
FMCAD 2022

Roope Kaivola, Neta Bar-Kama

Core and Client Development Group, Intel

Intel ConfidentialDepartment or Event Name 22
Intel provides these materials as-is, with no express or implied warranties. Intel processors might contain design defects or errors known as errata, which might cause the product to deviate
from published specifications. No product or component can be absolutely secure. Intel, Intel Core, Intel Atom, Pentium and Intel logo are trademarks of Intel Corporation. Other names and
brands might be claimed as the property of others. © Intel Corporation

Datapath formal verification

Symbolic simulation

Timed causal fanin analysis

Results

Intel ConfidentialDepartment or Event Name 33

CPU – building blocks

Fetch Decode Execute Write Back

The execution cluster (EXE) is a pipelined machine that receives streams of micro-
operations (µops).

~5000 µops in Intel Core Processor EXE cluster.

Arithmetic, logic, branch operations, address calculations and more.

Data calculations are performed on input sources and result goes to the write-back
output.

All EXE µops, especially floating-point complex computations, are formally verified
using Symbolic Simulation (STE).

Intel ConfidentialDepartment or Event Name 4444

0 1
X S

Intel ConfidentialDepartment or Event Name 55

in1

in2

in3

out

“a”

“b”

“c”

~“c”
“b”&~“c”

(“b”&~“c”)“a” |

1 0

1 0
“a”

1 0

1 0
“b”

1 0

1 0
“c”

0 1

1 0
“c”

1 0

0
1

“c”

“b”
1 0

1 0

0

1

“c”

“b”
1

0
“a”

1

0

C. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods Syst.
Des., vol. 6, no. 2, pp. 147–189, 1995

Intel ConfidentialDepartment or Event Name 66

source_data1[7:0]

source_data2[7:0]

opcode[3:0]

[“a[7]”,…,“a[0]”]

[“b[7]”,…,“b[0]”]

0110

valid1

clock

result_data1[7:0]

[“a[7]”|”b[7]”,…,“a[0]”|”b[0]”]bit-wise OR [“a[7]”&”b[7]”,…,“a[0]”&”b[0]”]

bit-wise AND

[…,“a[0]”&!”b[0]”+!“a[0]”&”b[0]”]

ADD

01011001

0 1

0
1

“b[0]”

“a[0]”

0 1

0 1

0
1

“b[0]”

“a[0]”

0 1

0 1

0
1
“b[0]”

“a[0]”

0 1

“b[0]”

0
1

Intel ConfidentialDepartment or Event Name 77

Floating point numbers:

Traditional floating-point types: single, double and extended precision floats.

𝑓 = (−1)𝑠× 1.𝑚 × 2 𝑒−𝑏𝑖𝑎𝑠

63 62 52 51 0

Double-Precision s e e e e e e e e e e e m

31 30 23 22 0

Single-Precision s e e e e e e e e m

Closed-box
C_i C_i+1

Decomposition

Decomposition
• Requires deep understanding of design implementation
• Cut-points side-conditions are not intuitive and hard to find
• Requires technical expertise

Intel ConfidentialDepartment or Event Name 88

Constants driven
to control signals

Symbols driven to
data signals

Symbolic expressions
sampled at the outputs

Every bit is
a Boolean

expression

Grey areas represent X
– uninitialized/unknown values

Intel ConfidentialDepartment or Event Name 99

X

X

X

X

X

X

0 0

0 X

1

1 1

X a

a

a&X

a|X

a ? X : 0

a ? 1 : X

Like a symbol, an X can also be 0 or 1 at any given moment, but it is not represented by a
Boolean expression and doesn’t take memory.
In our terminology that is an uninitialized value, which is an over-approximation of the circuit
behavior.

