1
) → id[n

3
] ≤ id[n

2
]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

•≤ (ID, ID) – total order on node id’s

•btw (Node, Node, Node) – the ring topology

•id: Node 🡪 ID – relate a node to its unique id

•pending(ID, Node) – pending messages

•leader(Node) – leader(n) means n is the leader 37

Safety property: I
0

I
0
 = ∀x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I
0
 ∧I

1
 ∧I

2
 ∧I

3

I
1
 = ∀n

1
,n

2
: Node. leader(n

2
) → id[n

1
] ≤ id[n

2
]

I
2
 = ∀n

1
,n

2
: Node. pending(id[n

2
],n

2
) → id[n

1
] ≤ id[n

2
]

I
3
 =∀n

1
,n

2
,n

3
: Node. btw(n

1
,n

2
,n

3
) ∧ pending(id[n

2
], n

1
) → id[n

3
] ≤ id[n

2
]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

EPR Solver
 Proof

I can decide
EPR!

VC Generator

38

Principle: first-order abstractions
Concept Intention First-order abstraction

Node ID’s Integers

Ring Topology
Next edges +
Transitive
closure

39

Key idea: representing deterministic paths
[Shachar Itzhaky PhD, SIGPLAN Dissertation Award 2016]

h t

nnh t

n*

h t
Not first order expressible

First order expressible

For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – Dyn-EPR

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of
deterministic paths

41

For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – Dyn-EPR

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of
deterministic paths

Universally quantified formulas
� finite model property

+ Completeness Thm. for finite structures
--

Sound and complete automatic
deductive verification

42

Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

43

Paxos

• Family of distributed consensus protocols

• let nodes maintain consistent state under crashes and packet loss

• Variants for different tradeoffs and extra features

• Active research and extensive industry use

• Pervasive approach to fault-tolerant distributed computing

44

Sets and cardinalities in EPR
•

45

≫EPR?

EPR

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Principle: first-order abstractions

Concept Intention First-order abstraction

Messages

Network
semantics:
dropping
duplication
reordering

relation start_msg(Round)
relation join_msg(Node, Round, Round, Value)
relation propose_msg(Round, Value)
relation vote_msg(Node, Round, Value)

Quorums Majority sets

Byzantine
Quorums

2/3 Majority

46

Paxos in first-order logic

VCs in first-order logic

47

Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

48

• Axiom
∀q

1
,q

2
: Quorum. ∃n: Node. …

• Action precondition
... ∀n:Node. … → ∃r:Round,v:Value. …

• Inductive invariant
∀r:Round, v:Value. … → ∃q:Quorum. …

Round

Value

NodeQuorum

49

Quantifier alternation cycles

Quantifier Alternation Cycle

Modularity

[PLDI 2018] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, O. P., Mooly Sagiv, Sharon Shoham, James R. Wilcox, Doug
Woos

 Modularity for decidability of deductive verification with applications to distributed systems

50

modular decomposition

Inductive invariant of Paxos
safety property

invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposals are unique per round

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2

only vote for proposed values

invariant vote(N,R,V) -> proposal(R,V)

decisions come from quorums of votes:

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

properties of one_b_max_vote

invariant one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

property of choosable and proposal

invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

property of one_b, left_rnd

invariant one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)
51

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols52

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Proof / code ratio:
IronFleet: ~4
Verdi: ~10
Ivy: ~0.2

53[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

54[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds T.O.

2 1.2 0.1 0

4 1.8 0.4 0

8 107 129 30%

16 229 110 70%

Multi-Paxos in FOL

55[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds T.O.

2 186 123 50%

4 300 0 100%

8 300 0 100%

16 300 0 100%

Stoppable Paxos in FOL

56[OOPSLA’17] O.P., Giuliano Losa, Mooly Sagiv, Sharon Shoham. Paxos made EPR: Decidable Reasoning about Distributed Protocols

Protocol
Model
[LOC]

Invariant
[Conjectures]

Paxos 85 11 2.2 0.1

Multi-Paxos 98 12 2.6 0.1

Vertical Paxos* 123 18 2.2 0.2

Fast Paxos* 117 17 6.2 1.6

Flexible Paxos 88 11 2.2 0

Stoppable Paxos* 132 16 5.4 0.9

57

Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

58

Liveness properties

• Liveness property: “something good eventually happens”

• Often depend on fairness assumptions

• Typically proven by ranking functions, well-founded relations

• Well beyond EPR, or not?

59

[POPL’18] O. P., Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
 Reducing Liveness to Safety in First-Order Logic
[FMCAD’18] O. P., Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, Mooly Sagiv, Sharon Shoham.
 Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems.

