Verification-Aided Deep Ensemble Selection

October 2022

Guy Amir Tom Zelazny Guy Katz Michael Schapira

Deep Neural Networks (DNNs) achieve state-of-the-art results, but:

Deep Neural Networks (DNNs) achieve state-of-the-art results, but:

Training stochasticity affects accuracy and robustness

Deep Neural Networks (DNNs) achieve state-of-the-art results, but:

Training stochasticity affects accuracy and robustness

X Do not express uncertainty

Deep Neural Networks (DNNs) achieve state-of-the-art results, but:

Training stochasticity affects accuracy and robustness

X Do not express uncertainty

Train ensembles of DNN models

Train **ensembles** of DNN models

Higher accuracy and robustness

Train **ensembles** of DNN models

Higher accuracy and robustness

Train **ensembles** of DNN models

Higher accuracy and robustness

Uncertainty estimation

Ensemble Pruning - Given n > k trained DNNs, how can we choose the ``best'' k-sized ensemble ?

Ensemble Pruning - Given n > k trained DNNs, how can we choose the k-sized ensemble ?

most diverse

Ensemble Pruning - Given n > k trained DNNs, how can we choose the k-sized ensemble ? **most diverse**

Ensemble Pruning - Given n > k trained DNNs, how can we choose the k-sized ensemble ? most diverse

Option 1 – choose all k = n trained DNNs

"Ensembling Neural Networks: Many Could be Better Than All"
Zhou et. al. (2010)

use formal verification to select the best subset k

use **formal verification** to select the best subset k **How?**

Verify all possible ensembles and choose the best one

use **formal verification** to select the best subset k **How?** *Verify all possible ensembles and choose the best one*

Setbacks

use **formal verification** to select the best subset k **How?** *Verify all possible ensembles and choose the best one*

Setbacks

There are $\binom{n}{k}$ k-sized ensemble combinations

use **formal verification** to select the best subset k **How?** *Verify all possible ensembles and choose the best one*

Setbacks

There are $\binom{n}{k}$ k-sized ensemble combinations

use **formal verification** to select the best subset k **How?**

Verify all possible ensembles and choose the best one

use **formal verification** to select the best subset k **How?**

Verify all possible ensembles and choose the best one

Check if DNNs tend to err simultaneously

Data points from the test set which are *classified the same* by all DNN members

Data points from the test set which are *classified the same* by all DNN members

Intuitively – areas with a *high consensus* among the DNNs

Data points from the test set which are *classified the same* by all DNN members

Intuitively – areas with a *high consensus* among the DNNs

Allows a *fair comparison* between DNN pairs

Mutual Error

Given a fixed *agreement point* and a *pair* of DNNs

A *mutual error* is a perturbation that *simultaneously* causes a pair of DNNs to *misclassify* the point

Mutual Error (with verifier)

Uniqueness Score

The **mutual error score** is the average **mutual errors** a pair of DNNs have on a set of agreement points

Uniqueness Score

The **mutual error score** is the average **mutual errors** a pair of DNNs have on a set of agreement points

The *uniqueness score* is a score indicating how (un)likely it is for a single DNN to **err** with the remaining ensemble DNNs

Uniqueness Score

The **mutual error score** is the average **mutual errors** a pair of DNNs have on a set of agreement points

The *uniqueness score* is a score indicating how (un)likely it is for a single DNN to **err** with the remaining ensemble DNNs

The **higher** the *uniqueness score* - the **better** the DNN

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

2 Create an **arbitrary ensemble E**

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

2 Create an arbitrary ensemble E

While not TIMEOUT:

3 Compute the *uniqueness score* for each member

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

2 Create an **arbitrary ensemble E**

While not TIMEOUT:

3 Compute the *uniqueness score* for each member

4 Choose *member with lowest score*

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

2 Create an arbitrary ensemble E

While not TIMEOUT:

3 Compute the *uniqueness score* for each member

4 Choose *member with lowest score*

5 If there is a member with a *higher* score -> *swap*

Initially:

1 Independently *train n DNNs* and fix a set of *agreement points*

2 Create an arbitrary ensemble E

While not TIMEOUT:

3 Compute the *uniqueness score* for each member

4 Choose *member with lowest score*

5 If there is a member with a *higher* score -> *swap*

But..

But..

Does it improve *robustness* on non-agreement points?

Case Studies

Conclusions

A greedy-search heuristic for verification-aided ensemble selection

Using a polynomial number of queries

Focusing on agreement points (usually) improves robustness on additional points