* Weakening:
Limiting the sets of signals, times or values in simulation,
by replacing them with the undefined values ‘X’

Intel ConfidentialDepartment or Event Name 1010

Universal
Replace with ‘X’ at all times

Cycle-by-cycle
Replace with ‘X’ at specific times

Dynamic
Replace with ‘X’ if the size of the expression exceeds a given threshold

* Cycle-by-cycle and dynamic weakening are unique to symbolic simulation

Intel ConfidentialDepartment or Event Name 1111

Symbolic simulation properties:
(𝑡𝑟𝑖𝑔1 ∧ 𝑡𝑟𝑖𝑔2 ∧ … ∧ 𝑡𝑟𝑖𝑔𝑛) → (𝑔𝑜𝑎𝑙1 ∧ 𝑔𝑜𝑎𝑙2 ∧ … ∧ 𝑔𝑜𝑎𝑙𝑛)

Simulate only when all triggers are satisfied

Triggers simplify the simulation:

1. Restrict simulation scope

2. Reduce expression size

Intel ConfidentialDepartment or Event Name 1212

Parametric substitution factors in triggers so that we can take
advantage of them.

In ONE simulation, we cover ALL cases where triggers are
satisfied, and ONLY those cases.

M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal verification using parametric representations of Boolean
constraints,” in DAC’99, pp. 402–407, 1999

R. B. Jones, Symbolic Simulation Methods for Industrial Formal Verification. Springer, 2002

Intel ConfidentialDepartment or Event Name 1313

Example:

We want to verify a 1-cyc latency ADD uop.

1. Basic condition for verification (constant values):
uopcode = ADD
valid = 1

2. Prevent write-back clash:
no other uop will write-back at the same time.

2-cyc
MUL

1-cyc
ADD

WB

Intel ConfidentialDepartment or Event Name 1414

Option 1:

clk

uop_valid

my uop
is valid

no other uops
are valid at any
other time

over-restricting,
incorrect assumption!

Option 2:

uop_code S

S

clk

uop_valid

0x08

my uop
is validconstant values on

other controls
symbolic values on
other controls

we can have other uops, as long as
they satisfy the scheduling
restrictions

‘X’ on all other cycles
–> arbitrary state

Intel ConfidentialDepartment or Event Name 1515

symbolic values on
other controls

we can have other uops that
satisfy the scheduling restrictions

‘X’ on all other cycles
–> arbitrary state

uop_code S

S

clk

uop_valid

0x08

0 1 2 3 4

We cannot have two uops writing back at the same time
==
We cannot have:
a valid MUL 2-cyc uop at cycle 1
AND
a valid ADD 1-cyc uop at cycle 2

write-back
time

my uop
is valid

we can have other uops, as long as
they satisfy the scheduling
restrictions

vld_A

res
add

mul
mul_vld_A mul_vld_C

mul_A

v

!v&m

0

0
00

𝐶2 𝑣,𝑚 = ¬(𝑣 ∧ 𝑚)

റ𝑝 = 𝑣 → 𝑣′, 𝑚 → ~𝑣′ ∧ 𝑚′

Intel ConfidentialDepartment or Event Name 16161616

Intel ConfidentialDepartment or Event Name 1717

1. Data-path complexity of the individual operation

2. Everything surrounding it

TCFA ingredients

• Cone of influence

• Constant based reduction

• On a timed cycle-by-cycle basis

Underlying techniques

• Weakening

• Parametric substitution

Intel ConfidentialDepartment or Event Name 1818

output

Input
controls

Input
data

Intel ConfidentialDepartment or Event Name 1919

output

Input
controls

Input
data

Intel ConfidentialDepartment or Event Name 2020

output

Input
controls

Input
data

Intel ConfidentialDepartment or Event Name 2121

1. Initial simulation

2. Backwards traversal

3. Weakening list

→Main symbolic simulation

Intel ConfidentialDepartment or Event Name 2222

Input
controls

Input
data

“v@1”

“c[7:0]@1”

