
BOUNDED MODEL
CHECKING FOR
LLVM
Siddharth Priya*, Xiang Zhou,
Yusen Su, Yakir Vizel, Yuyan
Bao, and Arie Gurfinkel

MEET OUR TEAM

Siddharth Priya
University of Waterloo

Xiang Zhou
University of Waterloo

Yusen Su
University of Waterloo

Yakir Vizel
The Technion

Yuyan Bao
University of Waterloo

Arie Gurfinkel
University of Waterloo

Bounded Model Checking for LLVM 2

OUTLINE

Context and Contributions

VC Generation

Tracking program state metadata

VCGen as a symbolic VM

Results

Future Work

Bounded Model Checking for LLVM 3

CONTEXT

External View of SEABMC

Bounded Model Checking for LLVM 4

V

C
G

en

LLVM-IR

Verification
Condition

Compile programs to LLVM IR, .e.g., from C.

Bound execution length (unroll and cut loops).

Generate verification condition (VC) in SMT form.

Verify VC using a solver.

CONTRIBUTIONS

MULTIPLE VCGEN
STRATEGIES

Introduce an IR language on top
of LLVM IR called SEA-IR.

Generate VCs from SEA-IR
programs in control flow or data
flow form and different memory
representations – SMT theory of
arrays vs Lambdas.

Configurability enables quick
experimentation.

CONVENIENT
PROGRAM STATE
METADATA STORAGE

Provide mechanisms and
interface to track program
state metadata by allowing
(shadow) memory and
(fat) pointers to store metadata.

RESULTS ON
PRODUCTION CODE

SEABMC - Open-sourced BMC
engine for the SEAHORN
program analysis framework.

Re-verify aws-c-common library
using SEAHORN and compare
with state-of-the-art verification
tools.

Bounded Model Checking for LLVM 5

VC GENERATION

SEA-IR – PURIFY MEMORY OPERATIONS

Bounded Model Checking for LLVM 7

Unlimited registers: Each register has a type –
scalar, pointer, or memory.

All operations are pure: SEA-IR extends LLVM IR
by making dependency information between memory
operations explicit.

SEA-IR syntax

SEA-IR – PURIFY MEMORY OPERATIONS

Bounded Model Checking for LLVM 8

...
P0, M0 = malloc 1, MINIT

P1, M1 = malloc 1, MINIT

M2 = store 0, P0, M0

M3 = store 0, P1, M1

R0 = load P0, M2

R1 = load P1, M3
...

malloc always creates unique
memory.

P0 and P1 always read from distinct memories

Example: SEA-IR program with pure memory
operations. Blue and Red are distinct def-use memory
chains. This distinction helps generate simpler VC.

D
ef

-u
se

 m
em

or
y

ch
ai

ns

SEA-IR: PROGRAM TRANSFORMATION

Bounded Model Checking for LLVM 9

int main() {
 int s = nd_int();
 assume(s > -5);
 if (s > 0) {
 s = s - nd_int();
 }
 assert(s > -5);
 return 0;
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 assume R1
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 PHINODE = phi [R4, BB1], [R0, BB0]
 R5 = PHINODE > -5
 assume(!R5)
 assert false
 halt
}

C program: nd_int returns a
non-deterministic int; assume
and assert have usual
meanings

SA program: SEA-IR
program in control flow form
with phi nodes. It has a single
assert (SA).

VC generation can happen from control flow form with phi nodes

SA prog.Source prog.

Vcgen: SA Control Flow form can
be used to generate verification
conditions

SEA-IR: PROGRAM TRANSFORMATION

Bounded Model Checking for LLVM 10

int main() {
 int s = nd_int();
 assume(s > -5);
 if (s > 0) {
 s = s - nd_int();
 }
 assert(s > -5);
 return 0;
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 assume R1
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 PHINODE = phi [R4, BB1], [R0, BB0]
 R5 = PHINODE > -5
 assume(!R5)
 assert false
 halt
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 GAMMA = select R2, R4, R0
 R5 = GAMMA > -5
 R6 = !R5
 R7 = R1 && R6
 assume R7
 assert false
 halt
}

C program: nd_int returns a
non-deterministic int; assume
and assert have usual
meanings

SA program: SEA-IR
program in control flow form
with phi nodes. It has a single
assert (SA).

GSA program: SEA-IR
program in gated SSA form
(GSA). It has a single assume
and a single assert (SASA).

SA prog. GSA prog.Source prog.

VC generation can happen from control flow (data flow) form with gamma nodes

SEA-IR: PROGRAM TRANSFORMATION

Bounded Model Checking for LLVM 11

int main() {
 int s = nd_int();
 assume(s > -5);
 if (s > 0) {
 s = s - nd_int();
 }
 assert(s > -5);
 return 0;
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 assume R1
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 PHINODE = phi [R4, BB1], [R0, BB0]
 R5 = PHINODE > -5
 assume(!R5)
 assert false
 halt
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 GAMMA = select R2, R4, R0
 R5 = GAMMA > -5
 R6 = !R5
 R7 = R1 && R6
 assume R7
 assert false
 halt
}

(r4 = r0 - r3) &&
(r2 = r0 > 0)
(gamma = ite(r2, r4, r0)) &&
(gamma > -5)
(r6 = !r5) &&
(r1 = r0 > -5) &&
(r7 = r1 && r6) &&
r7 &&
!false

C program: nd_int returns a
non-deterministic int; assume
and assert have usual
meanings

SA program: SEA-IR
program in control flow form
with phi nodes. It has a single
assert (SA).

