Reconciling
Verified-Circuit Development
and
Verilog Development

Andreas LOOwW
Imperial College London

One-slide summary

One-slide summary

One-slide summary

One-slide summary

One-slide summary

Additionally, goal here: Want to
change these two as little as
possible while doing this addition

What’s the problem?

What’s the problem?

Non-semantics-preservation in compilation = bug

What’s the problem?

Non-semantics-preservation in synthesis = feature

Non-semantics-preservation in compilation = bug

This talk

Address some of Verilog’s quirks in the process of extending the Verilog

support of the verified Verilog synthesis tool Lutsig (and associated tools)

What is Lutsig?

Lutsig — a verified Verilog synthesis tool

* Developed and verified inside the HOL4 interactive theorem prover
(first version published at CPP’21)

* Handles a small synthesisable subset of Verilog for synchronous
designs

* Currently targets FPGAs:
 Verified synthesis algorithm
* Translation-validation-based technology-mapping algorithm for FPGAs (LUTSs)

What do | mean by
verified-program/verified-circuit
development?

Development flow

Input: Program/circuit

description

14

Development flow

Input: Specification Input: Program/circuit
description

15

Development flow

Verification tool

Input: Specification Input: Program/circuit
description

16

Development flow

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification Input: Program/circuit
description

Development flow

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification Input: Program/circuit
description

Compiler/synthesis tool

18

Development flow

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification Input: Program/circuit
description

Output: Some low-level
representation, e.g.
machine code or netlists

Compiler/synthesis tool

19

Development flow

Output: Claim that Output: Some low-level
program/circuit satisfies representation, e.g.
specification machine code or netlists

Verification tool Compiler/synthesis tool

Compiler theorem:
Compiler is “semantics
preserving”, i.e., output has same

description

20

Development flow

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification

Source-level
correctness theorem

Input: Program/circuit

description

Output: Some low-level
representation, e.g.
machine code or netlists

Compiler/synthesis tool

Compiler theorem:
Compiler is “semantics
preserving”, i.e., output has same
semantics/behaviour as input

21

Source-level correctness theorem
+

Compiler theorem

Target-level correctness theorem

Development flow

Output: Claim that
program/circuit satisfies
specification

Output: Some low-level
representation, e.g.
machine code or netlists

Verification tool Compiler/synthesis tool

Source-level Compiler theorem:

correctness theorem Compiler is “semantics
= preserving”, i.e., output has same
Input: Specification Input: Program/circuit semantics/behaviour as input

description

22

Source-level correctness theorem
+

Compiler theorem

Development flo

acthess theorem

Output: Claim
=-am/circuit

Compiler theorem:
Compiler is “semantics

o W preserving”, i.e., output has same
Input: Specification Inpu—igram/circuit semantics/behaviour as input

»cription

23

How does verifying a Verilog
synthesis tool differ from veritying a
compiler for a software language?

Verilog

-
Gisselquist
Technology, LLC

Main/Blog
About Us
FPGA Hell
Tutorial
Formal training
Quizzes
Projects
Site Index

v @zipcpu
Reddit

|® Support

W—

Reasons why Synthesis might not match
Simulation

Aug 4, 2018

When | first learned digital design, | never simulated any of my designs: | just placed them directly onto
the hardware and debugged them there.

I've since become convinced in using simulation for several reasons: simulation can be faster than
synthesizing a design. Indeed, any time | run Verilator | can find many syntax errors in my design before
Vivado fully starts up and shows me one bug. But that’s just synthesis. For small designs, simulation is
still faster. Of course, ultimately, the hardware is always faster-but in the time it takes to get there, you
might manage to get an answer via simulation.

The second reason why | like simulation is that a simulation generated trace will contain every wire
within the design. For this reason, when something doesn’t work in hardware, I'll almost always return
to simulation and try to do the same thing in simulation to see if | can come across the same bug. That
allows me to be able to turn around quickly and find the bug.

Or ... not so quickly. On one recent design, | read the entire 16MB from a SPI flash memory, only to
have the design fail when reading the last word from the flash. Not knowing where to start, | started
with simulation-but then had to trim down the trace before filling up every bit in my computers disk
drive.

But what happens when you cannot simulate the problem? When your design works perfectly in
simulation, but fails on the hardware?

I'll admit this happened to me recently as well. | think it happens to everyone at some point.

