Synthesizing Self-Stabilizing Parameterized Protocols with Unbounded Variables

Ali Ebnenasir aebnenas@mtu.edu

Department of Computer Science College of Computing Michigan Technological University Houghton MI 49931

http://asd.cs.mtu.edu/

Self-Stabilization

"The ability of a distributed system to resume its legal behavior in a finite number of steps regardless of its initial configuration/state" [Dijkstra'74, Arora and Gouda'93]

Self-stabilization = closure + convergence

[1] E. W. Dijkstra, **Self-stabilizing systems in spite of distributed control**. *Communications of the ACM*, vol. 17, no. 11, pp. 643-644, 1974

[2] A. Arora and M. Gouda, Closure and Convergence: A foundation of fault-tolerant computing. *IEEE Transactions on Software Engineering*, vol 19, no. 11, pp. 1015-1027, 1993.

legitimate states

Illegitimate states

Modeling Parameterized Distributed Protocols (PDP)

Problem Statement

• From any global state, the entire ring eventually converges to a global state in I; i.e., global liveness.

Example: Parity Protocol

Starting from any state, the <u>symmetric ring</u> reaches states where all processes agree on a common odd/even parity.

$$I = \forall i \in \mathcal{N}: L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0) \text{ and } x_i \in \mathcal{N}$$

Graph-Theoretic Representations

- A goal: Facilitate reasoning in the local state space of the template process; i.e., local reasoning for global correctness.
 - State predicates → Locality Graph
 - Parameterized Actions → Action Graph

Locality Graph of Parity Protocol

- Vertices: values in domain of x_i
- Arcs: there is an arc from vertex a to b iff L(a, b) holds.

$$I = \forall i \in \mathbb{Z}_N : L(\mathbf{x}_{i-1}, \mathbf{x}_i)$$
 where $L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i|) \approx (|\mathbf{x}_{i-1} - \mathbf{x}_i$

Locality Graph of Parity Protocol

- Vertices: values in domain of x_i
- Arcs: there is an arc from vertex a to b iff L(a, b) holds.

$$I = \forall i \in \mathbb{Z}^+ : L(\mathbf{x}_{i-1}, \mathbf{x}_i) \text{ where } L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i| \%2 = 0)$$

 $\mathbf{x}_i \in \mathbb{Z}_3 = \{0, 1, 2\}$

Locality Graph of Parity Protocol

- Vertices: values in domain of x_i
- Arcs: there is an arc from vertex a to b iff L(a, b) holds.

$$\mathbb{Z} = \forall i \in \mathbb{Z}^+ : L(\mathbf{x}_{i-1}, \mathbf{x}_i) \text{ where } L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i| \%2 = 0)$$

 $\mathbf{x}_i \in \mathbb{Z}_4 = \{0, 1, 2, 3\}$

Action Graph of Parity Protocol

- Vertices: values in domain of x_i
- Labeled arcs: there is an arc from vertex a to c with a label b iff there is an action $x_{i-1} = a \land x_i = b \rightarrow x_i := c$.

$$\mathbb{Z} = \forall i \in \mathbb{Z}^+ : L(\mathbf{x}_{i-1}, \mathbf{x}_i) \text{ where } L(\mathbf{x}_{i-1}, \mathbf{x}_i) \equiv (|\mathbf{x}_{i-1} - \mathbf{x}_i| \%2 = 0)$$

 $\mathbf{x}_i \in \mathbb{Z}_3 = \{0, 1, 2\}$

$$x_{i-1} = 1 \wedge x_i = 2 \rightarrow x_i := 0$$

$$x_{i-1} = 2 \wedge x_i = 1 \rightarrow x_i := 0$$

$$x_{i-1} = 0 \land x_i = 1 \rightarrow x_i := 0$$

Each labeled arc is an atomic action

set/update X_i to

Synthesis of Constant-Space Parameterized Protocols

Theorem: [IEEE TSE 2019]

Synthesizing SS parameterizes protocols on symmetric uni-rings is decidable for deterministic, constant-space and self-disabling processes.