Symbolic
controls

1

Cycle 1

uop_code S

S

clk

uop_valid

0x08

0 1 2 3 4

trigger combined with
parametric substitution:
constant values in trace

Other constants may be
implied directly by circuit
logic or trigger restrictions

X
0

0

“v@1&!mul@1”

Intel ConfidentialDepartment or Event Name 2323

Input
controls

Input
data

1

1000 X

constant
controls

1

X

Cycle 2

uop_code S

S

clk

uop_valid

0x08

0 1 2 3 4

Low dynamic weakening limit:
Large BDD’s will be replaced by ‘X’

trigger combined with
parametric substitution:
constant values in trace

[“b[7]”,…,”b[0]”]

[“a[7]”,…,”a[0]”]

Symbolic values on
data inputs

Intel ConfidentialDepartment or Event Name 2424

output

Input
controls

Input
data

“v@1”

“c[7:0]@1”

1

X

X

X

X

X

X

X

X

X

X X

X

X

0

1

1

0

0 1 2 3 4

At the end of stage 1,
we have the value of
every signal at every
time

Intel ConfidentialDepartment or Event Name 2525

output

Input
controls

Input
data

0

S

X

X

S

X

X

X

X

X

X X

X

X

0

1

0

1

1

1000

[“b[7]”,…,”b[0]”]

[“a[7]”,…,”a[0]”]

0 1 2 3 4

At the end of stage 1,
we have the value of
every signal at every
time

Intel ConfidentialDepartment or Event Name 2626

output

Input
controls

Input
data

X

X

X

X

X

X

X

S

X

X X

X

X

1

0

0

0

0 1 2 3 4

X

At the end of stage 1,
we have the value of
every signal at every
time

Intel ConfidentialDepartment or Event Name 2727

output

Input
controls

Input
data

Starting at the
verification goal
in the last cycle

0 1 2 3 4

Causal fanin:

[output]

Intel ConfidentialDepartment or Event Name 2828

Causal fanin:

[output,

ctl_out4,

data1_out4]

Causal fanin:

[output,

ctl_out4]

output

Input
controls

Input
data

01

Starting at the
verification goal
in the last cycle

Causal fanin:

[output]

X
X

ctl_out4

data2_out4

data1_out4

data0_out4

Concrete 0/1 value

affects the output

Does NOT affect
the output

Combinational
gate

0 1 2 3 4

Intel ConfidentialDepartment or Event Name 2929

Causal fanin:

[output,

ctl_out4,

data1_out4,

data1_out3]

Causal fanin:

[output,

ctl_out4,

data1_out4,

data1_out3,

data_in3]

Causal fanin:

[output,

ctl_out4,

data1_out4,

data1_out3,

data_in3,

data_in2,data_in1]

output

Input
controls

Input
data

X
X

Causal fanin:

[output,

ctl_out4,

data1_out4]State element
(flip-flop)

data1_out4

data1_out3

clock3Clock is toggling
1

Clock is NOT
toggling

data_in2 data_in3

clock2

0
clock1

data_in1 data_in2
X

Clock is ‘X’
(or a symbolic
expression)

0 1 2 3 4

01

Intel ConfidentialDepartment or Event Name 3030

output

Input
controls

Input
data

At the end of stage 2,
we have a list of the
signals that are in the
cone of influence, on
specific times.

Causal fanin:

[output,

ctl_out4,

data1_out4,

data1_out3,

data_in3,

data_in2,data_in1,...]

Intel ConfidentialDepartment or Event Name 3131

output

Input
controls

Input
data

At the end of stage 3,
we have a weakening
list to be used in the
main simulation.

We can safely assume that
everything that is NOT on the
above list does not affect the
result.

Intel ConfidentialDepartment or Event Name 3232

Computing causal fanin cone
Visible to the user

Understanding why a signal is there

Tuning threshold for stages 1 and 2
Dynamic Weakening Limit

Too low --> fewer constant values for causal
fanin traversal analysis

Too high --> heavier initial simulation

Causal Fanin Max-size / Min-Tick

Non-Causal Fanout Max-size / Min-Tick

The human user experience

Intel ConfidentialDepartment or Event Name 33333333

Intel ConfidentialDepartment or Event Name 3434

CPU – building blocks

Fetch Decode Execute Write Back

All operations are fully verified using symbolic simulation.

