Compact Symmetry Breaking for Tournaments

Evan Lohn, Chris Lambert, Marijn J.H. Heule

Carnegie
 Mellon University

Tournaments

- Complete, Directed Graphs
- Goal: Solve Tournament Existence Problems
- Labeled vs Unlabeled

Tournaments

- Complete, Directed Graphs
- Goal: Solve Tournament Existence Problems
- Labeled vs Unlabeled

Why Search for Tournaments?

Doubly-Regular Tournaments ~ Skew Hadamard Matrices
[Reid \& Brown, 1972]
Hadamard Matrices have many applications:

- Feedback Delay Networks
- Compressed Sensing
- Quantum Computing
(Tournament) Ramsey Numbers

How to Search For Tournaments

Symmetry-Breaking Predicates for Labeled Tournaments

How to Search For Tournaments

Symmetry-Breaking Predicates for Labeled Tournaments

How to Search For Tournaments

Symmetry-Breaking Predicates for Labeled Tournaments

$$
\begin{gathered}
e_{a b} \wedge e_{b c} \text { vs } \\
\left(\stackrel{\left.e_{a b} \vee e_{b c} \vee e_{a c}\right) \wedge\left(e_{a b} \vee \overline{e_{b c}} \vee \overline{e_{a c}}\right) \wedge\left(e_{a b} \vee e_{b c} \vee \overline{e_{a c}}\right) \wedge}{\left(\overline{e_{a b}} \vee e_{b c} \vee \overline{e_{a c}}\right) \wedge\left(\overline{a b} \vee e_{b c} \vee e_{a c}\right) \wedge\left(e_{a b} \vee \overline{e_{b c}} \vee e_{a c}\right)} .\right.
\end{gathered}
$$

Isolator Properties

- A set of clauses is an Isolator if it admits at least one member of each equivalence class
- An isolator is Perfect if it admits exactly one such member
- A perfect isolator is Optimal if there is no other perfect isolator with fewer clauses

Method 1: Search With SAT

For any \# of vertices n, \# of clauses k in generated isolator:

- Calculate equivalence class of all labeled n-vertex tournaments
- Encode "Exactly one graph from each equivalence class satisfies the k-clause isolator"
- Break symmetries in encoding: clause ordering, vertex ordering, unit propagation

Method 1: Search With SAT

Properties:

- Isolator is Perfect
- Can determine Optimal isolator
- Likely intractable for $n>6$

Method 2: Random Probes

For any $\#$ of vertices n :

- Calculate equivalence class of all labeled n-vertex tournaments
- Iteratively add clauses to reduce the number of redundant graphs

Method 2: Random Probes

Properties:

- Isolator is Perfect
- "Short", but likely no longer Optimal
- Intractable for $n>8$ (exponential growth of number of labeled n-vertex tournaments)

Method 3: TT-fixing

Idea: tournament Ramsey numbers $R(k)$ guarantee that a transitive tournament of size $k\left(a T_{k}\right)$ is a sub-tournament of any tournament with $n \geq R(k)$ vertices.

We "fix" these tournaments in place via unit clauses.
Example ($T T_{4}$):

Method 3: TT-fixing

$$
n=16
$$

Method 3: TT-fixing

Properties:

- Isolator is neither Perfect nor Optimal
- Very short $(\Theta(n \log n)$ unit clauses $)$ compared to exponential growth in unlabeled n-vertex tournaments
- Easily computable for all n via tournament Ramsey number upper bounds
- Asymptotically Optimal; best possible isolator within a constant factor as n grows large

Application to Improving Ramsey Theory

- Tournament Ramsey number $34 \leq R(7) \leq 47$ [Neiman, Mackey, Heule, 2020]
- To improve lower bounds on $R(k)$, find larger tournaments without $T T_{k}$
- 5303 previously known 33-vertex tournaments without $T T_{7}$

Application to Improving Ramsey Theory

Key idea: use SAT solver and small perfect isolator to find only new $T T_{7}$-free $n=33$ tournaments

- Fix the $T T_{6}$-free 26 -vertex subgraph in place
- Admit exactly one of each equivalence class for the remaining 7 vertices
- Disallow all cross-edges between the 26 and 7 -vertex parts that match the 5303 currently known tournaments
- Resulted in 1 new $T T_{7}$-free $n=33$ tournament

Conclusions

- Compact perfect isolators have been computed for $n \leq 8$
- TT-fixing generates asymptotically optimal isolators for arbitrary n
- Short, perfect isolators can be used to solve interesting tournament existence problems

