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Additionally, goal here: Want to
change these two as little as
possible while doing this addition
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This talk

Address some of Verilog’s quirks in the process of extending the Verilog

support of the verified Verilog synthesis tool Lutsig (and associated tools)



What is Lutsig?



Lutsig — a verified Verilog synthesis tool

* Developed and verified inside the HOL4 interactive theorem prover
(first version published at CPP’21)

* Handles a small synthesisable subset of Verilog for synchronous
designs

* Currently targets FPGAs:
 Verified synthesis algorithm
* Translation-validation-based technology-mapping algorithm for FPGAs (LUTSs)



What do | mean by
verified-program/verified-circuit
development?
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Development flow

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Verification tool Compiler/synthesis tool

Compiler theorem:
Compiler is “semantics
preserving”, i.e., output has same

description
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Development flow

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification

Source-level
correctness theorem

Input: Program/circuit

description

Output: Some low-level
representation, e.g.
machine code or netlists

Compiler/synthesis tool

Compiler theorem:
Compiler is “semantics
preserving”, i.e., output has same
semantics/behaviour as input
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Source-level correctness theorem
+

Compiler theorem

Target-level correctness theorem

Development flow

Output: Claim that
program/circuit satisfies
specification

Output: Some low-level
representation, e.g.
machine code or netlists

Verification tool Compiler/synthesis tool

Source-level Compiler theorem:

correctness theorem Compiler is “semantics
= preserving”, i.e., output has same
Input: Specification Input: Program/circuit semantics/behaviour as input

description
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How does verifying a Verilog
synthesis tool differ from veritying a
compiler for a software language?
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Reasons why Synthesis might not match
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Aug 4, 2018

When | first learned digital design, | never simulated any of my designs: | just placed them directly onto
the hardware and debugged them there.

I've since become convinced in using simulation for several reasons: simulation can be faster than
synthesizing a design. Indeed, any time | run Verilator | can find many syntax errors in my design before
Vivado fully starts up and shows me one bug. But that’s just synthesis. For small designs, simulation is
still faster. Of course, ultimately, the hardware is always faster-but in the time it takes to get there, you
might manage to get an answer via simulation.

The second reason why | like simulation is that a simulation generated trace will contain every wire
within the design. For this reason, when something doesn’t work in hardware, I'll almost always return
to simulation and try to do the same thing in simulation to see if | can come across the same bug. That
allows me to be able to turn around quickly and find the bug.

Or ... not so quickly. On one recent design, | read the entire 16MB from a SPI flash memory, only to
have the design fail when reading the last word from the flash. Not knowing where to start, | started
with simulation-but then had to trim down the trace before filling up every bit in my computers disk
drive.

But what happens when you cannot simulate the problem? When your design works perfectly in
simulation, but fails on the hardware?

I'll admit this happened to me recently as well. | think it happens to everyone at some point.

Therefore, to help keep you from FPGA Hell, | asked on Reddit for a list of things that might cause your
simulation not to match reality. When | asked, | thought | knew most of the reasons. To my surprise, the
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Simulation-and-synthesis mismatches
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Simulation-and-synthesis mismatches
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Input: Specification Input: Program/circuit
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llustrative example of the clash
between the two semantics:
Combinational logic



“Mis-ordered” assignments

B.5 Assignment statements mis-ordered
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tmp = a & b;
end

endmodule
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“Mis-ordered” assignments

B.5 Assighment statements mis-ordered
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What happens when you give today’s
synthesis tools a problematic design?

Basically anything, today’s synthesis tools might:

e abort (good case)
e emit warnings (borderline case)

* silently synthesise nonsense (bad case)

In other words, such synthesis tools are not semantics preserving



Lutsig’s solution

* Need both semantics
e Simulation semantics for circuit-correctness theorem transportation
* Synthesis semantics for actually describing hardware, not just behaviour

* Informally: Lutsig is forced, as we will see, to abort if there’s a
mismatch between the two

* Formally: There are two theorems...



Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:
Lutsig(D) = OK(N) ==> forall n, run_verilog(D, n) = run_netlist(N, n)
(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. modelling rules for always comb:

Lutsig(D) = OK(N) ==>

forall Verilog variables v in D,

if v written to by always_comb block ==>
no register with name v in netlist N



Lutsig In practice

* If Lutsig successfully gives back a synthesised netlist:

* Because of Lutsig’s correctness theorem, the synthesised netlist must have
the same behaviour as the input Verilog module

* |.e., simulation-and-synthesis mismatches are ruled out using mathematical
proof

* If Lutsig errors out:
* Revisit your design
* This happens e.g. when the simulation and synthesis semantics point in

different directions (i.e., you broke some of the “modelling rules”), because
Lutsig abides by both semantics, Lutsig is forced to abort if this happens



What does Lutsig actually do?
* Sequential blocks (always_ff) straightforward to handle

 Combinational blocks (always comb):
» Sort blocks topologically w.r.t. read dependencies, e.g.:

always comb b
always comb a

a + 1;
inp;

e (Abort if cannot sort.)

* Examples of individual blocks to follow...



Combinational example 1: Scalars

For straight-line code, read as netlist:

always comb begin

y = tmp | c;

t _ & b: Cannot sort here since simulation
mp = a ) semantics says to execute

statements in order given!
end :




Combinational example 2: Arrays

For straight-line code, read as netlist:
logic[1:0] foo;
always comb begin

foo[0] inpl;
foo[1] inp2;

foo = foo + 1;
end



Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always comb
if (c)
a = 1inp;



Remember: Lutsig is formally verified

* Previous slides are pretty much the same checks a helpful synthesis
tool or a linter would do

* Lutsig, however, is formally verified

* So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output
netlist behave the same



Some other sources of mismatches to think
about

* First version of Lutsig: X values — too broken to use standard
semantics

* First version of Lutsig: Correct blocking and nonblocking assignments
usage

* Other modelling rules, e.g., block RAM inference should be similar to
how combinational logic is handled in Lutsig



Conclusion

* Verilog is a... tricky language...

 (Although, in Verilog’s defence, difficult to avoid this when modelling
hardware behaviourally.)

* Nevertheless, this new version of Lutsig is one attempt at doing
formal hardware development using Verilog



