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Parallelize training 
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most diverse

“Ensembling Neural Networks: Many Could be Better Than All” 
Zhou et. al. (2010)
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Ensemble Selection
Option 2 –
use formal verification to select the best subset k

Check if DNNs tend to err simultaneously

Verify all possible ensembles and choose the best one
How?
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Agreement Points
Data points from the test set which are classified the same
by all DNN members

Intuitively – areas with a high consensus among the DNNs

Allows a fair comparison between DNN pairs



Mutual Error
Given a fixed agreement point and a pair of DNNs

A mutual error is a perturbation that simultaneously causes
a pair of DNNs to misclassify the point



Mutual Error (with verifier)

±𝝐
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Uniqueness Score
The mutual error score is the average mutual errors a pair
of DNNs have on a set of agreement points

The uniqueness score is a score indicating how (un)likely it is
for a single DNN to err with the remaining ensemble DNNs

The higher the uniqueness score - the better the DNN
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But..

Does it improve robustness on non-agreement points?



Case Studies

Train 𝒏 = 𝟏𝟎 DNNs (𝑁11, … , 𝑁20) 
on the Fashion-MNIST dataset

Train 𝒏 = 𝟏𝟎 DNNs (𝑁1, … , 𝑁10) 
on the MNIST dataset
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iteration 
𝒊+2

iteration 
𝒊+3

iteration 
𝒊+4



Conclusions
A greedy-search heuristic for verification-aided 
ensemble selection

Using a polynomial number of queries

Focusing on agreement points (usually) improves 
robustness on additional points



Questions


