Why do things go wrong (or right)? Applications of causal reasoning to verification

Hana Chockler causaLens

and Department of Informatics King's College, London

Causal AI is the only technology that can augment human decision making

Humans trust Causal Al with complex decisions

Correlation ML systems learn to perform simple predictions

But predictions are a very small element of decision making.

causaLens

World's First Full-Stack Causal Al Platform

We launched the World's <u>First Causal Al Enterprise Platform</u>, which automates everything from Raw Data to Improved Business Decisions.

Motivation: Modern computerized systems are huge and difficult to understand

Motivation: Modern computerized systems are huge and difficult to understand

A-priori (type) and a-posteriori (actual) causality

Turns out he broke his leg

8

Background

Causality

When do we say that **A** is a cause of **B**?

Common approach: counterfactual causality.

A is a cause of B if, had A not happened, then B would not have happened.

DAVID HUME A Treatise of Human Nature

Causality

When do we say that **A** is a cause of **B**?

Common approach: counterfactual causality.

We need to capture more complex causal connections!

over determination

Rakaiorisaraanseadseseof me beiengglicheerladed.d?

Causality

When do we say that **A** is a cause of **B**?

Common approach: counterfactual causality.

We need to capture more complex causal connections!

preemption

Car is a cause of me being drenched, but not the rain

©Halpern & Pearl, 2001

Actual causality

Extends the counterfactual reasoning by having expressive causal models allowing overdetermination, preemption, and complex causal structures

<u>Overdetermination:</u> A is a cause of B if there exists some contingency C (change in the current world) in which B counterfactually depends on A.

Illustration of overdetermination in actual causality

Rain is an actual cause of me being drenched.

Contingency = the car

Rain is a counterfactual cause

Responsibility: a quantitative measure of causality Voting example

Complexity of Computing Causality and Responsibility

The good news:

- There are linear-time approximation algorithms

 Accurate on most problems
- We usually care only about highest-ranked causes
 o Polynomial to compute the exact set

Formal Verification ?Is the system correct

Formal Verification ?Is the system correct

Counterexamples in hardware

A huge timing diagram that is very difficult to understand

- 88					Viv	ado 2017.2.1		
Eile Edit Tools Window Lavout View Run Help Q- Quick Access								
🖻 🛧 🖈 🖹 🖹 X 🏘 🖄 🖉 😹 🕪 🕨 1000 ns 🗸 🗄 📗						С		📰 Default Layout 🗸
SIMULATION - Simulatio	on – sim							? ×
Scope × Sources		_ 🗆 🖸	Objects	?	- 🗆 🗆 ×	Untitled 1*		? 🗆 🖒 X
Q,		٥	Q		0	Q, 💾 🔍	Q 🔀 🔸	I I
Name	Design Unit	Block Type	Name	Value	Data ^			A
🗸 🔋 top	top(RTL)	VHDL En	📸 A	0	Logic	Name	Value	la na 1300 na 1400 na 1600 na 1800 na 14.000 na 14.000 na 14.
🔋 sub_inst	sub(RTL)	VHDL En	📸 B	1	Logic	15 dik	1	
			造 C	1	Logic	u data	0	
			📸 Q	0	Logic	~ Mcount[3:0]	4	
			🎝 comb	1	Logic	14 [3]	0	
						16 [2]	1	
						¥k [1]	0	
						¥a [0]	0	
						🖟 comb	1	
								Do we understand
								the
								countanavampla

22

φ = always ((!START and !STATUS_VALID and END) ->
next(!START Until (STATUS_VALID and READY))

works and is really useful!

Explaining counterexamples using causality (Red Dots) part of tool Causality START END STATUS_VALID

4 5 6 7 8 9 10 11

Following this work...