Theorem: (necessary and sufficient condition) [IEEE TSE 2019]

There is a PDP p that self-stabilizes to $I = \forall i \in \mathcal{N}$: $L(x_{i-1}, x_i)$

if and only if

There is some value γ in the domain of x_i such that $L(\gamma, \gamma)$ holds, and the action graph of p is a directed spanning tree rooted at γ .

Synthesis for Constant Space

Example: Agree on a common Parity in uni-ring

$$\mathbb{Z} = \forall i \in \mathbb{Z}^+ : L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0) \ x_i \in \mathbb{Z}_3 = \{0, 1, 2\}$$

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, **Topology-specific synthesis of self stabilizing parameterized systems with constant-space processes**, *IEEE Transactions on Software Engineering*, vol. 47, no. 3, pp. 614–629, 2019.

How to synthesize in unbounded domain?

How to synthesize in unbounded domain?

- Is there a mathematical structure that can generalize such an unbounded set of spanning trees?
- What properties should the unbounded set of spanning trees have so there is a solution?

The spanning trees should grow in a periodic way, eventually forming an unbounded tree.

Linear and Semilinear Sets

- A vector of non-negative integers with dimension d≥1 is a tuple (a₁, a₂, ..., a_d) ∈ N^d where a_i ∈ N for 1 ≤ i ≤ d
- A non-empty subset of N^d is linear if it can be represented as a periodic set of vectors
 - $\mathcal{Z} = \{v_b + \Sigma_{i=1}^n \lambda_i p_i : \lambda_i \in \mathcal{N}\}$ where v_b is the <u>base vector</u> and $\{p_1, p_2, ..., p_n\}$ (n≥1) in \mathcal{N}^d is a finite set of <u>period vectors</u>.
- A semilinear set is a finite union of some linear sets.
 - Semilinear sets are Presburger-definable. [Ginsburg & Spanier 1964]

Sufficient Condition for Solvability

- Theorem: (sufficiency)
 - IF the arcs of a γ-rooted unbounded tree for domain sizes k ≥ M represent a semilinear set,
 - THEN there is a symmetric protocol p that self-stabilizes to I regardless of
 - the ring size,
 - and variable domain size.

Overview of the Synthesis Algorithm

action:
$$\varphi(x_{i-1}) \land \neg L(x_{i-1}, x_i) \land \neg \psi(x_{i-1}, x_i) \rightarrow x_i := \psi_{x'i}(x_{i-1})$$

Generating Semilinear Sets

Finding the Starting Domain Size

- Step 1: Search for some domain size M for which there is a γ such that $L(\gamma, \gamma)$ holds and there are solutions modulo M and M+1.
 - Conduct this search up to some upper bound B.

Example: Parity Protocol

Example: Agree on a common Parity in uni-ring

$$I = \forall i \in \mathcal{N} : L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0)$$

 $x_i \in \mathcal{N}$

M=3

Locality graph

Action graph

Example: Parity Protocol

Example: Agree on a common Parity in uni-ring

$$I = \forall i \in \mathcal{N} : L(x_{i-1}, x_i) \text{ where } L(x_{i-1}, x_i) \equiv (|x_{i-1} - x_i| \%2 = 0)$$

 $x_i \in \mathcal{N}$

M=4

Action graph

Computing the Common Core

 Step 2: Compute the Common Core (CC) by taking the intersection of two vector sets

Compute the Set of Connecting Vertices

- Step 3: Compute the set of vertices $U=\{u \mid L(v_M, u) \text{ holds}\}\$ where v_M is the new node due to domain size increase.
 - E.g., Parity $L(x_{i-1}, x_i) \equiv (|x_{i-1} x_i| \%2 = 0)$ and $v_M = 3$