Complex arithmetic data-paths are especially risky: bugs are potentially customer

visible and un-patchable

Intel ConfidentialDepartment or Event Name 3535

Floating point numbers:

Traditional floating-point types: single, double and extended precision floats.

𝑓 = (−1)𝑠× 1.𝑚 × 2 𝑒−𝑏𝑖𝑎𝑠

63 62 52 51 0

Double-Precision s e e e e e e e e e e e m

31 30 23 22 0

Single-Precision s e e e e e e e e m

15 14 10 9 0

Half-Precision s e e e e e m m m m m m m m m m

A new half-precision floating point type was introduced in recent projects.

* Mantissa size affects most on complexity

Different complexity challenges: “simple”, FMUL, FMA, FDIV operations

Intel ConfidentialDepartment or Event Name 3636

• Specification is well-defined
• No need of insight into design implementation details
• Low sensitivity to internal design changes

Timed causal fanin analysis was a key enabler to the verification complexity reduction of
FP16 operations. For the first time, we managed to prove all complex operations closed-box!

Closed-box
C_i C_i+1

Decomposition

Intel ConfidentialDepartment or Event Name 3737

“Simple” uops (FCOM, FADD, conversions…)
Separate simple datapaths from complex ones

FMUL
Isolate FMUL from FMA on the shared datapath (esp. rounding)

FMA
Case split needed for complexity reduction

Remove logic that is not relevant to a specific case

FDIV and FSQRT
Long-latency iterative operations, struggle against expression growth

Separate FP16 operation from higher precision datapaths

Intel ConfidentialDepartment or Event Name 3838

Timed causal fanin analysis

Used extensively over many years

Can do vs. cannot do (not fast vs. slow)

Combines COI and constant-based reduction on timed basis

Provides visibility to the human user

Key complexity reduction technique in all Intel’s symbolic
simulation based FV work

Intel ConfidentialDepartment or Event Name 40404040

Backup

Parametric substitution

Debug process

Intel ConfidentialDepartment or Event Name 4141

𝐶 റ𝑣 : a conjunction of all verification assumptions.

Every symbolic variable in റ𝑣 is replaced with either a constant or a symbolic expression, such that 𝐶 റ𝑝 is satisfied.

… this allows us to simulate exactly the set of values for which C is true, in a single simulation.

𝐶1 𝑎, 𝑏 = 𝑎 ∧ 𝑏 𝐶2 𝑎, 𝑏 = 𝑎 ∨ 𝑏

റ𝑝 = 𝑎 → 1, 𝑏 → 1

𝐶1 റ𝑝 = 𝑡𝑟𝑢𝑒

റ𝑝 = 𝑎 → 𝑎′, 𝑏 → 𝑏′ ∨ ~𝑎′

𝐶2 റ𝑝 = 𝑎′ ∨ 𝑏′ ∨ ~𝑎′ = 𝑡𝑟𝑢𝑒

Examples:

a b C2

0 0 0

0 1 1

1 0 1

1 1 1

a’ b’ a' b’|!a’

0 0 0 1

0 1 0 1

1 0 1 0

1 1 1 1

Intel ConfidentialDepartment or Event Name 4242

symbolic values on
other controls

we can have other uops that
satisfy the scheduling restrictions

‘X’ on all other cycles
–> arbitrary state

uop_code S

S

clk

uop_valid

0x08

0 1 2 3 4

We cannot have two uops writing back at the same time
==
We cannot have:
a valid MUL 2-cyc uop at cycle 1
AND
a valid ADD 1-cyc uop at cycle 2

write-back
time

my uop
is valid

we can have other uops, as long as
they satisfy the scheduling
restrictions

Parametric substitution allows this condition to transform to
constant values in the simulation:

vld_A

res
add

mul
mul_vld_A mul_vld_C

mul_A

v

!v&m

0

0
00

𝐶1 𝑣,𝑚 = 𝑣 ∧ ¬𝑚

റ𝑝 = 𝑣 → 𝑣′, 𝑚 → ~𝑣′ ∧ 𝑚′

𝐶2 𝑣,𝑚 = ¬(𝑣 ∧ 𝑚)

