
Reconciling
Verified-Circuit Development

and
Verilog Development

Andreas Lööw
Imperial College London

1

One-slide summary

Well-known: verified-program

development inside ITP +
2

One-slide summary

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
3

One-slide summary

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ = Sadness
Pain

Misery

4

One-slide summary

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
Joy

QEDHa
pp
ine
ss

5

One-slide summary

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
Joy

QEDHa
pp
ine
ss

Additionally, goal here: Want to
change these two as little as

possible while doing this addition

6

What’s the problem?

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
Joy

QEDHa
pp
ine
ss

7

What’s the problem?

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
Joy

QEDHa
pp
ine
ss

Non-semantics-preservation in compilation = bug

8

What’s the problem?

Well-known: verified-program

development inside ITP

Well-known: Verilog development+ =
Joy

QEDHa
pp
ine
ss

Non-semantics-preservation in compilation = bug

Non-semantics-preservation in synthesis = feature

9

This talk

Address some of Verilog’s quirks in the process of extending the Verilog
support of the verified Verilog synthesis tool Lutsig (and associated tools)

10

What is Lutsig?

11

Lutsig – a verified Verilog synthesis tool

• Developed and verified inside the HOL4 interactive theorem prover
(first version published at CPP’21)

• Handles a small synthesisable subset of Verilog for synchronous
designs

• Currently targets FPGAs:
• Verified synthesis algorithm
• Translation-validation-based technology-mapping algorithm for FPGAs (LUTs)

12

What do I mean by
verified-program/verified-circuit
development?

13

Development flow

Input: Program/circuit
description

14

Development flow

Input: Specification Input: Program/circuit
description

15

Development flow

Verification tool

Input: Specification Input: Program/circuit
description

16

Development flow

Verification tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

17

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

18

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

19

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
semantics/behaviour as input

20

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Source-level
correctness theorem

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
semantics/behaviour as input

21

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Source-level
correctness theorem

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
semantics/behaviour as input

Source-level correctness theorem
+

Compiler theorem
=

Target-level correctness theorem

22

Development flow

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Source-level
correctness theorem

Compiler theorem:
Compiler is “semantics

preserving”, i.e., output has same
semantics/behaviour as input

Source-level correctness theorem
+

Compiler theorem
=

Target-level correctness theorem

Summary: Semantics-preserving verified

compiler/synthesis tool allows for

convenient development flow (for both

software and hardware)

23

How does verifying a Verilog
synthesis tool differ from verifying a
compiler for a software language?

24

Verilog

25

Verilog

26

Verilog

27

Verilog

28

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

29

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Verilo
g’s ”s

imulation semantics”

30

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Verilo
g’s ”s

imulation semantics” Verilog’s ”synthesis semantics”

31

Simulation-and-synthesis mismatches

Verification tool Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

Output: Claim that
program/circuit satisfies

specification

Output: Some low-level
representation, e.g.

machine code or netlists

Verilog synthesis tool: Lutsig

Verilo
g’s ”s

imulation semantics” Verilog’s ”synthesis semantics”

32

Illustrative example of the clash
between the two semantics:
Combinational logic

33

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

34

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Example from the “synthesis
standard”

35

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

36

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

37

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Essentially, a prose-specified
event-driven operational

semantics

38

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

There is an (stratified)
event queue, handling of

events, etc.

Essentially, a prose-specified
event-driven operational

semantics

39

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

This block induces a
software-like thread that

will run each time
something the block

depends on change value

There is an (stratified)
event queue, handling of

events, etc.

Essentially, a prose-specified
event-driven operational

semantics

40

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

This block induces a
software-like thread that

will run each time
something the block

depends on change value

There is an (stratified)
event queue, handling of

events, etc.

The statements run in the
given order

Essentially, a prose-specified
event-driven operational

semantics

41

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

42

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

43

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

“This standard defines a set of
modeling rules for writing

Verilog HDL descriptions for
synthesis.”

44

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

“This standard defines a set of
modeling rules for writing

Verilog HDL descriptions for
synthesis.”

”Combinational logic shall be
modeled using […] or an

always statement.”

45

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

46

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Totally fine from the
perspective of simulation,
just propagate events as

specified

47

“Mis-ordered” assignments
B.5 Assignment statements mis-ordered

module andor1a(
output logic y,
input logic a, b, c);

logic tmp;

always_comb begin
y = tmp | c;
tmp = a & b; // write after read

end
endmodule

Totally fine from the
perspective of simulation,
just propagate events as

specified

Makes no sense as a hardware
model, sequential logic (stateful

logic) inside block for combinational
logic (stateless logic)

48

What happens when you give today’s
synthesis tools a problematic design?
Basically anything, today’s synthesis tools might:

• abort (good case)

• emit warnings (borderline case)

• silently synthesise nonsense (bad case)

In other words, such synthesis tools are not semantics preserving

49

Lutsig’s solution

• Need both semantics
• Simulation semantics for circuit-correctness theorem transportation
• Synthesis semantics for actually describing hardware, not just behaviour

• Informally: Lutsig is forced, as we will see, to abort if there’s a
mismatch between the two

• Formally: There are two theorems…

50

Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:
Lutsig(D) = OK(N) ==> forall n, run_verilog(D, n) = run_netlist(N, n)
(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. modelling rules for always_comb:
Lutsig(D) = OK(N) ==>
forall Verilog variables v in D,
if v written to by always_comb block ==>
no register with name v in netlist N

51

Lutsig in practice

• If Lutsig successfully gives back a synthesised netlist:
• Because of Lutsig’s correctness theorem, the synthesised netlist must have

the same behaviour as the input Verilog module
• I.e., simulation-and-synthesis mismatches are ruled out using mathematical

proof

• If Lutsig errors out:
• Revisit your design
• This happens e.g. when the simulation and synthesis semantics point in

different directions (i.e., you broke some of the “modelling rules”), because
Lutsig abides by both semantics, Lutsig is forced to abort if this happens

52

What does Lutsig actually do?

• Sequential blocks (always_ff) straightforward to handle

• Combinational blocks (always_comb):
• Sort blocks topologically w.r.t. read dependencies, e.g.:

always_comb b = a + 1;
always_comb a = inp;

• (Abort if cannot sort.)

• Examples of individual blocks to follow…

53

Combinational example 1: Scalars

For straight-line code, read as netlist:

always_comb begin
// Lutsig would die here since tmp
// read before written to
y = tmp | c;
tmp = a & b;
end

Cannot sort here since simulation
semantics says to execute
statements in order given!

54

Combinational example 2: Arrays

For straight-line code, read as netlist:

logic[1:0] foo;

always_comb begin
foo[0] = inp1;
foo[1] = inp2;
// ok reading foo here since whole array covered
foo = foo + 1;
end

55

Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always_comb
if (c)
a = inp;

//else
// a = 'x;

56

Remember: Lutsig is formally verified

• Previous slides are pretty much the same checks a helpful synthesis
tool or a linter would do

• Lutsig, however, is formally verified

• So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output
netlist behave the same

57

Some other sources of mismatches to think
about
• First version of Lutsig: X values – too broken to use standard

semantics

• First version of Lutsig: Correct blocking and nonblocking assignments
usage

• Other modelling rules, e.g., block RAM inference should be similar to
how combinational logic is handled in Lutsig

58

Conclusion

• Verilog is a… tricky language…

• (Although, in Verilog’s defence, difficult to avoid this when modelling
hardware behaviourally.)

• Nevertheless, this new version of Lutsig is one attempt at doing
formal hardware development using Verilog

59

