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CONTEXT
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Verification 
Condition

Compile programs to LLVM IR, .e.g., from C.

Bound execution length (unroll and cut loops).

Generate verification condition (VC) in SMT form.

Verify VC using a solver.



CONTRIBUTIONS

MULTIPLE VCGEN 
STRATEGIES

Introduce an IR language on top 
of LLVM IR called SEA-IR.

Generate VCs from SEA-IR 
programs in control flow or data 
flow form and different memory 
representations – SMT theory of 
arrays vs Lambdas.

Configurability enables quick 
experimentation.

CONVENIENT 
PROGRAM STATE 
METADATA STORAGE

Provide mechanisms and 
interface to track program 
state metadata by allowing 
(shadow) memory and 
(fat) pointers to store metadata.  

RESULTS ON 
PRODUCTION CODE

SEABMC - Open-sourced BMC 
engine for the SEAHORN 
program analysis framework.

Re-verify aws-c-common library 
using SEAHORN and compare 
with state-of-the-art verification 
tools.
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VC GENERATION



SEA-IR – PURIFY MEMORY OPERATIONS
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Unlimited registers: Each register has a type – 
scalar, pointer, or memory.

All operations are pure: SEA-IR extends LLVM IR 
by making dependency information between memory 
operations explicit.

SEA-IR syntax



SEA-IR – PURIFY MEMORY OPERATIONS
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...
P0, M0 = malloc 1, MINIT

P1, M1 = malloc 1, MINIT

M2 = store 0, P0, M0

M3 = store 0, P1, M1

R0 = load P0, M2

R1 = load P1, M3
...

malloc always creates unique 
memory.

P0 and P1 always read from distinct memories

Example: SEA-IR program with pure memory 
operations. Blue and Red are distinct def-use memory 
chains. This distinction helps generate simpler VC.
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SEA-IR: PROGRAM TRANSFORMATION
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int main() {
  int s = nd_int();
  assume(s > -5);
  if (s > 0) {
    s = s - nd_int();
  }
  assert(s > -5);
  return 0;
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  assume R1
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  PHINODE = phi [R4, BB1], [R0, BB0]
  R5 = PHINODE > -5
  assume(!R5)
  assert false
  halt
}

C program: nd_int returns a 
non-deterministic int; assume 
and assert have usual 
meanings

SA program: SEA-IR 
program in control flow form 
with phi nodes. It has a single 
assert (SA). 

VC generation can happen from control flow form with phi nodes

SA prog.Source prog.

Vcgen: SA Control Flow form can 
be used to generate verification 
conditions



SEA-IR: PROGRAM TRANSFORMATION
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int main() {
  int s = nd_int();
  assume(s > -5);
  if (s > 0) {
    s = s - nd_int();
  }
  assert(s > -5);
  return 0;
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  assume R1
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  PHINODE = phi [R4, BB1], [R0, BB0]
  R5 = PHINODE > -5
  assume(!R5)
  assert false
  halt
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  GAMMA = select R2, R4, R0
  R5 = GAMMA > -5
  R6 = !R5
  R7 = R1 && R6
  assume R7
  assert false
  halt
}

C program: nd_int returns a 
non-deterministic int; assume 
and assert have usual 
meanings

SA program: SEA-IR 
program in control flow form 
with phi nodes. It has a single 
assert (SA). 

GSA program: SEA-IR 
program in gated SSA form 
(GSA). It has a single assume 
and a single assert (SASA). 

SA prog. GSA prog.Source prog.

VC generation can happen from control flow (data flow) form with gamma nodes



SEA-IR: PROGRAM TRANSFORMATION
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int main() {
  int s = nd_int();
  assume(s > -5);
  if (s > 0) {
    s = s - nd_int();
  }
  assert(s > -5);
  return 0;
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  assume R1
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  PHINODE = phi [R4, BB1], [R0, BB0]
  R5 = PHINODE > -5
  assume(!R5)
  assert false
  halt
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  GAMMA = select R2, R4, R0
  R5 = GAMMA > -5
  R6 = !R5
  R7 = R1 && R6
  assume R7
  assert false
  halt
}

(r4 = r0 - r3) &&
(r2 = r0 > 0)
(gamma = ite(r2, r4, r0)) &&
(gamma > -5)
(r6 = !r5) &&
(r1 = r0 > -5) &&
(r7 = r1 && r6) &&
r7 &&
!false

C program: nd_int returns a 
non-deterministic int; assume 
and assert have usual 
meanings

SA program: SEA-IR 
program in control flow form 
with phi nodes. It has a single 
assert (SA). 

GSA program: SEA-IR 
program in gated SSA form 
(GSA). It has a single assume 
and a single assert (SASA). 

