Automatic Repair and Deadlock Detection for

Parameterized Systems

Swen Jacobs ! Mouhammad Sakr 2 Marcus Valp 2

LCISPA Helmholtz Center for Information Security, Saarbriicken, Germany

28nT, University of Luxembourg, Luxembourg

October 19, 2022

Parameterized Repair and Verification of Concurrent Systems 1/ 15

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk
source: Meratnia et al.

Parameterized Repair and Verification of Concurrent Systems

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk
source: Meratnia et al.

Hard to get right...

Parameterized Repair and Verification of Concurrent Systems

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: Meratnia et al.

Hard to get right...

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

Parameterized Repair and Verification of Concurrent Systems

Concurrent and Parameterized Systems

undecidable

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: Meratnia et al.

Hard to get right...

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

Parameterized Repair and Verification of Concurrent Systems

Concurrent and Parameterized Systems

undecidable

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: Meratnia et al.

Hard to get right...

B Homogeneous processes and have finite state space.

The parameterized model checking problem (PMCP) is to

decide whether a temporal logic property is true for every size
instance of a given system.

Parameterized Repair and Verification of Concurrent Systems

Concurrent and Parameterized Systems

decidable classes undecidable

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: Meratnia et al.

Hard to get right...

B Homogeneous processes and have finite state space.

The parameterized model checking problem (PMCP) is to

decide whether a temporal logic property is true for every size
instance of a given system.

Parameterized Repair and Verification of Concurrent Systems

Motivation: Model Checking and Automatic Repair

Sa f ety Prop.

Yes

T

Parameterized MC

\
HAR

vn<

&

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Motivation: Model Checking and Automatic Repair

Sa f ety Prop.

Yes

T

\ Parameterized MC

No + CFE

vn<

\$ Repair

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Motivation: Model Checking and Automatic Repair

Sa f ety Prop.

Yes — Repair Internal Behavior
— Repair Communication

T

\ Parameterized MC

No + CFE

vn<

\$ Repair

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Motivation: Model Checking and Automatic Repair

Safety Prop.

Yes — Repair Internal Behavior
— Repair Communication

T

\ Parameterized MC

No + CFE

3ty

Vn<
\$ Repair

homogeneous

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Motivation: Model Checking and Automatic Repair

Safety Prop.

Vnd

e
©w

3ty

r

Yes

T

Parameterized MC

N\

Repair

homogeneous

No + CFE

— Repair Internal Behavior
— Repair Communication
— Avoid trivial solutions
— Repair Vn

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Motivation: Model Checking and Automatic Repair

Safety Prop.

Yes — Repair Internal Behavior
— Repair Communication

T

Parameterized MC

— Avoid trivial solutions
%} / \ — Repair Vn

No + CFE

3ty

Vn<
\$ Repair

homogeneous

The repair problem is, for a given process implementation, to
find a refinement such that a given safety property is satisfied.

Parameterized Repair and Verification of Concurrent Systems 3/ 15

Parameterized Repair Basic Idea

Model M

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

Yes
M <—— is M correct?

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

Yes
M <—— is M correct?

No: error paths l

: Extract constraints
Constraints

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

Yes
M <—— is M correct?

No: error paths

4

Extract constraints

Constraints

4

No
Unrealizable «<—is SAT?

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

Yes
M <—— is M correct?

No: error paths

4

Extract constraints

Constraints

4

No Yes: ~y
Unrealizable «<—is SAT?

Refine M with ~

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M

|
Model Check M

l
Yes

M <—— is M correct? No,

No: error paths

4

es
Extract constraints <—— deadlock?

Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

MQdfl M B Modeling
Model Check M

l
Yes

M <—— is M correct? No,

No: error paths

4

es
Extract constraints <—— deadlock?

Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M B Modeling

| , |
! |
Model Check M Uniform! @ PMC Undecidable!

l
Yes

M <—— is M correct? No,

No: error paths

4

es
: Extract constraints <—— deadlock?
Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M B Modeling

| , |
! |
Model Check M Uniform! @ PMC Undecidable!

l B Repair Vn

Yes

M <—— is M correct? No,

No: error paths

4

es
: Extract constraints <—— deadlock?
Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model M B Modeling

| , |
! |
Model Check M Uniform! @ PMC Undecidable!

l B Repair Vn

B Trivial Solutions

Yes

M <—— is M correct? No,

No: error paths

4

es
: Extract constraints <—— deadlock?
Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

MQdfl M B Modeling

1 | 1 |
Model Check M Uniform! @ PMC Undecidable!
l B Repair Vn
B Trivial Solutions
M (Yﬂ is M correct? No, B deadlock Detection

Undecidable!

No: error paths

4

es
: Extract constraints <—— deadlock?
Constraints

No (Yes: v ’\ .
Unrealizable «<—<is SAT? Refine M with ~y

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

MQdfl M B Modeling

] | i |
Model Check M Uniform! B PMC Undecidable!
l B Repair Vn
B Trivial Solutions
Yes -
- 2 No, B deadlock Detection
M 9 A4 eoInaEt! Undecidable!
No: error paths | B Tackle Challenges
es
: Extract constraints <—— deadlock? B Extensions
Constraints
»\ B Experiments
(Yes: ~y

No
Unrealizable «<—is SAT?

Refine M with ~

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

Parameterized Repair and Verification of Concurrent Systems 5/ 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

(Q(b q0, 490, 490, QO) — (57 07 O)

Parameterized Repair and Verification of Concurrent Systems 5/ 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

(Q(b q0, 490, 490, QO) — (57 07 O)

}
(90, 90, 90, 0, q2) — (4,0, 1)

Parameterized Repair and Verification of Concurrent Systems 5/ 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

(Q(b q0, 490, 490, QO) — (57 07 O)

}
(90, 90, 90, 0, q2) — (4,0, 1)

(Ql; 4o, 42, 42, CI1) — (17 27 2)

Parameterized Repair and Verification of Concurrent Systems 5/ 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

(Q(b q0, 490, 490, QO) — (57 07 O)

}
(90, 90, 90, 0, q2) — (4,0, 1)

(Ql; 4o, 42, 42, CI1) — (17 27 2)

o — q1 then (5,0,0) — (4,1,0)

Parameterized Repair and Verification of Concurrent Systems 5/ 15

Modeling: Counter Representation

Counter System

Idea: keep track of how many processes are in each local
state.

(Q(b q0, 490, 490, QO) — (57 07 O)

}
(90, 90, 90, 0, q2) — (4,0, 1)

(q1,90,92, 92, 1) — (1,2,2) Infinite State

o — q1 then (5,0,0) — (4,1,0)

Parameterized Repair and Verification of Concurrent Systems 5/ 15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.

Parameterized Repair and Verification of Concurrent Systems 6 /15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.
B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.

Parameterized Repair and Verification of Concurrent Systems 6 /15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.
B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.

e ® -

Parameterized Repair and Verification of Concurrent Systems 15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.
B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.
B Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

e ® -

Parameterized Repair and Verification of Concurrent Systems 15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.
B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.
B Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.
(M, <) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(1.5).

e ® -

Parameterized Repair and Verification of Concurrent Systems 15

PMC: WSTS

Well Structured Transition System

(M, <) is a well-structured transition system if < is a well
quasi order on the states of M and if < is
compatible/monotonic with the transition relation of M.
B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.
B Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.
(M, <) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(1.5).
B Benefit: Reachability analysis is decidable.

O e -

Parameterized Repair and Verification of Concurrent Systems 15

PMC: WSTS

Well Structured Transition System

Given the basis B’ of an infinite set E°°, we can compute
the basis B’ of predecessor(E>)

B Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. 1B = S.
B Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.
(M, <) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(1.5).
B Benefit: Reachability analysis is decidable.

