
1 / 12

Stratified Certification for k-Induction

Emily Yu1, Nils Froleyks1, Armin Biere2, Keijo Heljanko3

1Johannes Kepler University Linz, Austria
2Albert–Ludwigs–University, Freiburg, Germany

3University of Helsinki, Helsinki, Finland

FMVCAD 2022
Oct 18 - 21, 2022

Trento, Italy



2 / 12

Introduction

Certification of model checking

• Generic machine checkable certification is still in its infancy

◦ proofs are mandatory in SAT competition

◦ currently not possible in hardware model checking competitions

Temporal induction/k-induction [SheeranSS00] as a powerful technique

• Reduces model checking to a series of SAT problems

◦ highly integratable with modern SAT/SMT solvers

◦ also used in other contexts: infinite-state systems, SEC etc.

• State-of-the-art: certification of k-induction

◦ only k-induction specific certificates (no inductive invariant) [GurfinkelI17]

◦ exponential certificates [BjørnerGMR15]

◦ one-alternation QBF [YuBH20]
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Introduction

Our contribution

• Generic certification framework for k-induction-based model checking

◦ generates seven SAT problems

◦ a simple inductive invariant as proof certificate

◦ linear to the circuit size and k

• A tool-suite certifaiger++
◦ extension of certifaiger

◦ independent of any (hardware) model checker

◦ compatible with modern k-induction-based model checkers

◦ evaluated empirically

• A word-level certifier certifaiger-wl
◦ word-level certification
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Circuits

Definition A circuit is a tuple C = (I , L,R,F ,P) such that:

• I is a finite set of input variables.

• L is a finite set of latch variables.

• R = {rl(L) | l ∈ L} is a set of reset functions.

• F = {fl(I , L) | l ∈ L} is a set of transition functions.

• P(I , L) is a function that evaluates to a Boolean output, encoding
the (good states) property.

Definition A circuit C = (I , L,R,F ,P) is said to be stratified iff R is
stratified.

• symbolic representation to reduce syntactic clutters

• compatible with AIGER format
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Circuits

Definition Given C = (I , L,R,F ,P) and C ′ = (I ′, L′,R ′,F ′,P ′), C ′

combinationally extends C if I = I ′ and L ⊆ L′.

• Allows us to interpret the inputs and latches of a circuit as being
part of another circuit.

Definition Given two stratified circuits C and C ′, where C ′ combina-
tionally extends C . There is a stratified simulation between C ′ and C
iff,

1 rl(L) ≡ r ′l (L′) for l ∈ L, “reset”

2 fl(I , L) ≡ f ′l (I , L′) for l ∈ L, and “transition”

3 P ′(I , L′)⇒ P(I , L). “property”

• Can be verified by SAT checks.

Theorem Given two circuits C and C ′, where C ′ simulates C . If C ′

is safe, then C is also safe.
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Certification: witness circuit

Definition Given a circuit C = (I , L,R,F ,P), and k ∈ N+, the

witness circuit C ′ = (I ′, L′,R ′,F ′,P ′) of C is defined as follows:

1 I ′ = I . For simplicity we also refer to I ′ as X k−1.

2 L′ = X 0 ∪ · · · ∪ X k−2 ∪ L0 ∪ · · · ∪ Lk−1 ∪ B, such that,

1 X i is a copy of the original inputs, for all i ∈ [0, k − 2].
2 Li is a copy of the original latches, for all i ∈ [0, k − 1].
3 B = {b0, . . . , bk−1} is the set of initialisation bits.

3 R’ :

◦ for l ∈ Lk−1, r ′l = rl (L
k−1).

◦ for l ∈ L0 ∪ · · · ∪ Lk−2 ∪ X 0 ∪ · · · ∪ X k−2, r ′l = l .
◦ r ′

bk−1 = >.

◦ for i ∈ [0, k − 1), r ′
bi

= ⊥.

4 F ′ = {f ′l (I ′, L′) | l ∈ L′} is defined as follows:

1 For i ∈ [0, k − 1), f ′
x i

(I ′, L′) = x i+1.

2 For l ∈ Lk−1, f ′l (I ′, L′) = fl (X
k−1, Lk−1).

3 For i ∈ [0, k − 1), f ′
l i

(I ′, L′) = l i+1.

4 For i ∈ [0, k − 1), f ′
bi

(I ′, L′) = bi+1, and f ′
bk−1 (I ′, L′) = bk−1.

5 The property P ′ is defined as P ′(I ′, L′) =
∧

i∈[0,4]

pi (I
′, L′)

such that:
1 For i ∈ [0, k − 1), hi = (Li+1 ' F (X i , Li )).

2 p0(I ′, L′) =
∧

i∈[0,k−1)

(bi → bi+1).

3 p1(I ′, L′) =
∧

i∈[0,k−1)

(bi → hi ).

4 p2(I ′, L′) =
∧

i∈[0,k)

(bi → P(X i , Li )).

5 p3(I ′, L′) =
∧

i∈[1,k)

((¬bi−1 ∧ bi )→ R(Li )).

6 p4(I ′, L′) = bk−1.

• Saves the previous k − 1 observations;
with k initialisation bits

• The oldest state is discarded after each
transition; the youngest state unrolls
in the same way as the original one

• The property is composed of five
subproperties

Theorem The witness circuit C ′ simu-
lates the original circuit C .

Theorem Given a circuit C , a fixed
k ∈ N+, and its witness circuit C ′, P
is k-inductive in C if and only if P ′ is
1-inductive in C ′.
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Implementation: Certifaiger++

• Each component is independent of others

• Certification success: all seven checks pass

• Faulty witness generation?

• Certification on failure? (incorrect value of k)
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Experimental Results: bit level

• Hardware model checking competition
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Experimental Results: bit level
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Experimental Results: word level



11 / 12

Experimental Results: word level

• Number of bits = 500,
module bound = 32

• Value of k (= b −m + 1) scaled up to
1000

• model checking vs. certification time with
increasing values of k
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