Therefore, to help keep you from FPGA Hell, | asked on Reddit for a list of things that might cause your
simulation not to match reality. When | asked, | thought | knew most of the reasons. To my surprise, the

25

Verilog

jeld
i Jes That Yi¢
Coding St¥ .
RT;Jimulaﬁon and Synthesis
Mismatches

Don Mﬁ\s)
LCDM Engineerng

Clifford E. Cummine®
Sunburst Design, 11

-
Gisselquist
Technology, LLC

Aug 4, 2018

When | first learned di

ABSTRACT
the hardware and debi

en pre-
¢ will cause @ mismatch betwe P

il after
. s thal - overed until @
g coding style ot disco)
details, with examples, Ven\0§y° these mismatches ar¢ o od for a second P
I've since become con This paper etal Sk ions. Frequen 135
synthesizing a design. |

nd post—symhesxs simulati
al

example of @
jplem and an 1s0
us require ws the pro ine styles @
0 enerated, and'th 1 example that gho . Most of these coding sty
ivado fully starts up an silicon has been g% comp anied by @ g tions E:
still faster. Of course, ulti Bach coding style is ac i Symhes'\s simulations.
might manage to get an style that will match‘Pte Ptte“ v .
odels Wit

The second reason why | app\y to RTL

within the design. For this
to simulation and try to do
allows me to be able to tur

Or ... not so quickly. On on
have the design fail when re:

with simulation-but then ha
drive.

But what happens when you
simulation, but fails on the hat

I'll admit this happened to me

Therefore, to help keep you froi

sked on Reddit for a list of things that might cause your
simulation not to match reality. When | asked, | thought | knew most of the reasons. To my surprise, the

Verilog

Main/Blog
About Us
FPGA Hell
Tutorial
Formal training
Quizzes
Projects
Site Index

v @zipcpu
Reddit

|® Support

-
Gisselquist
Technology, LLC

Aug 4, 2018

When | first learned di
the hardware and debi

I've since become con
synthesizing a design. |
Vivado fully starts up an
still faster. Of course, ulti
might manage to get an

The second reason why |
within the design. For this
to simulation and try to do
allows me to be able to tur

Or ... not so quickly. On on
have the design fail when re:
with simulation-but then ha
drive.

But what happens when you
simulation, but fails on the hat

I'll admit this happened to me
Therefore, to help keep you froi

simulation not to match reality. When | asked:

27

Verilog

-
Gisselquist
Technology, LLC

Main/Blog

About Us Reason
FPGA Hell

Tutorial SimUIaﬁ

Formal training

8 Aug 4, 2018
Quizzes
Projects
Site Index When | first learned di
e — the hardware and debi
v @zipcpu
Reddit I've since become con
l® Support synthesizing a design. |

Vivado fully starts up an
still faster. Of course, ultil
might manage to get an

The second reason why |
within the design. For this
to simulation and try to do
allows me to be able to tur

Or ... not so quickly. On on
have the design fail when re:
with simulation-but then ha
drive.

But what happens when you
simulation, but fails on the hal

I'll admit this happened to me

Therefore, to help keep you froi 5
simulation not to match reality. When | asked:

Simulation-and-synthesis mismatches

Output: Claim that
program/circuit satisfies
specification

Verification tool

Input: Specification Input: Program/circuit
description

Output: Some low-level
representation, e.g.
machine code or netlists

Compiler/synthesis tool

29

Simulation-and-synthesis mismatches

Output: Claim that Output: Some low-level
program/circuit satisfie . representation, e.g.
machine code or netlists

Compiler/synthesis tool

Input: Specification Input: Program/circuit
description

30

Simulation-and-synthesis mismatches

Output: Claim that Output: Some low-level
program/circuit satisfie - S representation, e.g.

Input: Specification Input: Program/circuit
description

|EEE STANDARDS ASSOCIATION 4HIEEE

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

|EEE Computer Society
and the
|EEE Standards Association Corporate Advisory Group

sponsored by the
Design Automation Standards Committee

IEEE \EEE Std 1800™-2017
R

3 park Avenue -2
New York, NY 10016-5997 (Revision of
USA \EEE Std 1800-2012)

authorized licensed use limited to- \mperial College London. Downloaded on March 23,2022 a 21:17:36 UTG from |EEE Xplore. Restrctions 2ppY.

