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This talk

Address some of Verilog’s quirks in the process of extending the Verilog
support of the verified Verilog synthesis tool Lutsig (and associated tools)
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What is Lutsig?
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Lutsig – a verified Verilog synthesis tool

• Developed and verified inside the HOL4 interactive theorem prover 
(first version published at CPP’21)

• Handles a small synthesisable subset of Verilog for synchronous 
designs

• Currently targets FPGAs:
• Verified synthesis algorithm
• Translation-validation-based technology-mapping algorithm for FPGAs (LUTs)
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What do I mean by
verified-program/verified-circuit 
development?
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Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit 
description

Output: Claim that 
program/circuit satisfies 

specification

Output: Some low-level 
representation, e.g.

machine code or netlists

Source-level 
correctness theorem

Compiler theorem:
Compiler is “semantics 

preserving”, i.e., output has same 
semantics/behaviour as input

Source-level correctness theorem
+

Compiler theorem
=

Target-level correctness theorem

Summary: Semantics-preserving verified 

compiler/synthesis tool allows for 

convenient development flow (for both 

software and hardware)
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How does verifying a Verilog 
synthesis tool differ from verifying a 
compiler for a software language?
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Verilog
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Verilog
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Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit 
description

Output: Claim that 
program/circuit satisfies 

specification

Output: Some low-level 
representation, e.g.

machine code or netlists

Verilog synthesis tool: Lutsig

Verilo
g’s ”s

imulation semantics” Verilog’s ”synthesis semantics”
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Illustrative example of the clash 
between the two semantics:
Combinational logic
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Example from the “synthesis 
standard”
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

This block induces a 
software-like thread that 

will run each time 
something the block 

depends on change value

There is an (stratified) 
event queue, handling of 

events, etc.

The statements run in the 
given order

Essentially, a prose-specified 
event-driven operational 

semantics
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

“This standard defines a set of 
modeling rules for writing 

Verilog HDL descriptions for 
synthesis.”

”Combinational logic shall be 
modeled using […] or an 

always statement.”
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule
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perspective of simulation, 
just propagate events as 

specified
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“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Totally fine from the 
perspective of simulation, 
just propagate events as 

specified

Makes no sense as a hardware 
model, sequential logic (stateful 

logic) inside block for combinational 
logic (stateless logic)
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What happens when you give today’s 
synthesis tools a problematic design?
Basically anything, today’s synthesis tools might:

• abort (good case)

• emit warnings (borderline case)

• silently synthesise nonsense (bad case)

In other words, such synthesis tools are not semantics preserving
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Lutsig’s solution

• Need both semantics
• Simulation semantics for circuit-correctness theorem transportation
• Synthesis semantics for actually describing hardware, not just behaviour

• Informally: Lutsig is forced, as we will see, to abort if there’s a
mismatch between the two

• Formally: There are two theorems…
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Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:
Lutsig(D) = OK(N) ==> forall n, run_verilog(D, n) = run_netlist(N, n)
(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. modelling rules for always_comb:
Lutsig(D) = OK(N) ==>
forall Verilog variables v in D,
if v written to by always_comb block ==>
no register with name v in netlist N
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Lutsig in practice

• If Lutsig successfully gives back a synthesised netlist:
• Because of Lutsig’s correctness theorem, the synthesised netlist must have 

the same behaviour as the input Verilog module
• I.e., simulation-and-synthesis mismatches are ruled out using mathematical 

proof

• If Lutsig errors out:
• Revisit your design
• This happens e.g. when the simulation and synthesis semantics point in 

different directions (i.e., you broke some of the “modelling rules”), because 
Lutsig abides by both semantics, Lutsig is forced to abort if this happens
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What does Lutsig actually do?

• Sequential blocks (always_ff) straightforward to handle

• Combinational blocks (always_comb):
• Sort blocks topologically w.r.t. read dependencies, e.g.:

always_comb b = a + 1;
always_comb a = inp;

• (Abort if cannot sort.)

• Examples of individual blocks to follow…
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Combinational example 1: Scalars

For straight-line code, read as netlist:

always_comb begin
// Lutsig would die here since tmp
// read before written to
y = tmp | c;
tmp = a & b;
end

Cannot sort here since simulation 
semantics says to execute 
statements in order given!
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Combinational example 2: Arrays

For straight-line code, read as netlist:

logic[1:0] foo;

always_comb begin
foo[0] = inp1;
foo[1] = inp2;
// ok reading foo here since whole array covered
foo = foo + 1;
end
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Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always_comb
if (c)
a = inp;

//else
//   a = 'x;
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Remember: Lutsig is formally verified

• Previous slides are pretty much the same checks a helpful synthesis 
tool or a linter would do

• Lutsig, however, is formally verified

• So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output 
netlist behave the same
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Some other sources of mismatches to think 
about
• First version of Lutsig: X values – too broken to use standard 

semantics

• First version of Lutsig: Correct blocking and nonblocking assignments 
usage

• Other modelling rules, e.g., block RAM inference should be similar to
how combinational logic is handled in Lutsig
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Conclusion

• Verilog is a… tricky language…

• (Although, in Verilog’s defence, difficult to avoid this when modelling 
hardware behaviourally.)

• Nevertheless, this new version of Lutsig is one attempt at doing 
formal hardware development using Verilog
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