GSA program: SEA-IR
program in gated SSA form
(GSA). It has a single assume
and a single assert (SASA).

VCGen from GSA program
using pure dataflow analysis.

VC generation can happen from different SEA-IR forms – control flow or dataflow.

SA prog. GSA prog. VCSource prog.

TRACKING
PROGRAM
STATE METADAT
A
Using Shadow memory and fat pointers

SHADOW MEMORY AND FAT POINTERS

Shadow every byte (or word) of program memory with
program state metadata. E.g.,
• Memcheck – addressable, initialized memory?
• Eraser – concurrent access follows locking discipline
Recent CBMC-SSM extension has shadow memory for
CBMC.
• CBMC-SSM: Bounded Model Checking of C Programs with

Symbolic Shadow Memory, ASE 2022, Bernd Fischer, Salvatore
La Torre, Gennaro Parlato, Peter Schrammel

Prog
Memory

Metadata
0

Metadata
1

Metadata
2

Addr0

Addr1

...

AddrN

Metadata0 Metadata1Address Metadata2

Shadow mem representation

Fat pointer representation

Some metadata can be "cached" at pointers
instead of memory, saving memory accesses.
This scheme is called Fat pointers.

Bounded Model Checking for LLVM 13

Fat pointer application – detect OOB access

int main() {
 char *p = (char *) malloc(sizeof(char));
 *p = 255;
 *(p+8) = 255;
 return 0
}

OOB access;
Undefined behaviour

int main() {
 char *p = (char *) malloc(sizeof(char));
 sea_is_deref(p, 0);
 *p = 255;
 sea_is_deref(p, 8);
 *(p+8) = 255;
 return 0
}

Base Address Offset Size

p 0 1

Base Address Offset Size

p 8 1

sym(R1 = isderef P0 B) ==
 r1 = 0 <= p0.offset + B < p0.size

isderef semantics

Contrast with CBMC: CBMC overloads
pointer bits to store metadata adding
constraints on the addresses that can be
modelled. Fat pointers have no such
limitation!

Bounded Model Checking for LLVM 14

Shadow memory application – detect UAF

int main() {
 char *p = (char *)malloc(sizeof(char));
 *p = 0;
 free(p);
 *p = 255;
 return 0
}

UAF; Undefined behaviour

int main() {
 char *p = (char *) malloc(sizeof(char));
 sea_is_alloc(p);
 *p = 0;
 free(p);
 sea_is_alloc(p);
 *p = 255;
 return 0
} Intrinsic like sea_is_alloc operate on

program metadata.

Note: This scheme relies on fat pointers that
store base address.

Intrinsics to track other program properties –
e.g., sea_is_mod (RO memory integrity)

Prog
Memory

Base Offset Size isAlloc

p -- -- -- 0 or 1

Bounded Model Checking for LLVM
15

VCGEN AS A
SYMBOLIC VM

BACKEND: VCGEN AS A (SYMBOLIC) VM

Bounded Model Checking for LLVM 17

V

C
G

en
I
R

V
C

(SEA-IR)
Instructions

SMT
formula (VC)

Symbolic Virtual
Machine

ALU
add, sub, or

Interpreter
%83 = load i32, i32* %81

Memory Manager
loadIntFromMemory, loadPtrFromMemory

Memory Rep
lambdas, arrays

Memory Allocator
dynamic, static, …

Constant
Evaluator
eval globals

~ 10 KLOC of
C++

Swap components to affect VCGen!

External
View

Internal View

BACKEND: VCGEN AS A (SYMBOLIC) VM

Bounded Model Checking for LLVM 18

Symbolic Virtual
Machine

ALU
add, sub, or

Interpreter
%83 = load i32, i32* %81

Memory Manager
loadIntFromMemory, loadPtrFromMemory

Memory Rep
lambdas, arrays

Memory Allocator
dynamic, static, …

Constant Evaluator
eval globals

~ 10 KLOC of
C++

Lambda memory: memory as a lambda abstraction

To store, add an ITE to top of tree
To load, beta-reduce the given abstraction with an address.