A LI

Input: Program/circuit
description

llustrative example of the clash
between the two semantics:
Combinational logic

“Mis-ordered” assignments

B.5 Assignment statements mis-ordered

module andorla(

output logic vy,

input logic a, b, ¢);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

Example from the “synthesis

“Mis-ordered” assignmen standard”

B.5 Assignment statements mis-ordered

module andorila(

output logic vy,

input logic a, b, ¢);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

“Mis-ordered” assignments

B.5 Assignment statements mis-ordered

module andorla(

output logic vy,

input logic a, b, ¢);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

“Mis-ordered” assignments

B.5 Assignment statements mis-ordered

module andorla(

|EEE Standard for SystemVerilog—

Unified Hardware Design, .
ls_;;é%::ga;ion, and Verification ou t p u t 1 og ic y ’
an

input logic a, b, c);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

37

“Mis-ordered” assignments

Essentially, a prose-specified
event-driven operational

semantics

ment statements mis-ordered

1EEE STANDAk.-=

|EEE Standg_< yst(_emVerilog—
Unified Hardware Design, |
specification, and Verification
Language

module andorla(
output logic vy,

input logic a, b, ¢);
logic tmp;

\EEE Computer Society

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

“Mis-ordered” assignments

Essentially, a prose-specified
event-driven operational
semantics

ment statements mis-ordered

module andorla(

output logic vy,

input logic a, b, ¢);
logic tmp;

|EEE Standg_< yst(_emVerilog—
Unified Hardware Design, |
specification, and Verification

Language

There is an (stratified)

. always comb begin
event queue, handling of

events, etc. y = tmp | C
tmp = a & b;
end

endmodule

“Mis-ordered” assignments

Essentially, a prose-specified
event-driven operational
semantics

ment statements mis-ordered

module andg
output
input
logic t

|EEE Standg_< yst(_emVerilog—
Unified Hardware Design, |
specification, and Verification

Language

This block induces a
software-like thread that
will run each time
something the block
depends on change value

There is an (stratified)

always comb
event queue, handling of

pegin

events, etc. y = tmp | C
tmp = a & b;
end

endmodule

“Mis-ordered” assignments

Essentially, a prose-specified
event-driven operational
semantics

ment statements mis-ordered

module andg
output
input
logic t

|EEE Standg_< yst(_emVerilog—
Unified Hardware Design, |
specification, and Verification

Language

This block induces a
software-like thread that
will run each time
something the block
depends on change value

There is an (stratified)

. always_comb
event queue, handling of

pegin

events, etc. y = tmp | C
tmp = a & b;
end

The statements run in the
endmodule given order

“Mis-ordered” assignments

B.5 Assignment statements mis-ordered

module andorla(

|EEE Standard for SystemVerilog—

Unified Hardware Design, .
ls_;;é%::ga;ion, and Verification ou t p u t 1 og ic y ’
an

input logic a, b, c);
logic tmp;

always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

42

Mis-ordered” assignments

B.5 Assighment
S .
e e tatements mis-ordered

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

module andorila(
output logic vy,
input logic a, b, c);
logic tmp; ’

\EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

sponsored by the
Design Automation Standards Committee

R always_comb begin

e—_— e y = tmp | c;
tmp = a & b;

end

endmodule

43

“This standard defines a set of
modeling rules for writing
Verilog HDL descriptions for
synthesis.”

Mis-ordered”

B.5 Assighment s

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

module andorila(
output logic vy,
input logic a, b, c);
logic tmp;

\EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

sponsored by the
Design Automation Standards Committee

always_comb begin
y = tmp | c;

tmp = a & b;

end

endmodule

|EEE Std 1 800™-2017
Revision of

w York, NY 10016-5997

Ne
USA 00-2012)

44

“This standard defines a set of
modeling rules for writing
Verilog HDL descriptions for
synthesis.”

Mis-ordered”

|EEE STANDARDS ASSOCIATION B m

module
outpu
input
logic tmp;

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

‘Combinational logic shall be
modeled using [...] or an
always statement.”

\EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

oooooo he

 Standards Committee

always_comb begin
y=tmplc;

|EEE Std 1 800™-2017
Revision of

rk Avenue
York, NY 10016-5997

lew
USA |EEE Std 1800-2012)

tmp = a & b;
end
endmodule

45

Mis-ordered” assignments

B.5 Assighment
S .
e e tatements mis-ordered

|EEE Standard for SystemVerilog—
Unified Hardware Design,
Speciﬁcation, and Verification
Language

module andorila(
output logic vy,
input logic a, b, c);
logic tmp; ’

\EEE Computer Society

and the
|EEE Standards Association Corporate Advisory Group

sponsored by the
Design Automation Standards Committee

R always_comb begin

e—_— e y = tmp | c;
tmp = a & b;

end

endmodule

46

“Mis-ordered” assignments

B.5 Assighment statements mis-ordered

|EEE Standard for Syst_emVerilog—
Unified Hardware Design,

specification, and Verification
Language

module andorila(
output logic vy,

Totally fine from the nput logic a, b, c);
perspective of simulation, 1c tmp;
just propagate events as

specified

| always_comb begin

y = tmp | c;
tmp = a & b;
end

endmodule

47

“Mis-ordered” assignments

B.5 Assighment statements mis-ordered

(/’ 1364 ™
C Eee
EEE s
|EEE Standard for Syst_emVerilog— mOd u 1 e a n d O r‘ 1 a ((:\‘ Tr, anSfera”.,g\?;rSfor
Unifed Hardware B2 o output logic v, 75 "
Language . . . — 'FEECompy,
Totally fine from the nput logic a, b, c); — ecty
perspective of simulation, i

c tmp;

just propagate events as

Makes no sense as a hardware
specified

model, sequential logic (stateful
logic) inside block for combinational

| always_comb begin

logic (stateless logic)
y = tmp | c;
tmp = a & b;
end

endmodule

What happens when you give today’s
synthesis tools a problematic design?

Basically anything, today’s synthesis tools might:

e abort (good case)
e emit warnings (borderline case)

* silently synthesise nonsense (bad case)

In other words, such synthesis tools are not semantics preserving

Lutsig’s solution

* Need both semantics
e Simulation semantics for circuit-correctness theorem transportation
* Synthesis semantics for actually describing hardware, not just behaviour

* Informally: Lutsig is forced, as we will see, to abort if there’s a
mismatch between the two

* Formally: There are two theorems...

Lutsig’s correctness theorems (simplified)

Correctness w.r.t. (Lutsig’s) Verilog simulation semantics:
Lutsig(D) = OK(N) ==> forall n, run_verilog(D, n) = run_netlist(N, n)
(except for X-related behavior, which is allowed to be removed)

Correctness w.r.t. modelling rules for always comb:

Lutsig(D) = OK(N) ==>

forall Verilog variables v in D,

if v written to by always_comb block ==>
no register with name v in netlist N

Lutsig In practice

* If Lutsig successfully gives back a synthesised netlist:

* Because of Lutsig’s correctness theorem, the synthesised netlist must have
the same behaviour as the input Verilog module

* |.e., simulation-and-synthesis mismatches are ruled out using mathematical
proof

* If Lutsig errors out:
* Revisit your design
* This happens e.g. when the simulation and synthesis semantics point in

different directions (i.e., you broke some of the “modelling rules”), because
Lutsig abides by both semantics, Lutsig is forced to abort if this happens

What does Lutsig actually do?
* Sequential blocks (always_ff) straightforward to handle

 Combinational blocks (always comb):
» Sort blocks topologically w.r.t. read dependencies, e.g.:

always comb b
always comb a

a + 1;
inp;

e (Abort if cannot sort.)

* Examples of individual blocks to follow...

Combinational example 1: Scalars

For straight-line code, read as netlist:

always comb begin

y = tmp | c;

t _ & b: Cannot sort here since simulation
mp = a) semantics says to execute

statements in order given!
end :

Combinational example 2: Arrays

For straight-line code, read as netlist:
logic[1:0] foo;
always comb begin

foo[0] inpl;
foo[1] inp2;

foo = foo + 1;
end

Combinational example 3: If-statements

Generate mux for if-statements, fail if not assigned in all branches:

always comb
if (c)
a = 1inp;

Remember: Lutsig is formally verified

* Previous slides are pretty much the same checks a helpful synthesis
tool or a linter would do

* Lutsig, however, is formally verified

* So, we know that the checks done are sufficient to guarantee
semantics-preserving synthesis, i.e., input Verilog module and output
netlist behave the same

Some other sources of mismatches to think
about

* First version of Lutsig: X values — too broken to use standard
semantics

* First version of Lutsig: Correct blocking and nonblocking assignments
usage

* Other modelling rules, e.g., block RAM inference should be similar to
how combinational logic is handled in Lutsig

Conclusion

* Verilog is a... tricky language...

 (Although, in Verilog’s defence, difficult to avoid this when modelling
hardware behaviourally.)

* Nevertheless, this new version of Lutsig is one attempt at doing
formal hardware development using Verilog

