Stratified Certification for k-Induction

Emily Yu¹, Nils Froleyks¹, Armin Biere², Keijo Heljanko³

¹Johannes Kepler University Linz, Austria
²Albert–Ludwigs–University, Freiburg, Germany
³University of Helsinki, Helsinki, Finland

FMVCAD 2022 Oct 18 - 21, 2022 Trento, Italy

Introduction

Certification of model checking

- Generic machine checkable certification is still in its infancy
 - proofs are mandatory in SAT competition
 - o currently not possible in hardware model checking competitions

Temporal induction/*k*-induction [SheeranSS00] as a powerful technique

- · Reduces model checking to a series of SAT problems
 - $\circ~$ highly integratable with modern SAT/SMT solvers
 - o also used in other contexts: infinite-state systems, SEC etc.
- State-of-the-art: certification of k-induction
 - only k-induction specific certificates (no inductive invariant) [Gurfinkell17]
 - exponential certificates [BjørnerGMR15]
 - one-alternation QBF [YuBH20]

Introduction

Our contribution

- Generic certification framework for k-induction-based model checking
 - generates seven SAT problems
 - o a simple inductive invariant as proof certificate
 - \circ linear to the circuit size and k
- A tool-suite CERTIFAIGER++
 - $\circ~$ extension of $_{\rm CERTIFAIGER}$
 - o independent of any (hardware) model checker
 - o compatible with modern k-induction-based model checkers
 - o evaluated empirically
- A word-level certifier CERTIFAIGER-WL
 - word-level certification

Circuits

Definition A circuit is a tuple C = (I, L, R, F, P) such that:

- *I* is a finite set of input variables.
- L is a finite set of latch variables.
- $R = \{r_l(L) \mid l \in L\}$ is a set of reset functions.
- $F = \{f_l(I, L) \mid I \in L\}$ is a set of transition functions.
- *P*(*I*, *L*) is a function that evaluates to a Boolean output, encoding the (good states) property.

Definition A circuit C = (I, L, R, F, P) is said to be **stratified** iff *R* is stratified.

- symbolic representation to reduce syntactic clutters
- compatible with AIGER format

Circuits

Definition Given C = (I, L, R, F, P) and C' = (I', L', R', F', P'), C' combinationally extends C if I = I' and $L \subseteq L'$.

• Allows us to interpret the inputs and latches of a circuit as being part of another circuit.

Definition Given two stratified circuits C and C', where C' combinationally extends C. There is a **stratified simulation** between C' and C iff,

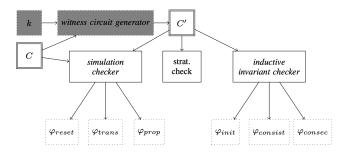
$ r_l(L) \equiv r'_l(L') \text{ for } l \in L, $	"reset"
2) $f_l(I,L) \equiv f_l'(I,L')$ for $I \in L$, and	"transition"
	"property"

• Can be verified by SAT checks.

Theorem Given two circuits C and C', where C' simulates C. If C' is safe, then C is also safe.