VCGen from GSA program 
using pure dataflow analysis.

VC generation can happen from different SEA-IR forms – control flow or dataflow.

SA prog. GSA prog. VCSource prog.



TRACKING 
PROGRAM 
STATE METADAT
A 
Using Shadow memory and fat pointers



SHADOW MEMORY AND FAT POINTERS

Shadow every byte (or word) of program memory with 
program state metadata. E.g.,
• Memcheck – addressable, initialized memory?
• Eraser – concurrent access follows locking discipline
Recent CBMC-SSM extension has shadow memory for 
CBMC.
• CBMC-SSM: Bounded Model Checking of C Programs with 

Symbolic Shadow Memory, ASE 2022, Bernd Fischer, Salvatore 
La Torre, Gennaro Parlato, Peter Schrammel

Prog 
Memory

Metadata
0

Metadata
1

Metadata
2

Addr0

Addr1

...

AddrN

Metadata0 Metadata1Address Metadata2

Shadow mem representation

Fat pointer representation

Some metadata can be "cached" at pointers 
instead of memory, saving memory accesses. 
This scheme is called Fat pointers.
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Fat pointer application – detect OOB access

int main() { 
  char *p = (char *) malloc(sizeof(char)); 
  *p = 255; 
  *(p+8) = 255; 
  return 0 
}

OOB access; 
Undefined behaviour

int main() {  
  char *p = (char *) malloc(sizeof(char)); 
  sea_is_deref(p, 0);
  *p = 255;  
  sea_is_deref(p, 8);
  *(p+8) = 255;  
  return 0  
}

Base Address Offset Size

p 0 1

Base Address Offset Size

p 8 1

sym(R1 = isderef P0 B) == 
    r1 = 0 <= p0.offset + B < p0.size  

isderef semantics

Contrast with CBMC: CBMC overloads 
pointer bits to store metadata adding 
constraints on the addresses that can be 
modelled. Fat pointers have no such 
limitation!
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Shadow memory application – detect UAF 

int main() {
  char *p = (char *)malloc(sizeof(char));
  *p = 0;
  free(p);
  *p = 255;
  return 0
}

UAF; Undefined behaviour

int main() { 
  char *p = (char *) malloc(sizeof(char)); 
  sea_is_alloc(p);
  *p = 0; 
  free(p); 
  sea_is_alloc(p);
  *p = 255; 
  return 0 
} Intrinsic like sea_is_alloc operate on 

program metadata. 

Note: This scheme relies on fat pointers that 
store base address.

Intrinsics to track other program properties – 
e.g., sea_is_mod (RO memory integrity)

Prog 
Memory

Base Offset Size isAlloc

p -- -- -- 0 or 1

Bounded Model Checking for LLVM
15



VCGEN AS A 
SYMBOLIC VM



BACKEND: VCGEN AS A (SYMBOLIC) VM
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(SEA-IR) 
Instructions

SMT 
formula (VC)

Symbolic Virtual 
Machine

ALU
add, sub, or

Interpreter
%83 = load i32, i32* %81

Memory Manager
loadIntFromMemory, loadPtrFromMemory

Memory Rep
lambdas, arrays

Memory Allocator
dynamic, static, …

Constant 
Evaluator
eval globals

~ 10 KLOC of 
C++

Swap components to affect VCGen! 

External 
View

Internal View



BACKEND: VCGEN AS A (SYMBOLIC) VM
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Symbolic Virtual 
Machine

ALU
add, sub, or

Interpreter
%83 = load i32, i32* %81

Memory Manager
loadIntFromMemory, loadPtrFromMemory

Memory Rep
lambdas, arrays

Memory Allocator
dynamic, static, …

Constant Evaluator
eval globals

~ 10 KLOC of 
C++

Lambda memory: memory as a lambda abstraction

To store, add an ITE to top of tree
To load, beta-reduce the given abstraction with an address.

 Λa.ite(addr0=a, val0, ite(addr1=a, val1,…)) 

SMT theory of arrays

Ordinary pointers

Fat pointers

Fat pointer with 
Shadow memory



RESULTS



aws-c-common library Core C99 package for AWS SDK
• cross-platform primitives
• configuration
• data structures
• error handling
Self-contained
Low-level and platform specific C
Extensively verified using CBMC*
• >160 unit proofs
• verify memory safety, representation 

invariants, basic operations

Bounded Model Checking for LLVM 20

https://github.com/awslabs/aws-c-common

[*] Code-Level Model Checking in the Software 
Development Workflow, Chong et al., ICSE 2020



aws-c-common benchmark verification time

SEABMC CBMC SMACK SYMBIOTIC KLEE

Total Time 710s 6,398s 6,370s 10,946s 5,741s

Comparision with SeaBMC, CBMC, SMACK, SYMBIOTIC, KLEE

Read only memory proof using shadow memory (rewrite 70 proofs)

SEABMC config Total time

Shadow 90s

No shadow 143s
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RESULTS: AWS-C-COMMON

OPT VCGEN 
STRATEGY

 Z3 with 
memory as 

lambdas
Beta reduce 

lambdas early

Use Pure 
dataflow 
program

Reduce 
program using 

cone-of-influenc
e.

