Verifying the Robustness of KNNs against Data-Poisoning Attacks

Yannan Li, Jingbo Wang, Chao Wang 10/19/2022

Limitation of Prior Works

- Verifying n-poisoning robustness of KNNs
 - Jia et al., Certified robustness of nearest neighbors against data poisoning attacks and backdoor attacks. AAAI 2022.
 - Only verifies part of problem (not handle complex "parameter tuning")
- Verifying n-poisoning robustness of decision trees
 - Drews et al., Proving data-poisoning robustness in decision trees. PLDI 2020.
 - Method works for decision trees only (but not for KNNs)

Our method is the only method for the entire KNN algorithm and is more accurate than [Jia et al.] for the prediction step

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

Background – machine learning steps

97% attack success rate*

Collect Data

Train Model

Deploy Model

* Chen et al. attacked VGG-Face in "Targeted back-door attacks on deep learning systems using data poisoning", arXiv, 2017

Background – mitigations

Security Property – *n-poisoning robustness*

Combinatorial explosion! Training size = 100 and n = 5, almost $8*10^7$ situations!

Secure Definition: $\forall i, M_i(x) = M(x)$

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

KNN (k-Nearest Neighbors)

Parameter Tuning

Label Prediction

KNN parameter tuning: 4-fold cross validation

For one K_i

Training Dataset

$$err^{K_i} = \frac{1}{4} \sum_{j=1}^{4} err_{G_j}^{K_i}$$

KNN process

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

Poisoning Impact

- (1) Direct influence: change neighbors of test input x
 - Only need to check poisoning situations near x

- (2) Indirect influence: change the optimal K
- Need to check all the poisoning situations

Baseline method

Test input x

All possible clean training datasets

Combinatorial explosion!

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

Our method

Training set *T* and Max poisoning number *n*

Overapprox
Parameter
Tuning

Opt KSet
Ove

Overapprox Label Prediction

Test input x

Our method

Training set *T* and Max poisoning number *n*

Overapprox Parameter Tuning Opt KSet

Overapprox Label Prediction

Test input x

Verified or not?

Our method – Overapprox Parameter Tuning

(Original) Parameter Tuning

Overapprox Parameter Tuning

Our method – label changes via removal

Remove 1 neighbors: Consider K+1 neighbors \ 1 points

Remove 2 neighbors: Consider K+2 neighbors \ 2 points

Remove 3 neighbors: Consider K+3 neighbors \ 3 points

. . .

Theorem: Just need to consider removing $\leq n$ points from K+n nearest neighbors.

Our method – "Misclassified" becomes "Correctly Classified"

Intuition: Remove other labels

Current Label: Square (Misclassified)

New Label: Star (Correct)

K=3, n=2, and star being correct

Our method – "Correctly Classified" becomes "Misclassified"

Intuition: Remove correct labels

Current Label: Star (Correct)

New Label: Star (Correct)

K=3, n=2, and star being correct

Our method

Training set *T* and Max poisoning number *n*

Overapprox Parameter Tuning Opt KSet

Overapprox Label Prediction

Test input x

Verified or not?

Our method – overapprox prediction

- Input: Optimal KSet, test x, training T, poisoning n
- Output: label(x) remains the same?

Direct attack: change neighbors

For each K, when removing $\leq n$, same label(x)

For K in Opt KSet, same label(x)

- Background
 - Data Poisoning Attacks
 - KNNs (k-nearest neighbors)
- Data Poisoning Robustness of KNNs
- Our Method
- Evaluation
- Conclusion

Experimental Set Up

- Benchmarks
 - 2 small datasets
 - 4 larger datasets
- Research Questions
 - RQ1: Accuracy in proving n-poisoning robustness:
 - Compared to the baseline method (to obtain ground truth on small datasets)
 - Compared to the state of the art [Jia et al, AAAI 2022]
 - RQ2: **Efficiency** in handling realistic datasets:
 - Evaluated using the larger datasets

Benchmarks

	Name	#Training	#Test (x)	#Class (output)	#Feature (in)
Small Datasets Larger Datasets	Iris	135	15	3	4
	Digits	1,617	180	10	64
	HAR	9,784	515	6	561
	Letter	18,999	1,000	10	36
	MNIST	60,000	10,000	10	36
	CIFAR10	50,000	10,000	10	288

Results – speed and accuracy on small datasets

Max Poisoning	Baseline Time (s)	Our Time (s)	Accuracy
n = 1	60	1	93.3%
n = 2	4770	1	93.3%
n = 3	>9999	1	-

Iris (#training=135, #test = 15, #class=3, #feature=4)

Max Poisoning	Baseline Time (s)	Our Times (s)	Accuracy
n = 1	8032	1	96.1%
n = 2	>9999	1	-

 Our method is several orders-of-magnitude faster than the baseline

- Accuracy > 93%

Digits (#training=1617, #test = 180, #class=10, #feature=64)

Result - speed and accuracy on large datasets

- Existing method* can only verify prediction phase
- Existing Method* can verify much less percentage

*Jia et al., Certified robustness of nearest neighbors against data poisoning attacks.

AAAI 2022.

Conclusion

- •The first method for soundly verifying n-poisoning robustness for the entire KNN algorithm
 - parameter tuning step + prediction step

- Demonstrated its accuracy and efficiency on popular supervised-learning datasets
 - small datasets + larger datasets