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Self-Stabilization

“The ability of a distributed system to resume its legal behavior in a finite number of
steps regardless of its initial configuration/state” [Dijkstra'74, Arora and Gouda'93]

Legitimate States (Invariant)

] 29
transient fault o

Self-stabilization = closure + convergence

legitimate states

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control. Communications of the
ACM, vol. 17, no. 11, pp. 643-644, 1974 lllegitimate states

[2] A. Arora and M. Gouda, Closure and Convergence: A foundation of fault-tolerant computing.
IEEE Transactions on Software Engineering, vol 19, no. 11, pp. 1015-1027, 1993.




Modeling
Parameterized Distributed Protocols (PDP)

Dijkstra’s token passing:
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7t,. Template process 2«
Actiong @ Xy = Xy 2> Xp = Xngq t

- Process P, has a variable x; € Zy ={0, 1, ...

- N denotes the total number of processes
- Addition and subtraction are done in modulo N
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self-disabling actions
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1. Template process 1
Action; :  x; # x;.4 2 X; = X4

Legend: o

Q Process/Node

— > Read from Family 1: N-1 symmetric processes




Problem Statement
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I =Vi € N:L(Xpq,X;)
Variable x; has
unbounded domain \

Synthesis Algorithm for
Symmetric Uni-Ring

~

Parameterized

Actions
>

J

self-stabilizing for

1. an arbitrary number of
processes, and

2. unbounded domain
sizes.

 From any global state, the entire ring eventually converges to a global
state in 7 ; i.e., global liveness.



Example: Parity Protocol

Starting from any state, the symmetric ring reaches states
where all processes agree on a common odd/even parity.

J=Vi € N:L(X.1, X ) where L(x.,x)= (x4 -x| %2=0) and X; € N

1 =Vi € N (X4 - X|| %2 =0)

Variable x;

ﬁ

—
L(Xiq1,X)=
(Ixi1 - X{| %2 =0)

Synthesis
Algorithm

Parameterized

Actions
—p




Graph-Theoretic Representations

« A goal: Facilitate reasoning in the local state space of the
template process; i.e., local reasoning for global correctness.

— State predicates — Locality Graph
— Parameterized Actions — Action Graph



Locality Graph of Parity Protocol

- Vertices: values in domain of x;
_ Arcs: there is an arc from vertex a to b iff L(a, b) holds.

I=Vi €Zy:L(X.1,X;) where L(x.q,x;)= (|1 - x| %2 =0)

X; € Z3={0, 1, 2}; i.e., constant-space processes

L(0, 0) L(1,1)

L(0, 1) = false




Locality Graph of Parity Protocol

- Vertices: values in domain of x,;
_ Arcs: there is an arc from vertex a to b iff L(a, b) holds.

J=Vi € Z*:L(X.1, X;) where L(x.,,x;) = (Ix.q - x| %2 =0)
X; € Z53={0, 1, 2}

<



Locality Graph of Parity Protocol

- Vertices: values in domain of x;

_ Arcs: there is an arc from vertex a to b iff L(a, b) holds.

J=Vi € Z*: L(X.1, X;) where L(x.,,x;)= (X1 - x| %2 =0)
X, € Z,={0,1, 2, 3}

o



Action Graph of Parity Protocol

Vertices: values in domain of x;

Labeled arcs: there is an arc from vertex a to ¢ with a label
b iff there is an actionx_,=a A x,=b — X :=cC.

J=Vi € Z*: L(X.1, X;) where L(x.,,x;) = (X1 - x| %2 =0)

X; € Z3={0, 1, 2}
set/update X; to

Xi_1=1AXi=2 — Xi :=0

2+
X4=2A =1 — x:=0 @‘\ /Xi-1
Xi_1:O/\ Xi:1 — X|:O 1 @

Each labeled arc is an atomic action ,
Action graph



Synthesis of Constant-Space
Parameterized Protocols

e Iheorem: [IEEE TSE 2019]

Synthesizing SS parameterizes protocols on symmetric uni-rings is decidable for
deterministic, constant-space and self-disabling processes.

e [heorem: (necessary and sufficient condition) peee tse 2019
There is a PDP p that self-stabilizes to 7 = Vi € n: L(X.q, X;)

If and only if

There is some value y in the domain of x; such that L(y, y) holds, and the
action graph of pis a directed spanning tree rooted at y.