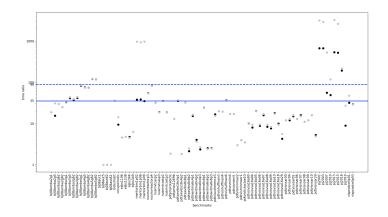
Certification: witness circuit

Definition Given a circuit C = (I, L, R, F, P), and $k \in \mathbb{N}^+$, the witness circuit C' = (I', L', R', F', P') of C is defined as follows: • I' = I. For simplicity we also refer to I' as X^{k-1} . Xⁱ is a copy of the original inputs, for all i ∈ [0, k − 2]. 2 Lⁱ is a copy of the original latches, for all i ∈ [0, k − 1]. B = { b^0, \dots, b^{k-1} } is the set of initialisation bits. 6 R' : • for $l \in L^{k-1}$, $r'_l = r_l(L^{k-1})$. • for $l \in L^0 \cup \cdots \cup L^{k-2} \cup X^0 \cup \cdots \cup X^{k-2}, r'_l = l$. • $r'_{bk-1} = \top$. • for $i \in [0, k - 1), r'_{ki} = \bot$. $F' = \{f'_i(I', L') \mid I \in L'\}$ is defined as follows: For i ∈ [0, k − 1), f'_i(l', L') = xⁱ⁺¹. 2 For $l \in L^{k-1}$, $f'_{l}(l', L') = f_{l}(X^{k-1}, L^{k-1})$. 3 For $i \in [0, k - 1)$, $f'_{ii}(I', L') = I^{i+1}$ 4 For $i \in [0, k - 1)$, $f'_{ki}(I', L') = b^{i+1}$, and $f'_{kk-1}(I', L') = b^{k-1}$ **6** The property P' is defined as $P'(I', L') = \bigwedge p_i(I', L')$ such that: 1 For $i \in [0, k - 1)$, $h^i = (L^{i+1} \simeq F(X^i, L^i))$. 2 $p_0(I', L') = \bigwedge (b^i \rightarrow b^{i+1})$ $i \in [0, k-1)$ $p_1(I', L') = \bigwedge (b^i \rightarrow h^i).$ $i \in [0, k-1)$ $p_2(I', L') = \bigwedge (b^i \rightarrow P(X^i, L^i))$ $i \in [0,k]$ 5 $p_3(I', L') = \land ((\neg b^{i-1} \land b^i) → R(L^i)).$ $i \in [1, k]$ 6 $p_4(I', L') = b^{k-1}$


- Saves the previous k 1 observations; with k initialisation bits
- The oldest state is discarded after each transition; the youngest state unrolls in the same way as the original one
- The property is composed of five subproperties

Theorem The witness circuit C' simulates the original circuit C.

Theorem Given a circuit C, a fixed $k \in \mathbb{N}^+$, and its witness circuit C', P is *k*-inductive in C if and only if P' is 1-inductive in C'.


Implementation: CERTIFAIGER++

- Each component is independent of others
- Certification success: all seven checks pass
- Faulty witness generation?
- Certification on failure? (incorrect value of k)

Experimental Results: bit level

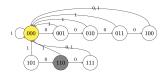
• Hardware model checking competition

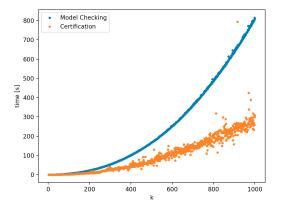
Experimental Results: bit level

	φ_{init}		$\varphi_{consist}$		φ_{consec}		φ_{trans}		φ_{prop}		φ_{reset}	
Benchmarks	t_1	t_2	t_1	t_2	t_1	t_2	t_1	t_2	t_1	t_2	t_1	t_2
c.periodic	7.78	0.06	0.06	0.06	56.82	56.29	0.15	0.14	0.05	0.05	84.04	0.00
n.guidance1	0.19	0.01	0.01	0.01	3.73	3.79	0.12	0.12	0.01	0.01	1.21	0.00
n.guidance7	4.09	0.02	0.02	0.02	18.40	18.17	0.12	0.12	0.02	0.02	25.22	0.00
n.tcasp ₂	0.17	0.01	0.01	0.01	2.64	2.68	0.23	0.23	0.01	0.02	1.79	0.00
n.tcasp ₃	0.11	0.01	0.01	0.01	1.82	1.70	0.23	0.26	0.02	0.02	1.01	0.00
v.prodcell ₁₂	2.35	0.03	0.03	0.03	59.05	59.22	0.12	0.12	0.03	0.03	8.48	0.00
v.prodcell ₁₃	0.22	0.01	0.01	0.01	2.99	2.99	0.12	0.12	0.01	0.01	0.20	0.00
v.prodcell ₁₄	0.64	0.02	0.02	0.02	13.69	13.69	0.12	0.12	0.02	0.02	1.45	0.00
v.prodcell ₁₅	2.22	0.02	0.03	0.03	32.66	32.28	0.12	0.12	0.02	0.02	2.26	0.00
v.prodcell ₁₆	0.01	0.01	0.01	0.01	1.19	1.20	0.12	0.12	0.01	0.01	0.06	0.00
v.prodcell ₁₇	2.34	0.03	0.03	0.03	48.51	48.17	0.12	0.12	0.03	0.03	6.86	0.00
v.prodcell ₁₈	0.67	0.01	0.01	0.01	8.67	8.78	0.12	0.12	0.02	0.02	0.79	0.00
v.prodcell ₁₉	1.66	0.02	0.02	0.03	31.98	31.78	0.12	0.12	0.03	0.03	3.73	0.00
v.prodcell ₂₄	3.32	0.04	0.04	0.04	112.12	115.18	0.12	0.12	0.04	0.04	17.64	0.00