O e -

Parameterized Repair and Verification of Concurrent Systems 15

PMC and Deadlock Detection: Disjunctive Systems

g0, 92} a2}

Parameterized Repair and Verification of Concurrent Systems 7/ 15

PMC and Deadlock Detection: Disjunctive Systems

g0, 92} a2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Parameterized Repair and Verification of Concurrent Systems 7/ 15

PMC and Deadlock Detection: Disjunctive Systems

g0, 92} a2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: cutoff = 2|Q)|).

Parameterized Repair and Verification of Concurrent Systems 7/ 15

No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.

Parameterized Repair and Verification of Concurrent Systems 8 /15

No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.

B Constraints that ensure all error paths discovered so far
will be avoided.

Parameterized Repair and Verification of Concurrent Systems 8 /15

No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.

B Constraints that ensure all error paths discovered so far
will be avoided.

B Constraints that express additional desired properties
of the system.

Parameterized Repair and Verification of Concurrent Systems 8 /15

No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.

B Constraints that ensure all error paths discovered so far
will be avoided.

B Constraints that express additional desired properties
of the system.

» Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

Parameterized Repair and Verification of Concurrent Systems 8 /15

No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.

B Constraints that ensure all error paths discovered so far
will be avoided.

B Constraints that express additional desired properties
of the system.

» Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

» Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

10:
11:
12:

isCorrect, [REy, ..., RE;] + MC(M,ERR)

if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while isCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)

10:
11:
12:

1f 1sCorrect = 1 rue then return [rue

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

1sCorrect, |[REq. ..., RE.] <+ MC(M.,ERR)

if 1sCorrect = True then return True

10:
11:
12:

newConstr < \,crp, BuwldConstr(s, |[REk—_1, ..., REy[f)
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)
if 1sCorrect = True then return 7 rue

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})

10:
11:
12:

accCnstr < newConsir N\ accCnstr, alckCstr <— 1

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)
if 1sCorrect = True then return True
newConstr < ,/\‘Denﬁk BuildConstr(s, [RFj, 1, ..., RFEp|})

Py W g

accCnstr < newConstr A accCnstr, dickCstr < T

10:
11:
12:

0,185 AT < SAT (accCnstr A dlckC'str)

if 1sSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)
if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr + newConstr N\ accCnstr. dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

10:
11:
12:

1I 185 A1 = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)

if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

0" isSAT + SAT (accCnstr A dlckCstr)

if 1sSAT = False then return Unrealizable

10:
11:
12:

M = Rejfine(/M,0")
if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

isCorrect, [REy, ..., RE;] + MC(M,ERR)

if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)
if 2sS AT — False then return [/ nrealizahle

M = Refine(M,d")

H'i—l]

12:

if Deadlock(M) then dickC'str <— =" A dickC'str goto 8
else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

10:

isCorrect, [REy, ..., RE;] + MC(M,ERR)
if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})

accCnstr < newConstr A accCnstr, dickCstr < T
8, isSAT < SAT (accCnstr A dlckCstr)
if isSAT = False then return Unrealizable

11:

M = Re fine(M, 5"
if Deadlock(M) then dickC'str <— =" A dickCstr goto 8

12:

else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems

15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

10:
11;

isCorrect, [REy, ..., RE;] + MC(M,ERR)

if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickCstr < 6" A dlckC'str goto 8

12:

else goto 4

13: end while

Parameterized Repair and Verification of Concurrent Systems 9 /15

Safety Property, Pairwise and Broadcast Systems

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.
B We extended our algorithm to repair pairwise and

broadcast systems. Both types of systems are known to
be WSTS, however

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.
B We extended our algorithm to repair pairwise and

broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomaial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems

Experiments

SEP: Single Error Path EPT: Error Paths Transitions
Benchmark Size Errors [SEP=F & EPT=F] [SEP=T & EPT=F] [SEP=F & EPT=T] [SEP=T & EPT=T]