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, Topology-specific synthesis of self stabilizing parameterized systems with constant-
space processes, IEEE Transactions on Software Engineering, vol. 47, no. 3, pp. 614—-629, 2019.



Synthesis for Constant Space

Example: Agree on a common Parity in uni-ring
J=VYi € 7Z*:L(Xpq,X;) where L(x.q,X )= (|x.q-Xx] %2=0) x; € Z3={0, 1, 2}

X; € Z3={O, 1, 2}

‘ Locality graph

ﬁ

4 )

Synthesis
Algorithm
for
Constant-
Space
Uni-Ring

[TSE 2019]
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Action graph

Parameterized actions:
Xi_1=1/\Xi=2 — Xi :=0

Xi—‘l=2/\ Xi=1 — Xi:=0

N\ J

Xi1=0A x=1 — x :=0

[TSE 2019] Ali Ebnenasir and Alex Klinkhamer, Topology-specific synthesis of self stabilizing parameterized systems with constant-
space processes, |[EEE Transactions on Software Engineering, vol. 47, no. 3, pp. 614-629, 2019.



Locality/Action graphs are good for constant-space processes.
What if the variable domain is unbounded?



How to synthesize in unbounded

domain?
M:=2 €
Enumerate and generalize? v
/ PN 1 \
o | ‘2\
- .. I 0
a 8“ | O
Y
{TO’ Tq, Tp, T3, } et | Print action graph




How to synthesize in unbounded
domain?

e Is there a mathematical structure that can generalize such an
unbounded set of spanning trees?

o What properties should the unbounded set of spanning trees
have so there is a solution?

The spanning trees should grow in a periodic way, eventually forming an
unbounded tree.



Linear and Semilinear Sets

e A vector of non-negative integers with dimension d=1 is a
tuple (a4, a,, ..., a4) € Ndwherea,€ yfor 1<isd

e A non-empty subset of A9 is linear if it can be represented
as a periodic set of vectors

L={vp+ 24 A pi : A € N} where v, is the base vector and
{D1, Pos ..., Pn} (n21) in AT is a finite set of period vectors.

e A semilinear set is a finite union of some linear sets.

e Semilinear sets are Presburger-definable. [Ginsburg & Spanier 1964]

S. Ginsburg and E. H. Spanier, “Bounded algol-like languages,” Transactions of the American Mathematical Society, vol. 113, no. 2, pp. 333-368, 1964.



Sufficient Condition for Solvability

e [heorem: (sufficiency)
e IF the arcs of a y-rooted unbounded tree for domain sizes k =2 M
represent a semilinear set,
e THEN there is a symmetric protocol p that self-stabilizes to 7
regardless of
e thering size,

e and variable domain size.



Overview of the Synthesis Algorithm
l L(X.15 X;)

Gen_LinearSets Algorithm _ Main
(Theorem I11.1 and Algorithm 3) contributions

Each linear set as
Presburger formulas

@(x.1), Y(Xi.1,Xx') and
v LIJX'i(Xi-l)

/ Gen_Actions Algorithm \

_____________________________________________________________________________________________

Generate Guard

O(x; ) N L(Xi g, X) A TY(X g, X))

_____________________________________________________________________________________________

______________________________________________________________________________________________

action: @(x.;) N L(Xip, X)) A W(Xi, X)) = X = WeiXi)



Generating Semilinear Sets



Finding the Starting Domain Size

e Step 1: Search for some domain size M for which there is a y
such that L(y , y) holds and there are solutions modulo M and
M+1.

e Conduct this search up to some upper bound <.



