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Bugs in SMT Solvers

• State-of-the-art solvers are large projects:
• Bitwuzla: 90k LoC (C/C++)
• cvc5: 300k LoC (C++)
• z3: 500k LoC (C++)

• How do developers try to avoid bugs?
• Code reviews
• Testing on benchmark sets
• Random input testing

• But...
• Disagreements between solvers at SMT-COMP
• Fuzzing tools often find bugs in solvers
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Solution: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x,"FMCAD") ∧ |x| ≥ 5

Model: M = {x 7→ "FMCAD-2022"}

I What about unsatisfiable inputs?
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Proofs: A New Hope

• Proofs are a justification of the logical reasoning the solver has performed to find a solution

• A proof can be checked independently
• Smaller trusted base: lfsc 5.5k (C++) + 2k (signatures) LoC vs. cvc5 300k LoC
• Proof checking is generally more efficiently than solving the problem

• Other advantages
• Confidence in results is decoupled from solver’s implementation
• Automation in interactive theorem proving
• Formalization of proof rules improves code base, debugging

4



https://ufmg-smite.github.io/proof-visualizer/
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The Challenge with Rewrites

• Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance
• String solver in cvc5: Over 200 rules in 3,000 lines of C++ code

substr("",m,n) ""

• Many proof applications require detailed proofs
• Easier proof checking, better integration with interactive theorem provers

substr("",m,n) ≈ "" x + 0 ≈ x ¬(¬p) ≈ p

• Traditional approach: More instrumentation!
• Difficult and tedious: Define proof rule and instrument code for every rewrite
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Proofs for Rewrites: Our Approach

Proof Module

Theory Solver

Theory Rewriter

…

Theory Solver

Theory Rewriter

Rewriter

Rewrite Proof
Reconstructor

Rewrite Rule
Database

t↓t

DSL Compiler

Rules
File

… Rules
File

• Treat rewriter as black box and reconstruct proofs for rewrites externally

• A domain-specific language (DSL), Rare, to specify a database of rewrite rules

• A compiler for Rare that generates the C++ code that populates the rewrite rule database

• A general reconstruction algorithm, applied as a post-processor
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Agenda

• A tour of Rare

• Proof reconstruction

• Implementation/Evaluation
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Rare: Design Goals

• Succinct: Writing rewrite rules should be simple and concise

• Expressive: Support for the majority of the rewrite rules in a state-of-the-art solver

• Accessible: Easy to parse and familiar for developers
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Rare: Basic Rules

(define-rule substr-empty ((m Int) (n Int))
(str.substr "" m n) "")

• Parts: Name, arguments, match expression, target expression
• Syntax is an extension of SMT-LIB
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Rare: Matching

(define-rule eq-refl ((t ?)) (= t t) true)

• Generic sorts
• All occurrences of argument must match same term
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Rare: Lists

(define-rule str-concat-flatten (
(xs String :list) (s String)
(ys String :list) (zs String :list))

(str.++ xs (str.++ s ys) zs) ; match
(str.++ xs s ys zs)) ; target

• Support for matching n-ary functions using list arguments
• List arguments can match zero terms
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Rare: Conditional Rules

(define-cond-rule concat-clash (
(s1 String) (s2 String :list)
(t1 String) (t2 String :list))

(and (= (str.len s1) (str.len t1)) ; precondition
(not (= s1 t1)))

(= (str.++ s1 s2) (str.++ t1 t2)) ; match
false) ; target

• Must show that the precondition holds for rewrite to apply
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Rare: Fixed-Point Rules

(define-rule* str-len-concat-rec (
(s1 String) (s2 String)
(rest String :list))

(str.len (str.++ s1 s2 rest)) ; match
(str.len (str.++ s2 rest)) ; target
(+ (str.len s1) _)) ; context

• Optimization for rules that should be applied repeatedly
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Reconstructing Proofs

Base Rules

eval
t ≈ t↓e

trans
r ≈ s s ≈ t

r ≈ t
cong

~s ≈~t
f (~s) ≈ f (~t)

ceval
~s↓ ≈~t↓

f (~s) ≈ (f (~t))↓e

A bounded recursive search to prove t ≈ s:

1. If t and s evaluate to the same value then return eval

2. If t ≈ s rewrites to ⊥: fail
3. If t ≈ s has form f (~u) ≈ f (~v) then try to prove ~u ≈ ~v, return cong
4. If:

• t has form f (~u)
• ~u rewrites to ~c
• f (~c) evaluates to the same as s

then try to prove ~u ≈ ~c, return ceval
5. Recursive call: Find matching rules for t, try to prove rewritten t′ ≈ s and preconditions
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Reconstructing Proofs: Example

Rule in database:

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))

(= s "") (str.substr s m n) "")

Rewrite:
substr(substr("abc", 4, 1),m,n) ""

Rule matches, recursive call with new goal:

substr("abc", 4, 1) ≈ ""

I Show using evaluation

substr-empty-s

eval
substr("abc", 4, 1) ≈ ""

substr(substr("abc", 4, 1),m,n) ≈ ""
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Implementation and Evaluation

• Implemented in cvc5 with focus on theory of strings
• Rewrite rules:

• 40 rules for the theory of strings
• 25 rules for integer arithmetic, complemented with manual rule for polynomial normalization
• 22 rules for Boolean terms

• Benchmark sets:
• 25 unsatisfiable industrial benchmarks
• 26,626 unsatisfiable SMT-LIB benchmarks
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Evaluation: Results
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• Rewrites reconstructed: 95% for problems from the industrial set and of 87% for SMT-LIB
• Fully detailed: 20% of the proofs for industrial benchmarks, 23% of all proofs for SMT-LIB
benchmarks with rewrite steps (6,120 out of 26,611)
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Conclusion

• Proofs can be used to check answers of SMT solvers
• Approaches for proof generation

• Traditional: Instrument code
• Alternative: Reconstruction as a post-processing step

• Rare is a DSL for defining a rewrite rule database
• Implementation in cvc5, can reconstruct a proof for most rewrites in string benchmarks

https://cvc5.github.io/
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