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» Even a tiny fraction of wrong answers is bad
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- State-of-the-art solvers are large projects:

- Bitwuzla: 90k LoC (C/C++)
- CVC5: 300k LoC (C++)
- 73: 500k LoC (C++)

- How do developers try to avoid bugs?

- Code reviews
- Testing on benchmark sets
- Random input testing

- But...

- Disagreements between solvers at SMT-COMP
- Fuzzing tools often find bugs in solvers
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Solution: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver
contains(x, "FMCAD") A [x| >5

Model: M = {x — "FMCAD-2022"}

» What about unsatisfiable inputs?



Proofs: A New Hope

- Proofs are a justification of the logical reasoning the solver has performed to find a solution

- A proof can be checked independently

- Smaller trusted base: LFsc 5.5k (C++) + 2k (signatures) LoC vs. cvc5 300k LoC
- Proof checking is generally more efficiently than solving the problem

- Other advantages
- Confidence in results is decoupled from solver's implementation
- Automation in interactive theorem proving
- Formalization of proof rules improves code base, debugging
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The Challenge with Rewrites

- Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance
- String solver in cvch: Over 200 rules in 3,000 lines of C++ code

substr("", m,n) ~

- Many proof applications require detailed proofs
- Easier proof checking, better integration with interactive theorem provers

add-zero ree? —— dbl-neg rev

substr-empty revf N m

substr("", m,n) ~

- Traditional approach: More instrumentation!
- Difficult and tedious: Define proof rule and instrument code for every rewrite



Proofs for Rewrites: Our Approach
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- Treat rewriter as black box and reconstruct proofs for rewrites externally
- A domain-specific language (DSL), RARE, to specify a database of rewrite rules
- A compiler for RARE that generates the C++ code that populates the rewrite rule database

- A general reconstruction algorithm, applied as a post-processor



- Atour of RARE
- Proof reconstruction

- Implementation/Evaluation



RARE: Design Goals

- Succinct: Writing rewrite rules should be simple and concise
- Expressive: Support for the majority of the rewrite rules in a state-of-the-art solver

- Accessible: Easy to parse and familiar for developers
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RARE: Basic Rules

(define-rule substr-empty ((m Int) (n Int))
(str.substr """ mn) "")

- Parts: Name, arguments, match expression, target expression
- Syntax is an extension of SMT-LIB
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RARE: Matching

(define-rule eq-refl ((t ?)) (= t t) true)

- Generic sorts

- All occurrences of argument must match same term

i



(define-rule str-concat-flatten (
(xs String :list) (s String)
(ys String :list) (zs String :list))
(str.++ xs (str.++ s ys) zs) ; match
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(define-rule str-concat-flatten (
(xs String :list) (s String)
(ys String :list) (zs String :list))
(str.++ xs (str.++ s ys) zs) ; match
(str.++ xs s ys zs)) ; target

- Support for matching n-ary functions using list arguments

- List arguments can match zero terms



RARE: Conditional Rules

(define-cond-rule concat-clash (
(s1 String) (s2 String :list)
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false) ; target
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RARE: Conditional Rules

(define-cond-rule concat-clash (
(s1 String) (s2 String :list)
(t1 String) (t2 String :list))
(and (= (str.len s1) (str.len tl1)) ; precondition
(not (= s1 t1)))
(= (str.++ s1 s2) (str.++ tl1 t2)) ; match
false) ; target

- Must show that the precondition holds for rewrite to apply
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RARE: Fixed-Point Rules

(define-rulex str-len-concat-rec (
(s1 String) (s2 String)
(rest String :list))
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RARE: Fixed-Point Rules

(define-rulex str-len-concat-rec (
(s1 String) (s2 String)
(rest String :list))
(str.len (str.++ s1 s2 rest)) ; match
(str.len (str.++ s2 rest)) ; target
(+ (str.len s1) _)) ; context

- Optimization for rules that should be applied repeatedly

14
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Reconstructing Proofs

r~s s=t S~t Slat]
trans

_ cong——— ceval ———
tatle rat f(8) = f(t) f(sT) (F(D)4

eval

A bounded recursive search to prove t ~ s:

If t and s evaluate to the same value then return eval

If t = s rewrites to _L: fail

If t ~ s has form f() ~ f(V) then try to prove i ~ V, return cong
If:

LN

- t has form f ()
- U rewritesto ¢
f(C) evaluates to the same as s
then try to prove U = C, return ceval
5. Recursive call: Find matching rules for t, try to prove rewritten t’ ~ s and preconditions



Reconstructing Proofs: Example

Rule in database

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))
(= s "") (str.substr s mn) "")

Rewrite:
substr(substr("abc",4,1),m,n) ~ ""
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Reconstructing Proofs: Example

Rule in database:

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))
(= s "") (str.substr s mn) "")

Rewrite:
substr(substr("abc",4,1),m,n) ~ ""

Rule matches, recursive call with new goal:

substr("abc",4,1) =~ ""
» Show using evaluation

eval

substr("abc",4,1) ~ ""
substr-empty-s 16
substr(substr("abc",4,1),m,n) ~ ""




Implementation and Evaluation

- Implemented in cvcs with focus on theory of strings

- Rewrite rules:
- 40 rules for the theory of strings
- 25 rules for integer arithmetic, complemented with manual rule for polynomial normalization
- 22 rules for Boolean terms

- Benchmark sets:

- 25 unsatisfiable industrial benchmarks
- 26,626 unsatisfiable SMT-LIB benchmarks



Evaluation: Results
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- Rewrites reconstructed: 95% for problems from the industrial set and of 87% for SMT-LIB
- Fully detailed: 20% of the proofs for industrial benchmarks, 23% of all proofs for SMT-LIB
benchmarks with rewrite steps (6,120 out of 26,611)



Conclusion

- Proofs can be used to check answers of SMT solvers
- Approaches for proof generation

- Traditional: Instrument code
- Alternative: Reconstruction as a post-processing step

- RARE is a DSL for defining a rewrite rule database

- Implementation in cvc5, can reconstruct a proof for most rewrites in string benchmarks

'CVC5,

https://cvc5.github.io/
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