
Automatic Repair and Deadlock Detection for
Parameterized Systems

Swen Jacobs 1 Mouhammad Sakr 2 Marcus Völp 2

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

2SnT, University of Luxembourg, Luxembourg

October 19, 2022

Parameterized Repair and Verification of Concurrent Systems 1 / 15

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

undecidable

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

undecidable

Concurrent and Parameterized Systems

Parameterized Concurrent Systems are everywhere

source: sheffield.ac.uk

source: mtu.edu
source: Meratnia et al.

Hard to get right...

■ Homogeneous processes and have finite state space.

Parameterized Repair and Verification of Concurrent Systems 2 / 15

The parameterized model checking problem (PMCP) is to
decide whether a temporal logic property is true for every size
instance of a given system.

undecidabledecidable classes

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

Safety Prop.

No

+ CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

Safety Prop.

No + CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

Safety Prop.

No + CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

→ Repair Internal Behavior
→ Repair Communication

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

homogeneous

Safety Prop.

No + CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

→ Repair Internal Behavior
→ Repair Communication

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

homogeneous

Safety Prop.

No + CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

→ Repair Internal Behavior
→ Repair Communication
→ Avoid trivial solutions
→ Repair ∀n

Motivation: Model Checking and Automatic Repair

Parameterized MC

...
∀n

homogeneous

Safety Prop.

No + CE

Yes

Repair

Parameterized Repair and Verification of Concurrent Systems 3 / 15

→ Repair Internal Behavior
→ Repair Communication
→ Avoid trivial solutions
→ Repair ∀n

The repair problem is, for a given process implementation, to
find a refinement such that a given safety property is satisfied.

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check MModel Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints
Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints
Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints
Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

■ Modeling

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Undecidable!Uniform!

■ Modeling

■ PMC

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Undecidable!Uniform!

■ Modeling

■ PMC

■ Repair ∀n

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Undecidable!Uniform!

■ Modeling

■ PMC

■ Repair ∀n
■ Trivial Solutions

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Undecidable!Uniform!

Undecidable!

■ Modeling

■ PMC

■ Repair ∀n
■ Trivial Solutions

■ deadlock Detection

Parameterized Repair Basic Idea

Model
¯

M
¯

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 15

Undecidable!Uniform!

Undecidable!

■ Modeling

■ PMC

■ Repair ∀n
■ Trivial Solutions

■ deadlock Detection

■ Tackle Challenges

■ Extensions

■ Experiments

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

q2 q0 q1

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

q2 q0 q1

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

q2 q0 q1

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

q2 q0 q1

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

q2 q0 q1

Modeling: Counter Representation

Idea: keep track of how many processes are in each local
state.

(q0, q0, q0, q0, q0)→ (5, 0, 0)

(q0, q0, q0, q0, q2)→ (4, 0, 1)

(q1, q0, q2, q2, q1)→ (1, 2, 2)

q0 → q1 then (5, 0, 0)→ (4, 1, 0)

Parameterized Repair and Verification of Concurrent Systems 5 / 15

Counter System

Infinite State

q2 q0 q1

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).

■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

PMC: WSTS

(M,≤) is a well-structured transition system if ≤ is a well
quasi order on the states of M and if ≤ is
compatible/monotonic with the transition relation of M .

■ Benefit 1: If a set S is upward-closed then there exists a
finite set B (basis) s.t. ↑B = S.

■ Benefit 2: If a set S is upward-closed then predecessor(S)
is upward-closed.

(M,≤) has effective predecessor-basis if there exists an
algorithm that given a finite set of states S of M it returns a
finite basis of predecessor(↑S).
■ Benefit: Reachability analysis is decidable.

initial trying critical ↑(0, 0, 2)

Parameterized Repair and Verification of Concurrent Systems 6 / 15

Well Structured Transition System

Given the basis B′ of an infinite set E∞, we can compute
the basis B′ of predecessor(E∞)

PMC and Deadlock Detection: Disjunctive Systems

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: cutoff = 2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 15

PMC and Deadlock Detection: Disjunctive Systems

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: cutoff = 2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 15

PMC and Deadlock Detection: Disjunctive Systems

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: cutoff = 2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 15

No Trivial Solutions: Constraint Solving

■ Constraints that ensure all error paths discovered so far
will be avoided.

■ Constraints that express additional desired properties
of the system.

▶ Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

▶ Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 / 15

The generation of candidate repairs is guided by con-
straints over the local transitions.

No Trivial Solutions: Constraint Solving

■ Constraints that ensure all error paths discovered so far
will be avoided.

■ Constraints that express additional desired properties
of the system.

▶ Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

▶ Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 / 15

The generation of candidate repairs is guided by con-
straints over the local transitions.

No Trivial Solutions: Constraint Solving

■ Constraints that ensure all error paths discovered so far
will be avoided.

■ Constraints that express additional desired properties
of the system.

▶ Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

▶ Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 / 15

The generation of candidate repairs is guided by con-
straints over the local transitions.

No Trivial Solutions: Constraint Solving

■ Constraints that ensure all error paths discovered so far
will be avoided.

■ Constraints that express additional desired properties
of the system.

▶ Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

▶ Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 / 15

The generation of candidate repairs is guided by con-
straints over the local transitions.

No Trivial Solutions: Constraint Solving

■ Constraints that ensure all error paths discovered so far
will be avoided.

■ Constraints that express additional desired properties
of the system.

▶ Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

▶ Constraints that ensure certain states remain reachable.

Parameterized Repair and Verification of Concurrent Systems 8 / 15

The generation of candidate repairs is guided by con-
straints over the local transitions.

