Automatic Repair and Deadlock Detection for Parameterized Systems

Swen Jacobs¹ Mouhammad Sakr² Marcus Völp²

¹CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

²SnT, University of Luxembourg, Luxembourg

October 19, 2022

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu

source: Meratnia et al.

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu

source: Meratnia et al.

Hard to get right...

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu

source: Meratnia et al.

Hard to get right...

The parameterized model checking problem (PMCP) is to decide whether a temporal logic property is true for every size instance of a given system.

Concurrent and Parameterized Systems

undecidable

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu

source: Meratnia et al.

Hard to get right...

The parameterized model checking problem (PMCP) is to decide whether a temporal logic property is true for every size instance of a given system.

Concurrent and Parameterized Systems

undecidable

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk


```
source: mtu.edu
```



```
source: Meratnia et al.
```

Hard to get right...

Homogeneous processes and have finite state space.

The parameterized model checking problem (PMCP) is to decide whether a temporal logic property is true for every size instance of a given system.

Concurrent and Parameterized Systems

decidable classes

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu


```
source: Meratnia et al.
```

Hard to get right...

Homogeneous processes and have finite state space.

The parameterized model checking problem (PMCP) is to decide whether a temporal logic property is true for every size instance of a given system.

Safety Prop. YesĒ. \rightarrow Repair Internal Behavior \rightarrow Repair Communication Parameterized MC No + CE $\forall n$ Repair

Safety Prop.

Safety Prop.

Safety Prop.

The repair problem is, for a given process implementation, to find a **refinement** such that a given safety property is satisfied.

Model M

 $\begin{array}{c} \text{Model M} \\ \downarrow \\ \text{Model Check } M \end{array}$

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

 $(q_0, q_0, q_0, q_0, q_0) \to (5, 0, 0)$

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

 $(q_0, q_0, q_0, q_0, q_0) \to (5, 0, 0)$

 $(q_0, q_0, q_0, q_0, q_2) \to (4, 0, 1)$

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

 $(q_0, q_0, q_0, q_0, q_0) \to (5, 0, 0)$

 $(q_0, q_0, q_0, q_0, q_2) \to (4, 0, 1)$

 $(q_1, q_0, q_2, q_2, q_1) \to (1, 2, 2)$

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

 $(q_0, q_0, q_0, q_0, q_0) \to (5, 0, 0)$ $(q_0, q_0, q_0, q_0, q_2) \to (4, 0, 1)$ $(q_1, q_0, q_2, q_2, q_1) \to (1, 2, 2)$

 $q_0 \to q_1$ then $(5, 0, 0) \to (4, 1, 0)$

Counter System

Idea: keep track of <u>how many processes</u> are in each local state.

 $(q_0, q_0, q_0, q_0, q_0) \rightarrow (5, 0, 0)$ $(q_0, q_0, q_0, q_0, q_2) \rightarrow (4, 0, 1)$ $(q_1, q_0, q_2, q_2, q_1) \rightarrow (1, 2, 2)$

 $q_0 \to q_1$ then $(5, 0, 0) \to (4, 1, 0)$

PMC: WSTS

Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is compatible/monotonic with the transition relation of M.

PMC: WSTS

Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is compatible/monotonic with the transition relation of M.

Benefit 1: If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.

PMC: WSTS

Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is compatible/monotonic with the transition relation of M.

Benefit 1: If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.

Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is compatible/monotonic with the transition relation of M.

Benefit 1: If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.

Benefit 2: If a set S is upward-closed then predecessor(S) is upward-closed.

Parameterized Repair and Verification of Concurrent Systems 6 / 15
Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is **compatible/monotonic** with the transition relation of M.

- **Benefit 1:** If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.
- **Benefit 2:** If a set S is upward-closed then predecessor(S)is upward-closed.

 (M, \leq) has effective predecessor-basis if there exists an algorithm that given a finite set of states S of M it returns a finite basis of $predecessor(\uparrow S)$.

156

Well Structured Transition System

 (M, \leq) is a well-structured transition system if \leq is a well quasi order on the states of M and if \leq is compatible/monotonic with the transition relation of M.

Benefit 1: If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.