States Edges #lier Time #D.T. #lter Time #DT. #lter Time #D.T. #lter Time #DT.
RWI (PW) 5 12 g 3 25 4 3 29 4 2 17 2 2 17 2
RW2(PW) 15 4 C 3 8 4 3 48 42 32 T 7 §4 T
RW3I(PW) 35 102 C IO807 ¥ 3 T6 M 2 53 11 1T 43 17
RW4(PW) 45 12 € T0 TO T0 3 U8 4 TO TO TO 22 992 22
DLS 0 % M | 08 13 1 08 13 3 24 5 5 56 5
DLS 0 9% P2 | 08 13 2 L7 13 3 26 9y 7 53 9
DLS 10 9% £ 2 41 B2 15 1B 3 3 & 4 8.1 9
RF 10 147 Pl | 3y 3 1 12 3 T0 T0 T0 8 124 13
RF 10 147 P2 1 12 32 1 3 T0 TO TO 8§ 113 M
RF 0 147 C 1 8 2 1 4 3 T0 To TO 8 125 12
SD 6 39 4 1 1 4 1 1 4 3 24 i 3 3 4
20T 2 18 Pl 188 2 6 83 2 16 Ty 17 16 H 17
20T 2 18 P2 | 8 2 1 I8 2 4 298 1 8 165 12

20T 2 128 C [172 Uneal 6 IL7 Uneal TO TO TO 11 486 Unreal
MESII 4 2 € | 24 6 1L 09 6 2 1.8 5 4 35 5
MESI2 e i1l C | L2 1 L2 3 %4 20 6 68 IS
MESI3 4 116 C I 1094 46 1 1081 46 TO TO TO 6 2899 15

Parameterized Repair and Verification of Concurrent Systems

Experiments

SEP: True EPT: False
(\
Benchmark Size Errors [SEP=F & EPT=F] \(SEP=I & EP1=F] J [SEP=F & EPT=T] [SEP=T & EPT=T]
States Edges #lier Time #D.T. #lter Time #DT. #ler Time #D.T. #lter Time #DT.
RWI (PW) 5 12 g 3 25 4 3 29 4 2 17 2 2 17 2
RW2(PW) 15 4 C 3 8 43 81 4 2 32 T 7 84 7
RW3I(PW) 35 102 C IoO807 M 3 6] ¥ 2 523 11 1T 43 17
Rwé(Ppw) 45 12 C T0 TO T0O 3 { U8y 4 TO TO TO 22 992 22
DLS 0 % M | 08 13 1 08y 13 3 24 5 5 5.6 5
DLS 0 9% P2 | 08 13 2 L7y B3 3 26 9y 7 53 9
DLS 109 £ 2 42 13 2 ISy B3 3 3 & 4 8.1 9
RF 10 147 Pl | 3y 3 1 2y 2 T T0 T0 8 124 13
RF 10 147 P2 1 12 32 1 3y 2 T0 TO TO 8§ 113 M
RF 0 147 C 1 8 2 1 41 2 T T0 TO 8§ 125 12
SD 6 39 4 1 1 4 1 1 4 3 24 i 3 3 4
20T 2 18 Pl 2 188 26 6 831 20 16 T8 17 16 M 17
20T 2 18 P2 | 8 2 1 81 26 4 298 1 8 165 12
20T 2 128 C (1 172 Uneeal. 6 | IL7] Uneal TO TO TO 11 486 Unreal
MESII 4 2 € | 24 0 1 0.9 6 2 1.8 5 4 33 5
MESI2 e i1l C | L2 1 LLy 26 3 54 2 6 68 15
MESI3 4 116 C I 1094 46 1 L 1081) 46 TO TO TO 6 2899 15

Parameterized Repair and Verification of Concurrent Systems

Experiments

SEP: True EPT: True

3

(
Benchmark Size Errors [SEP=F & EPT=F] [SEP=T & EPT=F] [SEP=F & EPT=T] =] & EPT=
States Edges #lier Time #D.T. #lter Time #DT. #lter Time #D.T. #lter Time #D.T.