 Λa.ite(addr0=a, val0, ite(addr1=a, val1,…))

SMT theory of arrays

Ordinary pointers

Fat pointers

Fat pointer with
Shadow memory

RESULTS

aws-c-common library Core C99 package for AWS SDK
• cross-platform primitives
• configuration
• data structures
• error handling
Self-contained
Low-level and platform specific C
Extensively verified using CBMC*
• >160 unit proofs
• verify memory safety, representation

invariants, basic operations

Bounded Model Checking for LLVM 20

https://github.com/awslabs/aws-c-common

[*] Code-Level Model Checking in the Software
Development Workflow, Chong et al., ICSE 2020

aws-c-common benchmark verification time

SEABMC CBMC SMACK SYMBIOTIC KLEE

Total Time 710s 6,398s 6,370s 10,946s 5,741s

Comparision with SeaBMC, CBMC, SMACK, SYMBIOTIC, KLEE

Read only memory proof using shadow memory (rewrite 70 proofs)

SEABMC config Total time

Shadow 90s

No shadow 143s

Bounded Model Checking for LLVM 21

RESULTS: AWS-C-COMMON

OPT VCGEN
STRATEGY

 Z3 with
memory as

lambdas
Beta reduce

lambdas early

Use Pure
dataflow
program

Reduce
program using

cone-of-influenc
e.

VERIFICATION
OUTCOME

Strengthen findings of original
verification effort using CBMC

Found no bugs in production code
but found bugs in proofs.

Shadow memory can make
verification and specification
simpler.

COMPARISION WITH
STATE-OF-THE-ART

 Compared with
CBMC, SMACK,
SYMBIOTIC and

KLEE

 10x faster than
these tools

Open-source tool
and reproducible

results
Continuous
verification

Bounded Model Checking for LLVM 22

FUTURE WORK – GENERATE
SIMPLER VERIFICATION
CONDITIONS

Utilize fat pointers and shadow memory to express safety
properties in a user-friendly way and generate simpler VC.

Apply BMC to Rust. Use ownership semantics to simplify
VC.

Use more sophisticated static analysis to solve assertions
statically.

Bounded Model Checking for LLVM 23

THANK YOU
Siddharth Priya

Siddharth.priya@uwaterloo.ca

FAT POINTERS -- SPATIAL MEMORY SAFETY

Bounded Model Checking for LLVM 25

int main() {
 char *p = (char *) malloc(sizeof(char));
 *p = 255;
 *(p+8) = 255;
 return 0
}

OOB access; Undefined behaviour

Problem: Ensure all memory accesses
are within allocated bounds.

Solution: In the symbolic
VM, expand pointers to pointers. Provide
API to compute on fat.

Pointer definition and manipulation
Allocation sets up base, offset
and size. Offset is updated on
pointer arithmetic.

Pointer dereference
Add isderef checks on all
accesses. Attempt to solve them using
static analysis.

Isderef checks are automatically added
for every access. Many checks are solved
resolved before SMT solving.

Offset SizeBase Address Metadata

Add more metadata at pointers!

Figure: Fat pointers contain address and
metadata

sym(R1 = isderef P0 B) == r1 = 0 <= p0.offset + B < p0.size

Figure: isderef semantics

SHADOW MEM -- TEMPORAL MEMORY SAFETY

Bounded Model Checking for LLVM 26

int main() {
 char *p = (char *)
malloc(sizeof(char));
 *p = 0;
 free(p);
 *p = 255;
 return 0
}

UAF; Undefined behaviour

Problem: Ensure memory type state is
OK; E.g., memory is allocated, read only
memory is not mutated.

Solution: In the symbolic VM, add
shadow memory. Store metadata keyed
by address.

Memory Def/free
Set alloc memory to true/false.

Memory use
Add isalloc checks.

We record metadata at base of pointer.
Thus, need fat pointers.

Alloc Memory IsWrittenProg Memory

Shadow Memory

Addr0
Addr1

Metadata

Add more metadata at addresses!

sym(R1 = isalloc P0 M) == r1 = read(m.alloc, p0.base)

Figure: isderef semantics

SEA-IR: PROGRAM TRANSFORMATION

Bounded Model Checking for LLVM 27

int main() {
 int s = nd_int();
 assume(s > -5);
 if (s > 0) {
 s = s - nd_int();
 }
 assert(s > -5);
 return 0;
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 assume R1
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 PHINODE = phi [R4, BB1], [R0, BB0]
 R5 = PHINODE > -5
 assume(!R5)
 assert false
 halt
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 GAMMA = select R2, R4, R0
 R5 = GAMMA > -5
 R6 = !R5
 R7 = R1 && R6
 assume R7
 assert false
 halt
}

(r4 = r0 - r3) &&
(r2 = r0 > 0)
(gamma = ite(r2, r4, r0)) &&
(gamma > -5)
(r6 = !r5) &&
(r1 = r0 > -5) &&
(r7 = r1 && r6) &&
r7 &&
!false

C program: nd_int returns a
non-deterministic int; assume
and assert have usual
meanings

SA program: SEA-IR
program in control flow form
with phi nodes. It has a single
assert (SA).

GSSA program: SEA-IR
program in gated SSA form
(GSSA). It has a single
assume and a single assert
(SASA).

VCGen from GSSA program
using pure dataflow analysis.

VC generation can happen from different SEA-IR forms – control flow or dataflow.

SA form GSSA form

…

VCGENSource
form