Benefit 2: If a set S is upward-closed then predecessor(S) is upward-closed.

 $\uparrow(0, 0, 2)$

6 / 15

 (M, \leq) has **effective predecessor-basis** if there exists an algorithm that given a finite set of states S of M it returns a finite basis of $predecessor(\uparrow S)$.

PMC: WSTS

Well Structured Transition System

Given the basis B' of an infinite set E^{∞} , we can compute the basis B' of $predecessor(E^{\infty})$

- **Benefit 1:** If a set S is upward-closed then there exists a finite set B (basis) s.t. $\uparrow B = S$.
- **Benefit 2:** If a set S is upward-closed then predecessor(S) is upward-closed.

 $\uparrow(0, 0, 2)$

6

15

 (M, \leq) has **effective predecessor-basis** if there exists an algorithm that given a finite set of states S of M it returns a finite basis of $predecessor(\uparrow S)$.

PMC and Deadlock Detection: Disjunctive Systems

PMC and Deadlock Detection: Disjunctive Systems

Theorem

The counter representation of disjunctive systems is a WSTS with effective predecessor basis.

PMC and Deadlock Detection: Disjunctive Systems

Theorem

The counter representation of disjunctive systems is a WSTS with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a deadlocked run iff The 01-counter system of M has a deadlocked run (Now: <u>EXPTIME</u>, **Previously**: cutoff = 2|Q|).

Constraints that ensure all **error paths** discovered so far will be avoided.

- Constraints that ensure all **error paths** discovered so far will be avoided.
- Constraints that express additional desired properties of the system.

- Constraints that ensure all **error paths** discovered so far will be avoided.
- Constraints that express additional desired properties of the system.
 - Constraints that avoid the construction of repairs that violate the totality assumption on the transition relation

- Constraints that ensure all **error paths** discovered so far will be avoided.
- Constraints that express additional desired properties of the system.
 - Constraints that avoid the construction of repairs that violate the totality assumption on the transition relation
 - ► Constraints that ensure certain <u>states remain reachable</u>.

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$
- 12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$
- 12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \dots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0]))$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$
- 12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$

5: if
$$isCorrect = True$$
 then return $True$

6:
$$newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$$

7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$

8:
$$\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$$

- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$
- 12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$

5: **if**
$$isCorrect = True$$
 then return $True$

$$\underline{6: newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0]\})}$$

7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$

8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$

9: **if** isSAT = False **then return** Unrealizable

10: $M = Refine(M, \delta')$

11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$

12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- $\underline{7:} \quad \underline{accCnstr} \leftarrow \underline{newConstr} \land \underline{accCnstr}, \ \underline{dlckCstr} \leftarrow \underline{T}$

8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$

- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$
- 12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$

8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$

- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr$ goto 8

12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- <u>o</u> if isSAT = False then return Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \land dlckCstr \ goto \ 8$
- 12: else goto 4
- 13: end while

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto 8$

12: else goto 4

- 1: **ParamRepair**(M, ERR, InitConstr)
- 2: $accCnstr \leftarrow InitConstr, isCorrect \leftarrow False$
- 3: while isCorrect = False do
- 4: $isCorrect, [RE_0, \ldots, RE_k] \leftarrow MC(M, ERR)$
- 5: **if** isCorrect = True **then return** True
- 6: $newConstr \leftarrow \bigwedge_{s \in RE_k} BuildConstr(s, [RE_{k-1}, \dots, RE_0])$
- 7: $accCnstr \leftarrow newConstr \land accCnstr, dlckCstr \leftarrow T$
- 8: $\delta', isSAT \leftarrow SAT(accCnstr \land dlckCstr)$
- 9: **if** isSAT = False **then return** Unrealizable
- 10: $M = Refine(M, \delta')$
- 11: **if** Deadlock(M) **then** $dlckCstr \leftarrow \neg \delta' \wedge dlckCstr \ goto \ 8$

12: **else** *goto* 4

Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.

- Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.
- We extended our algorithm to repair pairwise and broadcast systems. Both types of systems are known to be WSTS, however

- Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.
- We extended our algorithm to repair pairwise and broadcast systems. Both types of systems are known to be WSTS, however
 - ► Deadlock detection in pairwise systems **Tower-hard**

- Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.
- We extended our algorithm to repair pairwise and broadcast systems. Both types of systems are known to be WSTS, however
 - ► Deadlock detection in pairwise systems **Tower-hard**

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a **polynomial-time reduction** from the reachability problem of **affine VASS** with broadcast matrices to the deadlock detection problem in broadcast protocols.

SEP: Single Error Path

EPT: Error Paths Transitions

Benchmark	Size		chmark Size		Errors	[SEP	=F & EP	T=F]	[SEP=T & EPT=F]			[SEP	=F & EP	T=T]	[SEP=T & EPT=T]		
	States	Edges		#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.		
RW1 (PW)	5	12	С	3	2.5	4	3	2.9	4	2	1.7	2	2	1.7	2		
RW2 (PW)	15	42	С	3	3.8	14	3	4.8	14	2	3.2	7	7	8.4	7		
RW3 (PW)	35	102	С	3	820.7	34	3	7.6	34	2	552.3	17	17	40.3	17		
RW4 (PW)	45	132	С	TO	TO	TO	3	11.8	44	TO	TO	TO	22	99.2	22		
DLS	10	95	P1	1	0.8	13	1	0.8	13	3	2.4	5	5	5.6	5		
DLS	10	95	P2	1	0.8	13	2	1.7	13	3	2.6	9	7	5.5	9		
DLS	10	95	С	2	4.2	13	2	1.5	13	3	3	9	9	8.1	9		
RF	10	147	P1	1	2.5	32	1	1.2	32	TO	TO	TO	8	12.4	13		
RF	10	147	P2	1	1.2	32	1	1.3	32	TO	TO	TO	8	11.3	14		
RF	10	147	С	1	7.8	32	1	1.4	32	TO	TO	TO	8	12.5	12		
SD	6	39	С	1	1	4	1	1	4	3	2.4	4	3	3	4		
2OT	12	128	P1	12	18.8	26	6	8.3	26	16	73.8	17	16	34	17		
2OT	12	128	P2	1	1.8	26	1	1.8	26	4	2958	11	8	16.5	12		
2OT	12	128	С	11	17.2	Unreal	. 6	11.7	Unreal	. TO	TO	TO	11	48.6	Unreal		
MESI1	4	26	С	1	2.4	6	1	0.9	6	2	1.8	5	4	3.5	5		
MESI2	9	71	С	1	1.1	26	1	1.1	26	3	56.4	20	6	6.8	15		
MESI3	14	116	С	1	109.4	46	1	108.1	46	TO	TO	TO	6	289.9	15		

Experiments

SEP: True

EPT: False

Benchmark	Size		Errors	[SEP	=F & EP	T=F]	ISEF	P=T & EI	PT=F1	[SEP	=F & EP	T=T]	[SEP	[SEP=T & EF		
	States	Edges		#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.	
RW1 (PW)	5	12	С	3	2.5	4	3	2.9	4	2	1.7	2	2	1.7	2	
RW2 (PW)	15	42	С	3	3.8	14	3	4.8	14	2	3.2	7	7	8.4	7	
RW3 (PW)	35	102	С	3	820.7	34	3	7.6	34	2	552.3	17	17	40.3	17	
RW4 (PW)	45	132	С	TO	TO	TO	3	11.8	44	TO	TO	TO	22	99.2	22	
DLS	10	95	P1	1	0.8	13	1	0.8	13	3	2.4	5	5	5.6	5	
DLS	10	95	P2	1	0.8	13	2	1.7	13	3	2.6	9	7	5.5	9	
DLS	10	95	С	2	4.2	13	2	1.5	13	3	3	9	9	8.1	9	
RF	10	147	P1	1	2.5	32	1	1.2	32	TO	TO	TO	8	12.4	13	
RF	10	147	P2	1	1.2	32	1	1.3	32	TO	TO	TO	8	11.3	14	
RF	10	147	С	1	7.8	32	1	1.4	32	TO	TO	TO	8	12.5	12	
SD	6	39	С	1	1	4	1	1	4	3	2.4	4	3	3	4	
2OT	12	128	P1	12	18.8	26	6	8.3	26	16	73.8	17	16	34	17	
2OT	12	128	P2	1	1.8	26	1	1.8	26	4	2958	11	8	16.5	12	
2OT	12	128	С	11	17.2	Unreal	. 6	11.7	Unreal	. TO	TO	TO	11	48.6	Unreal	
MESI1	4	26	С	1	2.4	6	1	0.9	6	2	1.8	5	4	3.5	5	
MESI2	9	71	С	1	1.1	26	1	1.1	26	3	56.4	20	6	6.8	15	
MESI3	14	116	С	1	109.4	46	1	108.1	46	TO	TO	TO	6	289.9	15	

