
On Optimizing 
Back-Substitution Methods for 
Neural Network Verification
Tom Zelazny , Haoze Wu , Clark Barrett , and Guy Katz



Introduction and background



Neural Networks

❏ Show state-of-the-art performance on many tasks.
❏ Are quickly being adopted in many applications.
❏ Including safety critical applications.



Neural Networks

Neural networks are artifacts learned from data.

machine learning algorithm
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Neural Networks

In this presentation and example we discuss a fully connected feed forward 
neural network with ReLU activations and k+1 layers.
Concretely, a Neural network function: N : ℝm→ℝn , is defined recursively as:

Where Ni(x)  denotes the values of the neurons in the ith layer (0 ≤ i ≤ k),
N(x) ≔ Nk(x). Wi-1 is a weight matrix, bi-1 is a bias vector and 𝞼 is defined as:



What is a neural network

Hidden layers

Input layer output layer

Wi



Neural Network verification

❏ Neural networks can fail in very unpredictable ways.
❏ In safety critical uses, we want guarantees.
❏ Traditional tools are incompatible.
❏ The verification problem is hard (NP-complete).

Goodfellow et al., 2015



Neural Network verification problem

Given a neural network N: x ⟶ y, an input domain Ɗi 𝝐 ℝm and 
an output region Ɗo𝝐 ℝn, determine if for all x₀ ∈ Ɗi  we have  
N(x₀) ∈ Ɗo?



Bounds on neurons

A key component in many state-of-the-art verification tools is computing lower and upper bounds on the 
values that neurons in the network can obtain for a specific input domain



Neural Network verification problem

❏ Neural network has a single output neuron
❏ Is fully connected, feed forward and with ReLU activations
❏ The verification problem can be reduced to finding the 

minimum and/or maximum values for the output neuron

We assume:



ReLU definition reminder



Neural Network verification problem

Effective for smaller neural networks, but does not scale well.

Solution(?):  encode as a mixed integer programming (MIP) 
instance, and solve using a MIP solver.



Neuron values

Abstraction

Neural networks are non-convex, finding the minimum or 
maximum values of a neuron is generally hard



Abstraction

Over-approximation can obtain lower and upper bounds.

Neuron values

Green Box is easier to reason 
about and contains all values 
the neuron may obtain.

Also contains other values, so 
we can only use it to infer 
lower and upper bounds.



Agenda

❏ Interval arithmetic
❏ Back-substitution (SoTA)
❏ Our optimization

We are going to go see:



Interval Arithmetic

A simple type of such an abstraction is Interval Arithmetic 



Interval arithmetic

for x given as a linear sum of bounded variables  yj:

We can obtain a concrete bound for x:



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic - example



Interval arithmetic

Can we do better?

Is not enough to prove the property



Back-substitution



Agenda

❏ Interval arithmetic
❏ Back-substitution (SoTA)
❏ Our optimization

We are going to go see:



Back-substitution

❏ Interval Arithmetic ignores dependencies between neurons
❏ Back-substitution uses a linear relaxation of the activation 

functions to compute better bounds while still being fast.



Linear relaxation



Back-substitution - example



Back-substitution - example
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Back-substitution - example
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Back-substitution - example



Back-substitution - example



Back-substitution - example



Back-substitution - example



Back-substitution

Can we do better?



Over-approximation errors in 
back-substitution



Over-approximation error

Original function

Upper bound over-approximation function



Over-approximation error



Bound detachment example



Bound detachment fixing



Bound detachment example

Corresponding errorCorresponding error Corresponding errorCorresponding error



Bound detachment cause



DeepMIP



Agenda

❏ Interval arithmetic
❏ Back-substitution (SoTA)
❏ Our optimization

We are going to go see:



DeepMIP



Back-substitution - example



Back-substitution - example



Back-substitution - example



Back-substitution - example



Back-substitution with error correction - example

Better than the previous upper bound of 3!

= 3

= 1
(MIP solver) 



Back-substitution with error correction - example



Back-substitution with error correction - example



Back-substitution with error correction - example



Back-substitution with error correction - example

Since we are already solving MIP problems and have 
reached the first layer, we can solve it directly 
instead of the last iteration of back-substitution.
In this particular case, It will yield the same results.

