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The repair problem is, for a given process implementation, to
find a refinement such that a given safety property is satisfied.
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PMC: WSTS

Well Structured Transition System
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the basis B’ of predecessor(E>)
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PMC and Deadlock Detection: Disjunctive Systems
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Theorem

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: cutoff = 2|Q)|).
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No Trivial Solutions: Constraint Solving

The generation of candidate repairs is guided by con-
straints over the local transitions.
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The generation of candidate repairs is guided by con-
straints over the local transitions.

B Constraints that ensure all error paths discovered so far
will be avoided.

B Constraints that express additional desired properties
of the system.

» Constraints that avoid the construction of repairs that
violate the totality assumption on the transition relation

» Constraints that ensure certain states remain reachable.
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The repair Algorithm

Algorithm Parameterized Repair Algorithm

1: ParamRepair(M, ERR, InitConstr)
2: accCnstr < InitConstr, isCorrect < False
3: while 1sCorrect = False do

10:
11:
12:

isCorrect, [REy, ..., RE;] + MC(M,ERR)

if 1sCorrect = True then return True

newConstr < N\ cpp, BuildConstr(s,[RE_1,..., RE]})
accCnstr < newConstr A accCnstr, dickCstr < T

8, isSAT < SAT (accCnstr A dlckCstr)

if isSAT = False then return Unrealizable

M = Refine(M,d")

if Deadlock(M) then dickC'str <— =" A dickCstr goto 8
else goto 4

13: end while
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Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Deadlock detection in broadcast protocols is undecidable.

Lemma

There is a polynomaial-time reduction from the reachability
problem of affine VASS with broadcast matrices to the
deadlock detection problem in broadcast protocols.
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Experiments

SEP: Single Error Path EPT: Error Paths Transitions
Benchmark Size Errors  [SEP=F & EPT=F]  [SEP=T & EPT=F]  [SEP=F & EPT=T]  [SEP=T & EPT=T]

States Edges #lier  Time #D.T. #lter Time #DT. #lter Time #D.T. #lter Time #DT.
RWI (PW) 5 12 g 3 25 4 3 29 4 2 17 2 2 17 2
RW2(PW) 15 4 C 3 8 4 3 48 42 32 T 7 §4 T
RW3I(PW) 35 102 C IO807 ¥ 3 T6 M 2 53 11 1T 43 17
RW4(PW) 45 12 € T0 TO T0 3 U8 4 TO TO TO 22 992 22
DLS 0 % M | 08 13 1 08 13 3 24 5 5 56 5
DLS 0 9% P2 | 08 13 2 L7 13 3 26 9y 7 53 9
DLS 10 9% £ 2 41 B2 15 1B 3 3 & 4 8.1 9
RF 10 147 Pl | 3y 3 1 12 3 T0 T0 T0 8 124 13
RF 10 147 P2 1 12 32 1 3 T0 TO TO 8§ 113 M
RF 0 147 C 1 8 2 1 4 3 T0 To TO 8 125 12
SD 6 39 4 1 1 4 1 1 4 3 24 i 3 3 4
20T 2 18 Pl 188 2 6 83 2 16 Ty 17 16 H 17
20T 2 18 P2 | 8 2 1 I8 2 4 298 1 8 165 12

20T 2 128 C [ 172 Uneal 6  IL7  Uneal TO  TO TO 11 486  Unreal
MESII 4 2 € | 24 6 1L 09 6 2 1.8 5 4 35 5
MESI2 e i1l C | L2 1 L2 3 %4 20 6 68 IS
MESI3 4 116 C I 1094 46 1 1081 46 TO TO TO 6 2899 15
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Experiments