𝐶 = 𝐶1 ∧ 𝐶2

Intel ConfidentialDepartment or Event Name 4343

Computing causal fanin cone
Visible to the user

Understanding why a signal is there

The human user experience

rSTE_debug_ncfow_show_statistics show_detail->T;

...

Tick 6 fanin signal hierarchies:

add/ 118

add/w2gadd_17_10/ 30

/ 10

...

Tick 3 fanin signal hierarchies:

/ 114

add/ 9

mul/ 271

rSTE_debug_ncfow_get_causal_fanin ticks->[3] signal_prefix->"mul/";

[("mul/prdD[0]", 3), ("mul/prdD[1]", 3), ...]

rSTE_debug_ncfow_get_causal_path ("mul/prdD[0]", 3);

[("wbW[1]", 9), ("sumD[1]", 9), ("add/sumC[1]", 7), ("add/sumcC[1]", 7),

("add/w2gadd_17_10/EXP_2391", 7), ("add/EXP_19[0]", 7), ("add/dinC[2][0]", 7),

("dinB[2][0]", 5), ("wbW[0]", 5), ("prdE[0]", 5), ("mul/prdD[0]", 3)]

Intel ConfidentialDepartment or Event Name 4444

rSTE_debug_ncfow_get_causal_path ("mul/prdD[0]", 3);

[("wbW[1]", 9), ("sumD[1]", 9), ("add/sumC[1]", 7), ("add/sumcC[1]", 7),

("add/w2gadd_17_10/EXP_2391", 7), ("add/EXP_19[0]", 7), ("add/dinC[2][0]", 7),

("dinB[2][0]", 5), ("wbW[0]", 5), ("prdE[0]", 5), ("mul/prdD[0]", 3)]

Intel ConfidentialDepartment or Event Name 4545

rSTE_debug_ncfow_get_causal_path ("mul/prdD[0]", 3);

[("wbW[1]", 9), ("sumD[1]", 9), ("add/sumC[1]", 7), ("add/sumcC[1]", 7),

("add/w2gadd_17_10/EXP_2391", 7), ("add/EXP_19[0]", 7), ("add/dinC[2][0]", 7),

("dinB[2][0]", 5), ("wbW[0]", 5), ("prdE[0]", 5), ("mul/prdD[0]", 3)]

Intel ConfidentialDepartment or Event Name 4646

rSTE_debug_ncfow_get_causal_path ("mul/prdD[0]", 3);

[("wbW[1]", 9), ("sumD[1]", 9), ("add/sumC[1]", 7), ("add/sumcC[1]", 7),

("add/w2gadd_17_10/EXP_2391", 7), ("add/EXP_19[0]", 7), ("add/dinC[2][0]", 7),

("dinB[2][0]", 5), ("wbW[0]", 5), ("prdE[0]", 5), ("mul/prdD[0]", 3)]

Intel ConfidentialDepartment or Event Name 4747

rSTE_debug_ncfow_get_causal_path ("mul/prdD[0]", 3);

[("wbW[1]", 9), ("sumD[1]", 9), ("add/sumC[1]", 7), ("add/sumcC[1]", 7),

("add/w2gadd_17_10/EXP_2391", 7), ("add/EXP_19[0]", 7), ("add/dinC[2][0]", 7),

("dinB[2][0]", 5), ("wbW[0]", 5), ("prdE[0]", 5), ("mul/prdD[0]", 3)]