=⅖ (MIP solver)=6⅖



Back-substitution with error correction - example



Back-substitution with error correction

Is the optimal bound! And enough to prove



MiniMIP

While DeepMIP produces very strong bounds, for each neuron it must solve multiple MIP instances during 
back-substitution — many of them for bounds that may already be optimal. This can result in a large overhead, 
and makes it worthwhile to explore heuristics for only solving some of these instances.

We propose a particular, aggressive heuristic that we call MiniMIP.
Instead of minimizing all error terms during back-substitution, MiniMIP only solves the final query in this 
series — that is, the query in which the bounds of the current layer are expressed as sums of ReLUs of input 
neurons.

This approach significantly reduces overhead: exactly one MIP instance is solved in each iteration, regardless 
of the depth of the layer currently being processed. As we later see in our evaluation, even this is already 
enough to achieve state-of-the-art performance and very tight bounds; and the resulting queries can be 
solved very efficiently.



Results



The neural networks used in our evaluation

Dataset Model Type Neurons Hidden 
Layers Activation

MNIST

6 ✕ 100

FC

510 5

ReLU
9 ✕ 100 810 8

6 ✕ 200 1010 5

9 ✕ 200 1610 8



Comparing DeepMIP to α-CROWN and PRIMA

Model
𝛼-CROWN PRIMA DeepMIP (MiniMIP)

Solved Time (seconds) Solved Time (seconds) Solved Time (seconds)

6 ✕ 100 207 38 504 123 581 302

9 ✕ 100 223 88 427 252 463 452

6 ✕ 200 349 93 652 222 709 801

9 ✕ 200 308 257 600 462 625 1121

Total 1087 476 2183 1059 2378 2676



Results

Our method solve more instances than the state-of-the-art on 
all benchmarks by generalizing back-substitution with error 
terms, allowing for tighter bounds to be computed.



Thank you!
questions?



A little background

● Neural networks are a method to design algorithms from data.
● They show state-of-the-art performance on many tasks.
● Quickly being adopted for use in a growing number of applications.
● Including safety critical applications.



See the difference?

● Neural networks are inherently different from conventional algorithms
● They are challenging to reason about:

VS



Why do we need to reason about neural networks

Neural networks can be tested, in fact - neural networks that are deployed in 
safety critical scenarios are heavily tested!

Question: should it even bother us that we can’t reason about them? They are 
empirically safe!



Adversarial robustness

Answer: Yes! Neural networks could present behaviour that is not congruent 
with human expectations and common sense. Even safety critical and highly 
tested neural networks are not immune to breaking in surprising ways given 
specific inputs.



Adversarial robustness

Remember, trained neural networks are just functions, they takes an input and 
map it to some output.

They have no common sense and even when they behave well on test samples, 
there is no guarantee that they will not “flip out” on new, unseen input.



Verification of neural networks

Given a neural network for autonomous driving, can we guarantee that a funny 
rock at the side of an empty highway won’t cause it to make a hard right turn 
while driving at 120 km/h?

Or in other words:
Given a neural network NN: x ⟶ y,
an input region P(x) and an output region Q(y),
does there exists an input x₀ ∈ P(x) such that NN(x₀) ∈ Q(y)?



Existing solutions

In the general case, this kind of verification is NP-Complete

However there are methods capable of verifying many useful properties on many 
real-world neural networks without exhibiting worst case behaviour.

These methods can roughly be split into two types:

● Exact - might take exponential time.
● Relaxed - efficient but incomplete.



Existing solutions

Among the relaxed methods: convex-relaxation methods are the most dominant, methods 
in this category are incomplete and attempt to relax the exact problem into a convex 
problem (for example, one that can be solved by an LP-solver).



The convex barrier

For scalability reasons, almost all approximations of 
non-linear activations operate separately on each neuron, 
For a single neuron convex approximation, the triangle 
relaxation:

 

Is considered optimal since it is the convex hull of the 
ReLU function.

However in: 

H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and 
P. Zhang, “A convex relaxation barrier to tight 
robustness verification of neural networks,” in 
Advances in Neural Information Processing 
Systems, 2019, pp. 9835–9846.

It was shown that the even the optimal (but 
expensive to calculate) neuron relaxation for the 
ReLU activation function still achieves poor 
results compared to the actual robust-error of 
the neural network.