Lasso & Dynamic Abstraction

Finite State
Parameterized

60

Finite State
Parameterized

Infinite State

Lasso & Dynamic Abstraction

Finite Abstraction

61

Infinite State

Lasso & Dynamic Abstraction

Dynamic Abstraction

Finite State
Parameterized

Finite Abstraction

62

All expressible in
EPR

Challenge: encoding into EPR

• But what can you possibly express in such a restricted logic?

• Transitive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL

63

Finite Counterexample to InductionProof

Automated Solver
 Are the logical VCs valid ?

Fragment Checker
 Are the logical VCs in the decidable fragment ?

64

Logic-based deductive verification in Ivy

Quantifier Alternation Cycle

EPR 🡪 Transparency

Part 1: Conclusion

•

65

Part 1: Open Questions

•

66

Verification of Distributed Protocols:
Decidable Modeling and Invariant Inference
Part 1: Decidable Modeling

• The Ivy deductive verification system

• The many-sorted EPR fragment

• Main challenge: expressing interesting systems and properties in EPR

• Expressing transitive closure

• Expressing sets and cardinalities

• Liveness and temporal verification

Part 2: Invariant Inference

• Problem setting

• Survey recent approaches for EPR invariants of distributed protocols

• Primal-dual Houdini

• Induction dependency graph

• New mathematical duality

• New primal-dual algorithm

67

Problem setting

Several Ivy papers provide:

• A collection of examples with manually written invariants

• Invariant checking is decidable, typically ~1s, complex protocols ~10s

• Counterexamples are finite

• Invariants aren’t too large or too complex

68

IC3PO

[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
 Property-Directed Inference of Universal Invariants or Proving Their Absence.

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah.
 I4: incremental inference of inductive invariants for verification of distributed protocols.

[PLDI’20] Jason Koenig, O. P., Neil Immerman, and Alex Aiken.
 First-Order Quantified Separators.

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
 Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
 DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols.

[NSF’21] Aman Goel and Karem Sakallah.
 On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
 Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
 DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.

69

UPDR

I4

FOL-IC3

SWISS

DistAI

DuoAI

FOL-IC3

Interesting ideas

• Generalize from finite instances
• I4
• IC3PO

• Explicitly enumerate candidate invariants
• SWISS
• DistAI
• DuoAI

• Generalize IC3/PDR by adapting lemma generation
• UPDR
• FOL-IC3

70

Generalize from finite instances (I4)

71

Finite-state
model

checker

Generalize
Invariant

EPR Check for
unbounded

protocol

Inductive
Invariant
for finite
instance

Finite
protocol
instance

Increase instance size

[SOSP’19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem Sakallah.
 I4: incremental inference of inductive invariants for verification of distributed protocols.

[TACAS’01] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck.

 Automatic deductive verification with invisible invariants.

Generalize from finite instances (IC3PO)

72

Finite-state model checker

Generalize Invariant

EPR Check for
unbounded

protocol

Finite
protocol
instance

Increase instance size

[NSF’21] Aman Goel and Karem Sakallah.
 On Symmetry and Quantification: A New Approach to Verify Distributed Protocols.

Explicitly enumerate invariants (SWISS)

•

73

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
 Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

Explicitly enumerate invariants (SWISS)

74

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
 Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

74

Abstract
protocol

description

Safety
property

Invariants & proof of
safety condition

Partial invariants

Cast a “wide net”
Find any invariant

Find invariant to
complete proof

I1, I2, I3, …, In Ilast

Breadth Finisher

Many small invariants One big invariant

Explicitly enumerate invariants (SWISS)

75

[NSDI’21] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno.
 Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All.

Candidate
invariant

space

Number of candidate
invariants

Symmetries Counter-exa
mple filters

Removing
redundant
invariants

Invariant
predicates

Finisher 6 terms ~ 99,000,000,000,000 ~ 200,000,000,000 155 155 5

Breadth 3 terms ~ 820,000,000 ~ 3,000,000 ~ 900,000 2,250 801

Exploring the space of candidate invariant predicates for Paxos

100 ms on average
Brute force is not feasible

Counterexample-guided synthesis:
When one predicate fails to be inductive, use it
to narrow your search space.

Explicitly enumerate invariants (DistAI,
DuoAI)

76

[OSDI’21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.
 DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols.

[OSDI’22] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
 DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols.