RW1 (PW) 5 12 C 3 2.5 4 3 29 4 2 1.7 2 2 17 2
RW2 (PW) 5 4 C 3 38 14 3 4.8 14 2 32 7 7 84 7
RW3 (PW) 3102 C 30807 34 3 7.6 34 2005523 17 1T 43 |17
RW4 (PW) 45 132 C TO TO TO 3 s 4 T0 TO TO 22 992 | 22
DLS 0 9 Pl 1 0.8 13 1 0.8 13 3 24 5 5 56 5
DLS 10 95 P2 1 0.8 13 2 1.7 13 3 26 9 i 53 9
DLS 10 95 C 2 42 13 2 1.5 13 3 3 9 9 8.1 9
RF 0 147 Pl 1 %3 kY 1 1.2 R T0 T0 T0 8 124 1 13
RF 0 147 P 1 12 kY 1 1.3 R T0 T0 T0 8 113 1 14
RF 10 147 C 1 18 n 1 14 2 T0 T0 T0 8 125 1 12
SD 6 39 C 1 1 4 1 1 4 3 24 4 3 3 4
20T 12128 Pl 12 188 26 6 83 20 16 78 11 16 34 17
20T 12 128 P 1 1.8 26 | 18 26 4298 11 8 16,5 12
20T 12 18 C 11 172 Unreal. 6 1.7 Uneal TO TO TO I 48,6 | Unreal.
MESII 4 26 C 1 24 6 1 0.9 6 2 1.8 5 4 35 5
MESI2 9 71 C 1 1.1 26 1 1.1 26 3 564 20 6 6.8 15
MESI3 14 116 C 1 1094 46 1 1081 46 TO TO TO 6 2809 { 15

Parameterized Repair and Verification of Concurrent Systems

Summary

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «—— is M correct?
Undecidable!
No: error p;lthsl

Yes
Extract constraints «<—— deadlock?

Yes: ~ R

Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?

Parameterized Repair and Verification of Concurrent Systems

Parameterized Repair and Verification of Concurrent Systems

Summary

Parameterized Repair Basic Idea

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «<— is M correct?
Undecidable!

No: error p;lthsl

Yes
Extract constraints «<—— deadlock?

Yes: ~ R

Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?

Parameterized Repair and Verification of Concurrent Systems

Disjunctive Systems Results

Hao, g2}

Hqo, g2} Haz}

@@

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).

Parameterized Repair and Verification of Concurrent Systems

Parameterized Repair and Verification of Concurrent Systems

Summary

Disjunctive Systems Results

Parameterized Repair Basic Idea

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «<— is M correct?
Undecidable!

No: error p;lthsl

Yes
Extract constraints «<—— deadlock?

Yes: ~ R

Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

ed Repair and Verifi

Hao, g2}

Hqo, g2} Haz}

@@

The counter representation of disjunctive systems is a WSTS

Theorem

with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).

Parameterized Repair and Verification of Concurrent Systems

Summary

Parameterized Repair B

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «—— is M correct?
Undecidable!
No: error p;lthsl

es
Extract constraints «<—— deadlock?

cr |

Yes: v
Refine M with ~

Constraints

is SAT?

o
Unrealizable «—

Parameterized Repair and Verification of Concurrent Systems

Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

ve Systems Results

Theorem

Theorem

Hqo, g2}

Hao, g2}

@@

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Hae}

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).