SEP: True EPT: False
( \
Benchmark Size Errors  [SEP=F & EPT=F] \(SEP=I & EP1=F] J [SEP=F & EPT=T]  [SEP=T & EPT=T]
States Edges #lier  Time #D.T. #lter Time #DT. #ler Time #D.T. #lter Time #DT.
RWI (PW) 5 12 g 3 25 4 3 29 4 2 17 2 2 17 2
RW2(PW) 15 4 C 3 8 43 81 4 2 32 T 7 84 7
RW3I(PW) 35 102 C IoO807 M 3 6] ¥ 2 523 11 1T 43 17
Rwé(Ppw) 45 12 C T0 TO T0O 3 { U8y 4 TO TO TO 22 992 22
DLS 0 % M | 08 13 1 08y 13 3 24 5 5 5.6 5
DLS 0 9% P2 | 08 13 2 L7y B3 3 26 9y 7 53 9
DLS 109 £ 2 42 13 2 ISy B3 3 3 & 4 8.1 9
RF 10 147 Pl | 3y 3 1 2y 2 T T0 T0 8 124 13
RF 10 147 P2 1 12 32 1 3y 2 T0 TO TO 8§ 113 M
RF 0 147 C 1 8 2 1 41 2 T T0 TO 8§ 125 12
SD 6 39 4 1 1 4 1 1 4 3 24 i 3 3 4
20T 2 18 Pl 2 188 26 6 831 20 16 T8 17 16 M 17
20T 2 18 P2 | 8 2 1 81 26 4 298 1 8 165 12
20T 2 128 C (1 172 Uneeal. 6 | IL7] Uneal TO TO TO 11 486  Unreal
MESII 4 2 € | 24 0 1 0.9 6 2 1.8 5 4 33 5
MESI2 e i1l C | L2 1 LLy 26 3 54 2 6 68 15
MESI3 4 116 C I 1094 46 1 L 1081) 46 TO TO TO 6 2899 15
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Experiments

SEP: True EPT: True

3

(
Benchmark Size Errors  [SEP=F & EPT=F]  [SEP=T & EPT=F]  [SEP=F & EPT=T] =] & EPT=
States Edges #lier  Time #D.T. #lter Time #DT. #lter Time #D.T. #lter Time #D.T.

RW1 (PW) 5 12 C 3 2.5 4 3 29 4 2 1.7 2 2 17 2
RW2 (PW) 5 4 C 3 38 14 3 4.8 14 2 32 7 7 84 7
RW3 (PW) 3102 C 30807 34 3 7.6 34 2005523 17 1T 43 |17
RW4 (PW) 45 132 C TO TO TO 3 s 4 T0 TO TO 22 992 | 22
DLS 0 9 Pl 1 0.8 13 1 0.8 13 3 24 5 5 56 5
DLS 10 95 P2 1 0.8 13 2 1.7 13 3 26 9 i 53 9
DLS 10 95 C 2 42 13 2 1.5 13 3 3 9 9 8.1 9
RF 0 147 Pl 1 %3 kY 1 1.2 R T0 T0 T0 8 124 1 13
RF 0 147 P 1 12 kY 1 1.3 R T0 T0 T0 8 113 1 14
RF 10 147 C 1 18 n 1 14 2 T0 T0 T0 8 125 1 12
SD 6 39 C 1 1 4 1 1 4 3 24 4 3 3 4
20T 12128 Pl 12 188 26 6 83 20 16 78 11 16 34 17
20T 12 128 P 1 1.8 26 | 18 26 4298 11 8 16,5 12
20T 12 18 C 11 172 Unreal. 6 1.7  Uneal TO TO TO I 48,6 | Unreal.
MESII 4 26 C 1 24 6 1 0.9 6 2 1.8 5 4 35 5
MESI2 9 71 C 1 1.1 26 1 1.1 26 3 564 20 6 6.8 15
MESI3 14 116 C 1 1094 46 1 1081 46 TO TO TO 6 2809 { 15
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Summary

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «—— is M correct?
Undecidable!
No: error p;lthsl

Yes
Extract constraints «<—— deadlock?

Yes: ~ R

Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?
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B deadlocks Detection

Model Check M

Yes
M «<— is M correct?
Undecidable!

No: error p;lthsl

Yes
Extract constraints «<—— deadlock?
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Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?
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Disjunctive Systems Results

Hao, g2}

Hqo, g2} Haz}

@@

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Theorem

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).
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Summary

Disjunctive Systems Results

Parameterized Repair Basic Idea

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «<— is M correct?
Undecidable!

No: error p;lthsl

Yes
Extract constraints «<—— deadlock?

Yes: ~ R

Refine M with ~

Constraints

No
Unrealizable «<—<is SAT?
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Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

ed Repair and Verifi

Hao, g2}

Hqo, g2} Haz}

@@

The counter representation of disjunctive systems is a WSTS

Theorem

with effective predecessor basis.