Protocol
Simulator
(Random
testing)

EPR Check for
unbounded

protocol

Example
reachabl

e
states

More “abstractly reachable states”

Candidate
invariant

Enlarge predicate search space

Adapt IC3/PDR (UPDR, FOL-IC3)

•

77

[CAV’15, JACM’17] Aleksandr Karbyshev, Nikolaj Bjorner, Shachar Itzhaky, Noam Rinetzky and Sharon Shoham.
 Property-Directed Inference of Universal Invariants or Proving Their Absence.

[PLDI’20] Jason Koenig, O. P., Neil Immerman, and Alex Aiken.
 First-Order Quantified Separators.

[TACAS’22] Jason Koenig, O. P., Sharon Shoham, and Alex Aiken.
 Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion.

Induction Duality and Primal-Dual Houdini

• Induction Duality
• Formal symmetric connection between execution traces and

incremental induction proofs

• Primal-Dual Houdini

• Houdini + Dual Houdini = Primal-dual invariant inference
• Interesting theoretical properties
• Promising empirical results for distributed protocols

78

Induction Duality

[POPL’22] O. P., James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.
 Induction Duality: Primal-Dual Search for Invariants.

Execution vs Incremental Induction

States and
Transitions

Predicates and
Incremental Induction

79

Formalizing symmetric incremental induction

•

80

induction
step

transition

Predicates and
Incremental Induction

Executions vs Incremental Induction:
Symmetry

81

Predicates and
Incremental Induction Steps

States and Transitions

Executions vs Incremental Induction: Symmetry

82

States and Transitions

Predicates and
Incremental Induction Steps

Executions vs Incremental Induction: Symmetry

83

States and Transitions

Predicates and
Incremental Induction Steps

Induction Duality Structure

Reachable k-provable

InductiveDual-Inductive

Induction Duality

Reachable k-provable

InductiveDual-Inductive

Induction Duality

86

Concept Induction dual

k-provable invariant

reachable k-abstractly-reachable

k-abstractly-reachable reachable

Invariant k-provable

dual-inductive

inductive

87

Concept Induction dual

reachable: k-provable invariant

k-provable: reachable k-abstractly-reachable

invariant: k-abstractly-reachable reachable

k-abstractly-reachable: invariant k-provable

inductive: dual-inductive reachable

dual-inductive: inductive k-provable

Houdini and Dual Houdini

•

Dual-CTI

88

Induction
Duality

CTI

Primal-Dual Houdini

89

Houdini Dual Houdini

Induction Duality

new states (CTIs)

new predicates
(Dual-CTIs)

Galois Connection and Induction Duality

90

Lattice of sets
of predicates

Lattice of sets
of states

Vertical flip: Galois Connection

Horizontal flip: Induction Duality

Example: Toy Consensus Protocol

|

Induction Edges
•

INIT

…

Primal Houdini

Dual Houdini

Primal Houdini

INIT

Dual Houdini

INIT

Primal Houdini

INIT

Dual Houdini

INIT

Primal Houdini

INIT

Dual Houdini

INIT

Primal Houdini

INIT

Primal-Dual Houdini: Theorems

• Exploration: every iteration discovers new states and predicates

• Possible Progress:
• If k-provable, every iteration can discover a new useful predicate
• If unsafe, every iteration can discover a new useful state

• Termination by Stratification: if states and predicates are discovered in a stratified
manner, then the algorithm terminates for k-provable or unsafe cases

103

104

Example pdH UPDR FOL-IC3 SWISS IC3PO DistAI
ring ✓ ✓ ✓ ✓ ✓ ✓
cons ✓ ✓ ✓ ✓ ✓ ✓
paxos ✓ ✓ ✓
spaxos ✓ ✓
paxos-h ✓
spaxos-h
locksrv ✓ ✓ ✓ ✓ ✓ ✓
skv ✓ ✓ ✓ ✓ ✓
skvr ✓
cache ✓

[POPL’22] O. P., James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken.
 Induction Duality: Primal-Dual Search for Invariants.

Conclusion (Primal-dual Houdini)

• Goal: symmetric primal-dual invariant inference

• Key idea: bounded incremental induction

• Result 1: Induction duality

• Result 2: Primal-Dual Houdini

• New synthesis task: check dual-inductiveness
and find induction edges

• Future directions

• Application to more domains

• Primal-dual version of more advanced algorithms
105

Conclusion
• Using undecidable reasoning is powerful, but at a price

• Decidable logic (EPR) offers a different tradeoff
• More effort in encoding systems and properties
• More reliable automation

• Reliable invariant checking opens the path to invariant inference
• Many recent ideas (and new adaptations of old ideas)
• We are exhausting the benchmark set – progress would

come from new benchmarks!

• Induction duality
• Promising new idea
• May be applicable in other domains

• Reach out to discuss more or collaborate!
106