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [RE0, . . . , REk]←MC(M,ERR)
5: if isCorrect = True then return True
6: newConstr ← ∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]})

7: accCnstr ← newConstr ∧ accCnstr, dlckCstr ← T
8: δ′, isSAT ← SAT (accCnstr ∧ dlckCstr)
9: if isSAT = False then return Unrealizable

10: M = Refine(M, δ′)
11: if Deadlock(M) then dlckCstr ← ¬δ′ ∧ dlckCstr goto 8
12: else goto 4
13: end while

Parameterized Repair and Verification of Concurrent Systems 9 / 15

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems 10 / 15

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems 10 / 15

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems 10 / 15

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems 10 / 15

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.

Parameterized Repair and Verification of Concurrent Systems 10 / 15

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 15

SEP: Single Error Path EPT: Error Paths Transitions

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 15

SEP: True EPT: False

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 15

SEP: True EPT: True

Summary

Parameterized Repair Basic Idea

Model M

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 13

■ Modeling

■ PMC

■ Trivial Solutions

■ deadlocks Detection

Undecidable!

Undecidable!

Disjunctive Systems Results

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Parameterized Repair and Verification of Concurrent Systems 10 / 13

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 13

SEP: Single Error Path EPT: Error Paths Transitions

Parameterized Repair and Verification of Concurrent Systems 12 / 15

Summary

Parameterized Repair Basic Idea

Model M

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 13

■ Modeling

■ PMC

■ Trivial Solutions

■ deadlocks Detection

Undecidable!

Undecidable!

Disjunctive Systems Results

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Parameterized Repair and Verification of Concurrent Systems 10 / 13

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 13

SEP: Single Error Path EPT: Error Paths Transitions

Parameterized Repair and Verification of Concurrent Systems 12 / 15

Summary

Parameterized Repair Basic Idea

Model M

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 13

■ Modeling

■ PMC

■ Trivial Solutions

■ deadlocks Detection

Undecidable!

Undecidable!

Disjunctive Systems Results

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Parameterized Repair and Verification of Concurrent Systems 10 / 13

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 13

SEP: Single Error Path EPT: Error Paths Transitions

Parameterized Repair and Verification of Concurrent Systems 12 / 15

Summary

Parameterized Repair Basic Idea

Model M

Model Check M

Model Check M

is M correct?M
Yes

is M correct?M
Yes

Refine constraints

No: error paths

Constraints

Extract constraints

No: error paths

Constraints

is SAT?Unrealizable
No

is SAT?Unrealizable
No

Refine M with γ
Yes: γ

Refine M with γ
Yes: γ

deadlock?
Yes

No, M ′

deadlock?
Yes

No, M ′

Parameterized Repair and Verification of Concurrent Systems 4 / 13

■ Modeling

■ PMC

■ Trivial Solutions

■ deadlocks Detection

Undecidable!

Undecidable!

Disjunctive Systems Results

q0

q2

∃{q0, q2}

q3

q1

∃{q0, q2}

∃{q2}

Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q2|Q|).

Parameterized Repair and Verification of Concurrent Systems 7 / 13

Safety Property, Pairwise and Broadcast Systems

■ Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

■ We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

▶ Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

Parameterized Repair and Verification of Concurrent Systems 10 / 13

Experiments

Parameterized Repair and Verification of Concurrent Systems 11 / 13

SEP: Single Error Path EPT: Error Paths Transitions

Parameterized Repair and Verification of Concurrent Systems 12 / 15

Constraints Example

Disjunctive Systems: A||Bn

TRConstrDisj =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∧
∧

qB∈QB

∨
tB∈δB(qB)

tB

Broadcast Systems: An∧
a∈Σsync

[(ta!! ∧ (
∨

ta??∈δB
ta??)) ∨ (¬ta!! ∧ (

∧
ta??∈δB

¬ta??))]

Pairwise Systems: An∧
a∈Σsync

[(ta! ∧ (
∨

ta?∈δ
ta?)) ∨ (¬ta! ∧ (

∧
ta?∈δ

¬ta?))]

Parameterized Repair and Verification of Concurrent Systems 13 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?write?

donew?

read?
doner?

write?write?

donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?

donew?

read?
doner?

write?

write?

donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?

donew?

read?
doner?

write?

write?

donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0

(write!,write?)−→ s1, q1, q0
(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?

donew?

read?
doner?

write?

write?
donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→

s1, q1, q0
(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?

donew?

read?
doner?

write?

write?
donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?
donew?

read?
doner?

write?

write?

donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→

s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
doner?

write?

write?
donew?

read?
doner?

write?

write?

donew?

q2

q0
τ

doner ! read!

q1

write! donew !

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→ s0, q1, q1

Parameterized Repair and Verification of Concurrent Systems 14 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0

(write!,write?)−→ s1, q1, q0
(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→

s1, q1, q0
(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

Faulty Pairwise Rendezvous System

Pairwise Synchronization: q0
a!→ q1, s0

a?→ s1

s0

s1

Scheduler

read?
write?

doner?
donew?

read?
write?

doner?
donew?

���XXXread?

���XXXwrite?

doner?
donew?

read?
write?

���XXXdoner?

���XXXdonew?

���XXXread?

doner?

���XXXwrite?

donew?

read?
write?

���XXXdoner?

���XXXdonew?

q2

q0
τ

doner ! read!

q1

write! donew !

q2

q0
τ

doner ! read!

q1

write! donew !

{reading}

{writing}

Reader-Writer

s0, q0, q0
(write!,write?)−→ s1, q1, q0

(write!,write?)−→

Parameterized Repair and Verification of Concurrent Systems 15 / 15