Theorem

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).
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Summary

Parameterized Repair B

Model M

B Modeling

B PMC Undecidable!
o, M’ W Trivial Solutions
B deadlocks Detection

Model Check M

Yes
M «—— is M correct?
Undecidable!
No: error p;lthsl

es
Extract constraints «<—— deadlock?

cr |

Yes: v
Refine M with ~

Constraints

is SAT?

o
Unrealizable «—
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Safety Property, Pairwise and Broadcast Systems

B Our Algorithm can be used for general safety properties,
based on the automata-theoretic approach.

B We extended our algorithm to repair pairwise and
broadcast systems. Both types of systems are known to
be WSTS, however

» Deadlock detection in pairwise systems Tower-hard

Theorem

Deadlock detection in broadcast protocols is undecidable.

ve Systems Results

Theorem

Theorem

Hqo, g2}

Hao, g2}

@@

The counter representation of disjunctive systems is a WSTS
with effective predecessor basis.

Hae}

The counter representation M of disjunctive systems has a
deadlocked run iff The 01-counter system of M has a deadlocked
run (Now: EXPTIME, Previously: Q*9!).

SEP: Single Error Path

eriments
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EPT: Error Paths Transitions

Benchmark  Sie B [SEPeF & EPT=F]  [SEP=T & EPI=F]  [SEP=F & EPT=T]  [SEP=T & EPT=T]
s Her Tme DT Her Twme DT Her Tme DT fler Tme DT
W oW (I S R T R S R ¥ N R S | A
RW2 (W) O O Y T 'O A I R A Y |
RWS (PW) 3OS M 376 M o2 E3 oo w30
RW4 (PW) T0 0 T0 3 18 4 T T0 T0 2 92 2
S T 0 0§ 1 8§ 3 4§ 3 36 3
DL oo o2 07 mo3 26 9 1 559
DLS 2 42 13 2 15 13 3 3 9 [} 81 9
RF 1 25 2 1 12 R T0 10 T0 8 124 13
RF 1R 1 3R T T T 8 Ui
RF 18 2 1 2 T T T 8 5N
D [ T T T L R S YR S
201 12 188 2% 0 83 2% 16 138 17 16 k1) 17
207 T8 % 118 % 4 X% 1§ 165 1
207 12 Umal 6 17 UmdTO T T0 11 86 Ul
MESIH 124 6 109 6 2 I8 5§ 4 35 3
MESI2 1 L1 2% 1 1l 2% 3 364 20 6 68 15
MESI3 1 1094 46 1 081 46 T0 T0 TO 6 299 I§




Constraints Example

Disjunctive Systems: A||B"

TRConstrpis; = /\ \/ ta A\ /\ \/ tp

qA€EQ A tA€04(qA) qBE€EQB tpcdp(gn)

Broadcast Systems: A"

A (tarAC N ta))V(stan AC N tar))]

aezsync ta?7? €op ta?? €ip

Pairwise Systems: A"

/\ [(ta! N ( \/ ta?)) \ (_‘ta! A ( /\ _'ta?))]

aezsfync ta?e(s ta7€6
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}

read? read?

done,? done,? done,.! read!
write? write?
doneqy,? doneqy,?

()=

write! doneqy,!

@ {writing}
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50, 40, 40
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Faulty Pairwise Rendezvous System

a?

. . ] . a!
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler

read? read?

done,? done,?
write? write?
doneqy,? doneqy,?

(writel,write?)

50, 40, 40

Reader-Writer

@ {reading}

done,! read!

e

write! doney,!

@ {writing}
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
read? read?
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write? write? [ :
doneqy,? doneqy,?
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1
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@ @ {reading}
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write! doney,!
@ {writing}
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Faulty Pairwise Rendezvous System
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Scheduler Reader-Writer
@ @ {reading}
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@ {writing}
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Faulty Pairwise Rendezvous System
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler Reader-Writer
@ @ {reading}
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e write? done,.! read!
done,? M
doneq? M

().

write! doneqy,!

@ {writing}
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1

Scheduler

Tewdl read?
e write?

done,? M
doneqy,? M

(writel,write?)

50, 40, 40

Reader-Writer

@ {reading}

done,! read!

e

doneqy,!

@ {writing}

write!
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Faulty Pairwise Rendezvous System

. . ] . al a?
Pairwise Synchronization: ¢y — q1, so — $1
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@ @ {reading}
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