VERIFICATION 
OUTCOME

Strengthen findings of original 
verification effort using CBMC

Found no bugs in production code 
but found bugs in proofs.

Shadow memory can make 
verification and specification 
simpler.

COMPARISION WITH 
STATE-OF-THE-ART

 Compared with 
CBMC, SMACK, 
SYMBIOTIC and 

KLEE

 10x faster than 
these tools

Open-source tool 
and reproducible 

results
Continuous 
verification
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FUTURE WORK – GENERATE 
SIMPLER VERIFICATION 
CONDITIONS

Utilize fat pointers and shadow memory to express safety 
properties in a user-friendly way and generate simpler VC.

Apply BMC to Rust. Use ownership semantics to simplify 
VC.

Use more sophisticated static analysis to solve assertions 
statically.
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FAT POINTERS -- SPATIAL MEMORY SAFETY  
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int main() { 
  char *p = (char *) malloc(sizeof(char)); 
  *p = 255; 
  *(p+8) = 255; 
  return 0 
}

OOB access; Undefined behaviour

Problem: Ensure all memory accesses 
are within allocated bounds.

Solution: In the symbolic 
VM, expand pointers to  pointers. Provide 
API to compute on fat.

Pointer definition and manipulation
Allocation sets up base, offset 
and size. Offset is updated on 
pointer arithmetic.

Pointer dereference
Add isderef checks on all 
accesses. Attempt to solve them using 
static analysis.

Isderef checks are automatically added 
for every access. Many checks are solved 
resolved before SMT solving.

Offset SizeBase Address Metadata

Add more metadata at pointers!

Figure: Fat pointers contain address and 
metadata

sym(R1 = isderef P0 B) == r1 = 0 <= p0.offset + B < p0.size  

Figure: isderef semantics



SHADOW MEM -- TEMPORAL MEMORY SAFETY 
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int main() {
  char *p = (char *) 
malloc(sizeof(char));
  *p = 0;
  free(p);
  *p = 255;
  return 0
}

UAF; Undefined behaviour

Problem: Ensure memory type state is 
OK; E.g., memory is allocated, read only 
memory is not mutated. 

Solution: In the symbolic VM, add 
shadow memory. Store metadata keyed 
by address. 

Memory Def/free
Set alloc memory to true/false.

Memory use
Add isalloc checks.

We record metadata at base of pointer. 
Thus, need fat pointers.

Alloc Memory IsWrittenProg Memory

Shadow Memory

Addr0
Addr1

Metadata

Add more metadata at addresses!

sym(R1 = isalloc P0 M) == r1 = read(m.alloc, p0.base)  

Figure: isderef semantics



SEA-IR: PROGRAM TRANSFORMATION
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int main() {
  int s = nd_int();
  assume(s > -5);
  if (s > 0) {
    s = s - nd_int();
  }
  assert(s > -5);
  return 0;
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  assume R1
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  PHINODE = phi [R4, BB1], [R0, BB0]
  R5 = PHINODE > -5
  assume(!R5)
  assert false
  halt
}

define main() {
BB0:
  R0 = nd_int()
  R1 = R0 > -5
  R2 = R0 > 0
  br R2, BB1, BB2
BB1:
  R3 = nd_int()
  R4 = R0 - R3
  br BB2
BB2:
  GAMMA = select R2, R4, R0
  R5 = GAMMA > -5
  R6 = !R5
  R7 = R1 && R6
  assume R7
  assert false
  halt
}

(r4 = r0 - r3) &&
(r2 = r0 > 0)
(gamma = ite(r2, r4, r0)) &&
(gamma > -5)
(r6 = !r5) &&
(r1 = r0 > -5) &&
(r7 = r1 && r6) &&
r7 &&
!false

C program: nd_int returns a 
non-deterministic int; assume 
and assert have usual 
meanings

SA program: SEA-IR 
program in control flow form 
with phi nodes. It has a single 
assert (SA). 

GSSA program: SEA-IR 
program in gated SSA form 
(GSSA). It has a single 
assume and a single assert 
(SASA). 

VCGen from GSSA program 
using pure dataflow analysis.

VC generation can happen from different SEA-IR forms – control flow or dataflow.

SA form GSSA form

…

VCGENSource 
form