Example: Parity Protocol

Example: Agree on a common Parity in uni-ring
I=vi € N:L(X.1,X;) where L(x.,x;) = (1.1 - x| %2 =0)
Xj €N

ONRG T
&

Locality graph Action graph



Example: Parity Protocol

Example: Agree on a common Parity in uni-ring
I=vi € N:L(X.1,X;) where L(x.,x;) = (1.1 - x| %2 =0)
Xj €N

M=4
113
.- :
@ @
113 0|2
S

Locality graph

Action graph



Computing the Common Core

o Step 2: Compute the Common Core (CC) by taking the
intersection of two vector sets

O

@vﬁgommon Core

Action graph for M=3 Action grasﬁ“"fog M=4
vector set {(0, 0), (1,0), (2,0)} vector set {(0, 0), (1,0), (2,0), (3,1)}



Compute the Set of Connecting Vertices

o Step 3: Compute the set of vertices U={u | L(v),, u) holds}
where v,, is the new node due to domain size increase.

o Eg, Panty L( i-1 s Xi) - (lXI'_1 - X,‘l %2 —0) and VM - 3

S

L(3, 0) = false

L(3, 2) = false

Extending the Common Core



Compute the Set of Connecting Vertices

o Step 3: Compute the set of vertices U={u | L(vy, u) holds;}
where v\, is the new node due to domain size increase.

e E.Q., Parity L(X.1, X;) = (|X.1 - X| %2 =0) and v\, =3

Extending the Common Core



Compute the Unbounded Core

o Step 4: Select some vertex w in U and set the base vector to
(vy , W) and the period vector to (1,1)

Base vector (3,1). @
Period vector (1,1).
U={1}, w=1

vy = 3

Linear set of Unbounded Core ={(vy,, W)+ A(1,1): A €N}
Linear set of Common Core = { (0, 0), (1,0), (2,0)}



Compute the Unbounded Core

o Step 4: Select some vertex w in U and set the base vector to
(vy , W) and the period vector to (1,1)

o IfU=Q, setthe base vector to (v, y) and the period vector to (1,0)
vy = 4 :

Linear set of Unbounded Core = {(vyy , W)+ A(1,1): A € N}
Linear set of Common Core = { (0, 0), (1,0), (2,0)}

Base vector (3,1).
Period vector (1,1).




Linear Sets of Parity Example
e CC={(0,0),(1,0), (2,0)}

e Each vectorin CC is a linear set
e Linearset1={(0, 0)}
e Linearset2={(1, 0)}
e Linearset3={(2, 0)}

e UC={3,1)+ A(1,1): A €A} ={(@B,1), 4,2, (5,3), ...}

S

Base vector (3,1).
Period vector (1,1).

(4)-




Specifying Linear Sets as
Presburger Formulas



A Linear Set as An Action

o Step 5: Linear set 2 with base vector (b,b'), and period vector (p,p').

L ={(Xi1, X5) | Xy =b + Ap) A (X = D"+ Ap') 1 A €N}

Xi.1. value of predecessor and x';: updated value of x;

e Represent z as a parameterized action with unbounded variables

e General format of a parameterized action in a uni-ring:

(Value of x;.4 in my predecessor) AND

(7L(xi.1, X)) AND (relation of x; and x;_4 that triggers the action) —  How x; should be updated



Extract Three Formulas
From Each Linear Set

o Step 5: Linear set 7 with base vector (b,b'), and period vector (p,p').