SEP: Single Error Path

eriments

Parameterized Repair and Verification of Concurrent Systems

EPT: Error Paths Transitions

Benchmark Sie B [SEPeF & EPT=F] [SEP=T & EPI=F] [SEP=F & EPT=T] [SEP=T & EPT=T]
s Her Tme DT Her Twme DT Her Tme DT fler Tme DT
W oW (I S R T R S R ¥ N R S | A
RW2 (W) O O Y T 'O A I R A Y |
RWS (PW) 3OS M 376 M o2 E3 oo w30
RW4 (PW) T0 0 T0 3 18 4 T T0 T0 2 92 2
S T 0 0§ 1 8§ 3 4§ 3 36 3
DL oo o2 07 mo3 26 9 1 559
DLS 2 42 13 2 15 13 3 3 9 [} 81 9
RF 1 25 2 1 12 R T0 10 T0 8 124 13
RF 1R 1 3R T T T 8 Ui
RF 18 2 1 2 T T T 8 5N
D [T T T L R S YR S
201 12 188 2% 0 83 2% 16 138 17 16 k1) 17
207 T8 % 118 % 4 X% 1§ 165 1
207 12 Umal 6 17 UmdTO T T0 11 86 Ul
MESIH 124 6 109 6 2 I8 5§ 4 35 3
MESI2 1 L1 2% 1 1l 2% 3 364 20 6 68 15
MESI3 1 1094 46 1 081 46 T0 T0 TO 6 299 I§

Constraints Example

Disjunctive Systems: A||B"

TRConstrpis; = /\ \/ ta A\ /\ \/ tp

qA€EQ A tA€04(qA) qBE€EQB tpcdp(gn)

Broadcast Systems: A"

A (tarAC N ta))V(stan AC N tar))]

aezsync ta?7? €op ta?? €ip

Pairwise Systems: A"

/\ [(ta! N (\/ ta?)) \ (_‘ta! A (/\ _'ta?))]

aezsfync ta?e(s ta7€6

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}

read? read?

done,? done,? done,.! read!
write? write?
doneqy,? doneqy,?

()=

write! doneqy,!

@ {writing}

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}

read? read?

done,? done,? done,.! read!
write? write?
doneqy,? doneqy,?

()

write! doneqy,!

@ {writing}

50, 40, 40

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

a?

. .] . a!
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler

read? read?

done,? done,?
write? write?
doneqy,? doneqy,?

(writel,write?)

50, 40, 40

Reader-Writer

@ {reading}

done,! read!

e

write! doney,!

@ {writing}

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
read? read?
done,? done,? done read!
write? write? [:
doneqy,? doneqy,?
()
write! doney,!

@ {writing}

(writel,write?)

50, 40, 40 — 51,41, 90

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
read? read?
rite? rive? domer! read
doneqy,? doneqy,?
@ T
write! doney,!
@ {writing}
(writel,write?) (write!l,write?)

50, 40, 40 — 51,41, 90

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
read? read?
rite? rive? domer! read
doneqy,? doneqy,?
@ T
write! doney,!
@ {writing}
(writel,write?) (write!l,write?)

50,405 90 — $1,41, 90 — 50,41, 91

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}

read? read?

write? write? done,.! read!
done,? done,?
doneq? doneqy,?

()=

write! doneqy,!

@ {writing}

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
Teadl read?
e write? done,.! read!
done,? M

doneqy,? M

write! doneqy,!

@ {writing}

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}

Tewdl read?

e write? done,.! read!
done,? M
doneq? M

().

write! doneqy,!

@ {writing}

50, 40, 40

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler

Tewdl read?
e write?

done,? M
doneqy,? M

(writel,write?)

50, 40, 40

Reader-Writer

@ {reading}

done,! read!

e

doneqy,!

@ {writing}

write!

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
Tewdl reqd?
wPitel write? done,.! read!
done,? M

doneqy? M
@ !

write! doney,!

@ {writing}

(writel,write?)

50,40, 90 — 51,41, 40

Parameterized Repair and Verification of Concurrent Systems

Faulty Pairwise Rendezvous System

. .] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
Teadl read?
e write? done,.! read!
done,? M

doneqy,? M

write! doney,!

@ {writing}

(writel,write?) (writel,write?)

50,40, 90 — 51,41, 40

Parameterized Repair and Verification of Concurrent Systems