SEP: True

EPT: True

Benchmark	Size		Errors	[SEP	=F & EP	T=F]	[SEP	=T & EP	T=F]	[SEP	=F & EP	T=T]	ISEP	=T & EP	T=T1
	States	Edges		#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.
RW1 (PW)	5	12	С	3	2.5	4	3	2.9	4	2	1.7	2	2	1.7	2
RW2 (PW)	15	42	С	3	3.8	14	3	4.8	14	2	3.2	7	7	8.4	7
RW3 (PW)	35	102	С	3	820.7	34	3	7.6	34	2	552.3	17	17	40.3	17
RW4 (PW)	45	132	С	TO	TO	TO	3	11.8	44	TO	TO	TO	22	99.2	22
DLS	10	95	P1	1	0.8	13	1	0.8	13	3	2.4	5	5	5.6	5
DLS	10	95	P2	1	0.8	13	2	1.7	13	3	2.6	9	7	5.5	9
DLS	10	95	С	2	4.2	13	2	1.5	13	3	3	9	9	8.1	9
RF	10	147	P1	1	2.5	32	1	1.2	32	TO	TO	TO	8	12.4	13
RF	10	147	P2	1	1.2	32	1	1.3	32	TO	TO	TO	8	11.3	14
RF	10	147	С	1	7.8	32	1	1.4	32	TO	TO	TO	8	12.5	12
SD	6	39	С	1	1	4	1	1	4	3	2.4	4	3	3	4
2OT	12	128	P1	12	18.8	26	6	8.3	26	16	73.8	17	16	34	17
2OT	12	128	P2	1	1.8	26	1	1.8	26	4	2958	11	8	16.5	12
2OT	12	128	С	11	17.2	Unreal	. 6	11.7	Unreal	. TO	TO	TO	11	48.6	Unreal
MESI1	4	26	С	1	2.4	6	1	0.9	6	2	1.8	5	4	3.5	5
MESI2	9	71	С	1	1.1	26	1	1.1	26	3	56.4	20	6	6.8	15
MESI3	14	116	С	1	109.4	46	1	108.1	46	TO	TO	TO	6	289.9	15

Parameterized Repair and Verification of Concurrent Systems 4 / 13

Parameterized Repair and Verification of Concurrent Systems 12 / 15

Parameterized Repair and Verification of Concurrent Systems

4 / 13

Disjunctive Systems Results

Theorem

The counter representation of disjunctive systems is a WSTS with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a deadlocked run iff The 01-counter system of M has a deadlocked run (**Now**: EXPTIME, **Previously**: $Q^{2|Q|}$).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

- Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.
- We extended our algorithm to repair **pairwise and broadcast systems**. Both types of systems are known to be WSTS, however
 - ▶ Deadlock detection in pairwise systems Tower-hard

Parameterized Repair and Verification of Concurrent Systems 10 / 13

Theorem

Deadlock detection in broadcast protocols is undecidable.

Disjunctive Systems Results

Theorem

The counter representation of disjunctive systems is a WSTS with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a deadlocked run iff The 01-counter system of M has a deadlocked run (**Now**: EXPTIME, **Previously**: $Q^{2|Q|}$).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

- Our Algorithm can be used for general **safety properties**, based on the **automata-theoretic** approach.
- We extended our algorithm to repair **pairwise and broadcast systems**. Both types of systems are known to be WSTS, however
 - ▶ Deadlock detection in pairwise systems Tower-hard

Parameterized Repair and Verification of Concurrent Systems

Theorem

Deadlock detection in broadcast protocols is undecidable.