L = {(Xi, X5) | Xy = b+ Ap) A (X5 =D+ Ap') 1 A €N}
X;.1: value of predecessor and x': updated value of x;
e O(X.1) = (X.q = b + AP) // Predecessor's value before taking an action
e Relation between x;; and x',, denoted y(x,4, X',), that should be established:
W(Xi.1, X5) = (X=X 4 + (b= b) + A(p™- p))
WX, X)) = (%= X4+ (b™-b) + A(p- p))
e Factor out x';:

W,i(Xiq) = X4 + (b'- D) + A(p'- p) // Expression that should be assigned to x;

Action: @(xi.1) A TL(Xiq 5 X)) A TW(Xiq, Xi)  — X 1T Wyi(Xiq)



Linear Sets of Parity Example

o UC={(Xi4,X))|(X1=3+ MAKXi=1T+A)INEN}=
{B,1)+ A(,1): A €A} = {3,1), 4,2, (5,3), ...}

e Formulas:
o O(X)E(Xy=3+ A= (x423)
o W(X.q, X5) =(Xi=Xq +(b-b)+A(p™-p)) = (X=X +(1-3) + A(1-1))

W(Xiq, X4) = (X',= X4 - 2) // Thus, the action assignment is x; := x;., - 2 and self-disabling
constraint (x; # X;.4 - 2)

o WyilXiq) E (X1 - 2)

Action: @(Xi.1) A 7L(Xiq1 5 X) A TP(Xig, Xi)  — X 1= Wyi(Xiq)

(Xig 2 3) A (X1 =X D02 #0) A (X # X4 - 2) = X 1= Xiq -2



Actions of Parity Example

o Self-stabilizing Parity protocol:

1. Action synthesized corresponding to the first three linear
sets in the common core CC:

(X1 <2)A(|Xq-X]| %2#0) A (X,70) - x,:= 0

2. Action synthesized corresponding to the linear set of the
unbounded core UC:

(Xig 2 3) A ([Xiq - X o2 #0) A (X # X -2) — X 1= Xiq -2

More examples in the paper and tech report.



Linear and Semilinear Sets

e \When variable domains are unbounded:

e a parameterized action is captured by a linear set, and

e the template process is represented by a semilinear set.



Related Work

» Verification and Synthesis (V&S) of PDS are in general undecidable problems.
« Existing methods:

Pairwise synthesis: safety properties and local liveness in symmetric systems [Attie
and Emerson 1998]

Abstraction methods: create finite approximations of PDS (e.g., counter abstraction)
and conduct verification [Pnueli et al. 2002]

Regular model checking: use regular languages to model PDS [Abdulla et al. 2004]

Invisible invariants/ranking: generate implicit local invariants and generalize [Fang et
al. 2006]

Network invariants: prove safety by parallel compositions that are invariant to
correctness [Wolper and Lovinfosse 1989]

Parameterized synthesis: based on small model theorems (i.e., cutoff) and SMT-
based bounded synthesis [Jacobs and Bloem 2012]

Well-founded proof spaces: prove safety and liveness of infinite traces by showing
that traces terminate [Farzan et al. 2016]

Synthesis of Threshold Automata (TA): complete sketches of TA using counter
abstraction [Lazi et al. 2018

Mostly focus on safety and local liveness under restrictive assumptions (e.g., fair
scheduling).



Contributions

o Ultilize semilinear sets for synthesis of unbounded SS PDP on
uni-rings

o Sufficient condition for synthesis of SS PDP on uni-rings with
e unbounded number of processes, and
e unbounded variable domains.

e A sound synthesis algorithm



Open Problems

o A foundation for synthesis of unbounded parametrized
protocols using semilinear sets

e Other topologies, both uni-directional and bi-directional

o Parameterized protocols with multiple families of symmetric
processes (e.g., Dijkstra’s token passing)

e Composition of elementary topologies



Thank you.

* Acknowledgement

— Former graduate students:

« Dr. Alex Klinkhamer
— Google (Mountain View, CA)

* Dr. Aly Farahat
— Intuitive Surgical Inc. (Bay Area, CA)

 Dr. Amer Tahat

— Pennsylvania State University
« Several other M.Sc. students

— NSF grants CCF-1116546 and CCF-0950678
— Michigan Tech's Research Excellence Fund