TABLE I: Summary of certification results for the bit-level TIP suite.

Experimental Results: word level


Benchmarks	k	#model	#witness	ModelCh.	Certifi.	Consec.	Ratio
paper_v3	256	35	12801	10.25	1.14	0.90	0.11
VexRiscv-regch0-15-p0	17	2149	43077	10.31	4.04	3.29	0.39
zipcpu-pfcache-p02	37	1818	105874	13.95	4.40	2.73	0.32
zipcpu-pfcache-p24	37	1818	105874	14.35	4.49	2.83	0.31
zipcpu-busdelay-p43	101	950	145466	15.29	6.14	3.86	0.40
dspfilters_fastfir_second-p42	15	6732	115388	16.11	14.80	12.96	0.92
zipcpu-pfcache-p01	41	1818	117434	18.33	6.34	4.47	0.35
dspfilters_fastfir_second-p10	11	6732	84348	24.56	9.76	8.44	0.40
zipcpu-busdelay-p15	101	950	145466	58.17	8.18	5.89	0.14
qspiflash_dualflexpress_divfive-p120	97	3100	394412	63.58	22.07	14.58	0.35
zipcpu-pfcache-p22	93	1818	267714	166.07	23.66	19.06	0.14
VexRiscv-regch0-20-p0	22	2149	55862	240.50	16.76	15.76	0.07
dspfilters_fastfir_second-p14	15	6732	115388	354.01	21.27	19.44	0.06
dspfilters_fastfir_second-p11	21	6732	161948	627.69	46.88	44.30	0.07
dspfilters_fastfir_second-p45	17	6732	130908	1094.11	30.14	28.06	0.03
VexRiscv-regch0-30-p1	32	2150	81464	1444.47	83.38	81.95	0.06
dspfilters_fastfir_second-p43	19	6732	146428	2813.61	58.02	55.69	0.02


TABLE II: Summary of certification results word-level benchmarks from the HWMCC20

Experimental Results: word level

- Number of bits = 500, module bound = 32
- Value of $k \ (= b m + 1)$ scaled up to 1000
- model checking vs. certification time with increasing values of k

References

- Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction and a SAT-solver. In: FMCAD. Lecture Notes in Computer Science, vol. 1954, pp. 108–125. Springer (2000)
- Gurfinkel, A., Ivrii, A.: K-induction without unrolling. In: FMCAD. pp. 148–155. IEEE (2017)
- N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko, "Horn Clause Solvers for Program Verification," in Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, 2015, pp. 24–51. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-23534-9 2
- Biere, A., Brummayer, R.: Consistency checking of all different constraints over bit-vectors within a SAT solver. In: FMCAD. pp. 1–4. IEEE (2008)
- E. Yu, A. Biere, and K. Heljanko, "Progress in certifying hardware model checking results," in CAV (2), ser. Lecture Notes in Computer Science, vol. 12760. Springer, 2021, pp. 363–386.