Disjunctive Systems Results

Theorem

The counter representation of disjunctive systems is a WSTS with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a deadlocked run iff The 01-counter system of M has a deadlocked run (**Now**: EXPTIME, **Previously**: $Q^{2|Q|}$).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Experiments

SEP: Single Error Path

EPT: Error Paths Transitions

Benchmark	Si	te	Errors	[SEP=F & EPT=F]			[SEP	=T & EI	T=F]	SEP	=F & EF	'T=T]	[SEP=T & EPT=T]		
	States	Edges		#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.	#Iter	Time	#D.T.
RW1 (PW)	5	12	С	3	2.5	4	3	2.9	4	2	1.7	2	2	1.7	2
RW2 (PW)	15	42	С	3	3.8	14	3	4.8	14	2	3.2	7	7	8.4	7
RW3 (PW)	35	102	С	3	820.7	34	3	7.6	34	2	552.3	17	17	40.3	17
RW4 (PW)	45	132	С	TO	TO	TO	3	11.8	44	TO	TO	TO	22	99.2	22
DLS	10	95	Pl	1	0.8	13	1	0.8	13	3	2.4	5	5	5.6	5
DLS	10	95	P2	1	0.8	13	2	1.7	13	3	2.6	9	7	5.5	9
DLS	10	95	C	2	4.2	13	2	1.5	13	3	3	9	9	8.1	9
RF	10	147	P1	1	2.5	32	1	1.2	32	TO	TO	TO	8	12.4	13
RF	10	147	P2	1	1.2	32	1	1.3	32	TO	TO	TO	8	11.3	14
RF	10	147	C	1	7.8	32	1	1.4	32	TO	TO	TO	8	12.5	12
SD	6	39	С	1	1	4	1	1	4	3	2.4	4	3	3	4
20T	12	128	Pl	12	18.8	26	6	8.3	26	16	73.8	17	16	34	17
20T	12	128	P2	1	1.8	26	1	1.8	26	4	2958	11	8	16.5	12
20T	12	128	C	11	17.2	Unreal	6	11.7	Unreal	. TO	TO	TO	11	48.6	Unreal
MESH	4	26	C	1	2.4	6	1	0.9	6	2	1.8	5	4	3.5	5
MESI2	9	71	С	1	1.1	26	1	1.1	26	3	56.4	20	6	6.8	15
MESI3	14	116	С	1	109.4	46	1	108.1	46	TO	TO	TO	6	289.9	15

11 / 13

Disjunctive Systems: $A||B^n|$

$$TRConstr_{Disj} = \bigwedge_{q_A \in Q_A} \bigvee_{t_A \in \delta_A(q_A)} t_A \wedge \bigwedge_{q_B \in Q_B} \bigvee_{t_B \in \delta_B(q_B)} t_B$$

Broadcast Systems: A^n

$$\bigwedge_{a \in \Sigma_{sync}} \left[\left(t_{a!!} \land \left(\bigvee_{t_{a??} \in \delta_B} t_{a??} \right) \right) \lor \left(\neg t_{a!!} \land \left(\bigwedge_{t_{a??} \in \delta_B} \neg t_{a??} \right) \right) \right]$$

Pairwise Systems: A^n

$$\bigwedge_{a \in \Sigma_{sync}} \left[\left(t_{a!} \land \left(\bigvee_{t_{a?} \in \delta} t_{a?} \right) \right) \lor \left(\neg t_{a!} \land \left(\bigwedge_{t_{a?} \in \delta} \neg t_{a?} \right) \right) \right]$$

Faulty Pairwise Rendezvous System

Pairwise Synchronization: $q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$

Faulty Pairwise Rendezvous System

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Reader-Writer

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Reader-Writer

 s_0, q_0, q_0

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Reader-Writer

15

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Reader-Writer

 s_0, q_0, q_0

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

Pairwise Synchronization:
$$q_0 \xrightarrow{a!} q_1, s_0 \xrightarrow{a?} s_1$$

Scheduler