Extending the Common Core

Compute the Set of Connecting Vertices

- Step 3: Compute the set of vertices $U=\{u \mid L(v_M, u) \text{ holds}\}\$ where v_M is the new node due to domain size increase.
 - E.g., Parity $L(x_{i-1}, x_i) \equiv (|x_{i-1} x_i| \%2 = 0)$ and $v_M = 3$

Extending the Common Core

Compute the Unbounded Core

 Step 4: Select some vertex w in U and set the base vector to (v_M, w) and the period vector to (1,1)

Linear set of Unbounded Core = $\{(v_M, w) + \lambda(1,1) : \lambda \in \mathcal{N}\}$ Linear set of Common Core = $\{(0, 0), (1,0), (2,0)\}$

Compute the Unbounded Core

- Step 4: Select some vertex w in U and set the base vector to (v_M, w) and the period vector to (1,1)
 - If $U = \Phi$, set the base vector to (v_M, γ) and the period vector to (1,0)

Linear set of Unbounded Core = $\{(v_M, w) + \lambda(1,1) : \lambda \in \mathcal{N}\}$ Linear set of Common Core = $\{(0, 0), (1,0), (2,0)\}$

Linear Sets of Parity Example

- $CC = \{(0, 0), (1,0), (2,0)\}$
 - Each vector in CC is a linear set
 - Linear set $1 = \{(0, 0)\}$
 - Linear set $2 = \{(1, 0)\}$
 - Linear set $3 = \{(2, 0)\}$

• **UC** =
$$\{(3, 1) + \lambda (1,1) : \lambda \in \mathcal{N}\} = \{(3,1), (4,2), (5,3), ...\}$$

Specifying Linear Sets as Presburger Formulas

A Linear Set as An Action

Step 5: Linear set
 \(\mu\) with base vector (b,b'), and period vector (p,p').

- Represent \(\mathcal{L} \) as a parameterized action with unbounded variables
- General format of a parameterized action in a uni-ring:

```
(Value of x_{i-1} in my predecessor) AND  (\neg L(x_{i-1}, x_i)) \text{ AND (relation of } x_i \text{ and } x_{i-1} \text{ that triggers the action)} \rightarrow \text{How } x_i \text{ should be updated}
```

Extract Three Formulas From Each Linear Set

Step 5: Linear set \(\mathcal{L} \) with base vector (b,b'), and period vector (p,p').

$$\mathcal{Z} = \{(x_{i-1}, x'_i) \mid (x_{i-1} = b + \lambda p) \land (x'_i = b' + \lambda p') : \lambda \in \mathcal{N}\}$$

 x_{i-1} : value of predecessor and x'_i : updated value of x_i

- $\phi(x_{i-1}) \equiv (x_{i-1} = b + \lambda p)$ // Predecessor's value before taking an action
- Relation between x_{i-1} and x'_{i} , denoted $\psi(x_{i-1}, x'_{i})$, that should be established:

$$\psi(x_{i-1}, x'_i) \equiv (x'_i = x_{i-1} + (b'-b) + \lambda(p'-p))$$

$$\psi(x_{i-1}, x_i) \equiv (x_i = x_{i-1} + (b'-b) + \lambda(p'-p))$$

Factor out x';:

$$\psi_{x'i}(x_{i-1}) \equiv x_{i-1} + (b'-b) + \lambda(p'-p)$$
 // Expression that should be assigned to x_i

Action:
$$\phi(x_{i-1}) \land \neg L(x_{i-1}, x_i) \land \neg \psi(x_{i-1}, x_i) \rightarrow x_i := \psi_{x'i}(x_{i-1})$$

Linear Sets of Parity Example

• UC ={
$$(x_{i-1}, x'_i) | (x_{i-1} = 3 + \lambda) \land (x'_i = 1 + \lambda) : \lambda \in \mathcal{N}$$
} = { $(3, 1) + \lambda (1, 1) : \lambda \in \mathcal{N}$ } = { $(3, 1), (4, 2), (5, 3), ...$ }

• Formulas:

- $\varphi(x_{i-1}) \equiv (x_{i-1} = 3 + \lambda) \equiv (x_{i-1} \ge 3)$
- $\psi(x_{i-1}, x'_i) \equiv (x'_i = x_{i-1} + (b'-b) + \lambda(p'-p)) \equiv (x'_i = x_{i-1} + (1-3) + \lambda(1-1))$
 - $\psi(x_{i-1}, x_i') \equiv (x_i' = x_{i-1} 2)$ // Thus, the action assignment is $x_i := x_{i-1} 2$ and self-disabling constraint $(x_i \neq x_{i-1} 2)$
- $\psi_{x'i}(x_{i-1}) \equiv (x_{i-1} 2)$

Action:
$$\phi(x_{i-1}) \land \neg L(x_{i-1}, x_i) \land \neg \psi(x_{i-1}, x_i) \rightarrow x_i := \psi_{x'i}(x_{i-1})$$

$$(x_{i-1} \ge 3) \land (|x_{i-1} - x_i| \%2 \ne 0) \land (x_i \ne x_{i-1} - 2) \rightarrow x_i := x_{i-1} - 2$$

Actions of Parity Example

- Self-stabilizing Parity protocol:
 - 1. Action synthesized corresponding to the first three linear sets in the common core CC:

$$(x_{i-1} \le 2) \land (|x_{i-1} - x_i| \%2 \ne 0) \land (x_i \ne 0) \rightarrow x_i := 0$$

2. Action synthesized corresponding to the linear set of the unbounded core UC:

$$(x_{i-1} \ge 3) \land (|x_{i-1} - x_i| \%2 \ne 0) \land (x_i \ne x_{i-1} - 2) \rightarrow x_i := x_{i-1} - 2$$

More examples in the paper and tech report.

Linear and Semilinear Sets

- When variable domains are unbounded:
 - a parameterized action is captured by a linear set, and
 - the template process is represented by a semilinear set.

Related Work

- Verification and Synthesis (V&S) of PDS are in general undecidable problems.
- Existing methods:
 - Pairwise synthesis: safety properties and local liveness in symmetric systems [Attie and Emerson 1998]
 - Abstraction methods: create finite approximations of PDS (e.g., counter abstraction) and conduct verification [Pnueli et al. 2002]
 - Regular model checking: use regular languages to model PDS [Abdulla et al. 2004]
 - Invisible invariants/ranking: generate implicit local invariants and generalize [Fang et al. 2006]
 - Network invariants: prove safety by parallel compositions that are invariant to correctness [Wolper and Lovinfosse 1989]
 - Parameterized synthesis: based on small model theorems (i.e., cutoff) and SMTbased bounded synthesis [Jacobs and Bloem 2012]
 - Well-founded proof spaces: prove safety and liveness of infinite traces by showing that traces terminate [Farzan et al. 2016]
 - Synthesis of Threshold Automata (TA): complete sketches of TA using counter abstraction [Lazi et al. 2018

Mostly focus on safety and local liveness under restrictive assumptions (e.g., fair scheduling).

Contributions

- Utilize semilinear sets for synthesis of unbounded SS PDP on uni-rings
- Sufficient condition for synthesis of SS PDP on uni-rings with
 - unbounded number of processes, and
 - unbounded variable domains.
- A sound synthesis algorithm

Open Problems

- A foundation for synthesis of unbounded parametrized protocols using semilinear sets
 - Other topologies, both uni-directional and bi-directional
- Parameterized protocols with multiple families of symmetric processes (e.g., Dijkstra's token passing)
- Composition of elementary topologies

Thank you.

- Acknowledgement
 - Former graduate students:
 - Dr. Alex Klinkhamer
 - Google (Mountain View, CA)
 - Dr. Aly Farahat
 - Intuitive Surgical Inc. (Bay Area, CA)
 - Dr. Amer Tahat
 - Pennsylvania State University
 - Several other M.Sc. students
 - NSF grants CCF-1116546 and CCF-0950678
 - Michigan Tech's Research Excellence Fund