2

- Statistical Analysis for Fault Localisation
 - o Looks for <u>correlation</u> elements that appear more in failing traces than in passing ones are suspicious
 - o Elements are ordered by their degree of suspiciousness

http://www.tylervigen.com/spurious-correlations

- Statistical Analysis for Fault Localisation
 - o Looks for <u>correlation</u> elements that appear more in failing traces than in passing ones are suspicious
 - o Elements are ordered by their degree of suspiciousness

Total revenue generated by arcades correlates with **Computer science doctorates awarded in the US**

http://www.tylervigen.com/spurious-correlations

- Statistical Analysis for Fault Localisation
 - o Looks for <u>correlation</u> elements that appear more in failing traces than in passing ones are suspicious
 - o Elements are ordered by their degree of suspiciousness

- Statistical Analysis for Fault Localisation
 - o Looks for <u>correlation</u> elements that appear more in failing traces than in passing ones are suspicious
 - o Elements are ordered by their degree of suspiciousness

Learning the language of software errors

Recent work from **Meta**

Minesweeper automates root cause analysis as a first-line defense against bugs

not

causa

• O (

Formal Verification (Model Checking) ?Is the system correct

Vacuity - the main idea

Vacuous satisfaction of ϕ in M means that some part of ϕ is irrelevant in M

Coverage - the main idea

Low coverage of M by ϕ means that some part of M is irrelevant for the satisfaction of ϕ

What is the output of coverage check?

Low coverage of M by ϕ means that some parts of M are irrelevant for the satisfaction of ϕ

There is no standard coverage check... but if there was one...

Why is verification a good application for causality?

Interventions are always possible

- o An intervention amounts to a change in the value of a variable
- o Unlike other domains, where changes can be impossible (like healthcare)

Why is verification a good application for causality?

- Interventions are always possible
- It is usually clear what the variables are and easy to calculate the equations
 - o Constructing the right model = $\frac{1}{2}$ of the answer
 - o In many domains, constructing the right model is challenging
 - o An ongoing discussion in philosophy

o Fortunately, we are not in philosophy

Why is verification a good application for causality? 🟅

- Interventions are always possible
- It is usually clear what are the variables and easy to calculate the equations
- The systems are deterministic and all variables are known
 - o No noise, no hidden confounders
 - o Not quite true for concurrent systems, but still better than in other domains

Why is verification a good application for causality?

- Interventions are always possible
- It is usually clear what are the variables and easy to calculate the equations
- The systems are deterministic and all variables are known
- The approach is agnostic to the model-checking algorithm

©Vaandrager (many papers)

Model learning

Can be viewed as a causal model

Reasoning about black-boxes ?Do we need to construct a white box at all

We can reason about various properties of the system without opening the black box

Explanations for Deep Neural Network's decisions

Subtle misclassifications - uncovered by explanations

Can we use a similar approach to answer the question * ? "?What does the system do"

Bibliography

- Chockler and Halpern. "Responsibility and Blame: A Structural-Model Approach". J. Artif. Intell. Res. 22: 93-115 (2004)
- Chockler, Halpern, Kupferman. What causes a system to satisfy a specification? ACM Trans. Comput. Log. 9(3): 20:1-20:26 (2008)
- Beer, Ben-David, Chockler, Orni, Trefler. "Explaining Counterexamples Using Causality". FMSD (2012)
- Chockler, Gurfinkel, Strichman: Beyond vacuity: towards the strongest passing formula. FMSD (2013)
- Aleksandrowicz, Chockler, Halpern, Ivrii. "The Computational Complexity of Structure-Based Causality". AAAI'14: 974-980.
- Alrajeh, Chockler, Halpern. "Combining Experts' Causal Judgments". Artif. Intell. (2020).
- Chockler, Kesseli, Kroening, Strichman. "Learning the Language of Software Errors". J. Artif. Intell. Res. 67: 881-903 (2020).
- Sun, Chockler, Huang, Daniel Kroening. "Explaining Image Classifiers Using Statistical Fault Localization". ECCV'20: 391-406.
- Chockler, Kroening, Sun. "Explanations for Occluded Images". ICCV'21: 1234-1243.
- Pouget, Chockler, Sun, Kroening. "Ranking Policy Decisions". NeurIPS'21.

