Automating Geometric Proofs of **Collision Avoidance with Active** Corners Nishant Kheterpal, Elanor Tang, Jean-Baptiste Jeannin

• Automation in safety-critical systems is gaining prevalence

Automating Geometric Proofs of Collision Avoidance with Active Corners

- Automation in safety-critical systems is gaining prevalence
- Formal guarantees of safety are important for medical devices, aircraft, automated vehicles, etc.

- Automation in safety-critical systems is gaining prevalence
- Formal guarantees of safety are important for medical devices, aircraft, automated vehicles, etc.
- Verification is often difficult
 - Rarely possible to verify implementations in situ
 - Theorem provers require user interaction to run

- Automation in safety-critical systems is gaining prevalence
- Formal guarantees of safety are important for medical devices, aircraft, automated vehicles, etc.
- Verification is often difficult
 - Rarely possible to verify implementations in situ
 - Theorem provers require user interaction to run
- My work attempts to automate certain collision avoidance verification tasks

nspiration

- \bullet

Past work by Jeannin et al. verified collision avoidance safety for ACAS X

 ACAS X is an airborne collision avoidance system that sends climb/descend commands to pilots to avoid mid-air collisions with approaching aircraft

Inspiration

- Past work by Jeannin et al. verified collision avoidance safety for ACAS X
- ACAS X is an airborne collision avoidance system that sends climb/descend commands to pilots to avoid mid-air collisions with approaching aircraft
- How can we make sure a control system issues correct advisories?

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	/		
	/		
		≻	
		•	

- Inputs \bullet
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal \bullet
 - Automatically generate a symbolic, provably correct, quantifier-free safe region

	1	
_		
	/	
		4
		/

- Inputs
 - A convex polygon
 - A known piecewise, planar trajectory
- Goal lacksquare
 - Automatically generate a symbolic, provably correct, quantifier-free safe region
- **Key insight:** We must consider the trajectories of corners and more to construct a safe region

	/
F.	
	7
	_
	7

• Proofs of advisory safety used *implicit* and *explicit* safe regions

Automating Geometric Proofs of Collision Avoidance with Active Corners

- Proofs of advisory safety used *implicit* and *explicit* safe regions
- *Implicit* safe region:
 - Along some path, obstacle at (x_O, y_O) is a safe distance away

Automating Geometric Proofs of Collision Avoidance with Active Corners

- Proofs of advisory safety used *implicit* and *explicit* safe regions
- *Implicit* safe region:
 - Along some path, obstacle at (x_O, y_O) is a safe distance away

•
$$\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O - x_{\mathcal{T}}| > w \lor |y_O - y_{\mathcal{T}}|$$

			•
	_	\rightarrow	γ
/			a

- Proofs of advisory safety used *implicit* and *explicit* safe regions
- *Implicit* safe region:
 - Along some path, obstacle at (x_O, y_O) is a safe distance away

•
$$\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O - x_{\mathcal{T}}| > w \lor |y_O - y_{\mathcal{T}}|$$

- *Explicit* safe region:
 - Directly encodes a region in space where the plane/car will never be ●

> h

			•
	_	\rightarrow	γ
/			a

- Proofs of advisory safety used *implicit* and *explicit* safe regions
- *Implicit* safe region:
 - Along some path, obstacle at (x_O, y_O) is a safe distance away

•
$$\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O - x_{\mathcal{T}}| > w \lor |y_O - y_{\mathcal{T}}|$$

- *Explicit* safe region:
 - Directly encodes a region in space where the plane/car will never be \bullet
 - e.g. $((y_O \ge x_O + w + h 15) \lor (y_O \le x_O w h 15))$

> h

Adler et al., AIAA '19; Abhishek et al., HSCC '20

			l
		//	
_		\rightarrow	\mathcal{X}

- *Implicit* regions are straightforward to prove safe but difficult to use at runtime due to quantifiers
 - $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O|)$
- *Explicit* formulations are more efficient when checking safety

$$|-y_{\mathcal{T}}| > h$$

- *Implicit* regions are straightforward to prove safe but difficult to use at runtime due to quantifiers
 - $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O|)$
- *Explicit* formulations are more efficient when checking safety
 - $((y_O \ge x_O + w + h 15) \lor (y_O \le x_O h))$
 - Constructing regions and proving equivalence in a theorem prover takes hundreds of hours

fmcad.²²

Some repeated structure in past work using this approach

$$-y_{\mathcal{T}}| > h$$

$$w - h - 15)$$

- *Implicit* regions are straightforward to prove safe but difficult to use at runtime due to quantifiers
 - $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O|)$
- *Explicit* formulations are more efficient when checking safety
 - $((y_O \ge x_O + w + h 15) \lor (y_O \le x_O h))$
 - Constructing regions and proving equivalence in a theorem prover takes hundreds of hours

fmcad.²²

- Some repeated structure in past work using this approach
- Can we bridge the gap automatically?

MICHIGAN ENGINEERING

$$-y_{\mathcal{T}}| > h$$

$$w - h - 15)$$

• Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

Automating Geometric Proofs of Collision Avoidance with Active Corners

Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

• $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O - x_{\mathcal{T}}| > w \lor |y_O - y_{\mathcal{T}}| > h)$

Given a convex polygon translating on a known \bullet piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

- $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O y_{\mathcal{T}}| > h)$
- Automatically construct a quantifier-free, geometric representation of the unsafe region

Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

- $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O y_{\mathcal{T}}| > h)$
- Automatically construct a quantifier-free, geometric representation of the unsafe region

Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

- $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O y_{\mathcal{T}}| > h)$
- Automatically construct a quantifier-free, geometric representation of the unsafe region

Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

- $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O y_{\mathcal{T}}| > h)$
- Automatically construct a quantifier-free, geometric representation of the unsafe region $((x_{O} \ge -w) \land (y_{O} \le h) \land (y_{O} \ge -2x_{O} - 2w - h) \land (x_{O} \le 5 + w) \land (y_{O} \le -2x_{O} + 2w + h) \land (y_{O} \ge -10 - h)) \bigvee$

 $((x_{O} \ge 5 - w) \land (y_{O} \ge -10 - h) \land (y_{O} \le x_{O} + w + h - 15) \land (y_{O} \ge x_{O} - w - h - 15))$

Given a convex polygon translating on a known piecewise trajectory \mathcal{T}

•
$$\mathscr{T} = \begin{cases} y = -2x, \ x \in [0, 5] \\ y = x - 15, \ x \in [5, \infty) \end{cases}$$

- $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O x_{\mathcal{T}}| > w \lor |y_O y_{\mathcal{T}}| > h)$
- Automatically construct a quantifier-free, geometric representation of the unsafe region

 $((x_{O} \ge 5 - w) \land (y_{O} \ge -10 - h) \land (y_{O} \le x_{O} + w + h - 15) \land (y_{O} \ge x_{O} - w - h - 15))$

Algorithm **Intuition: Active Corners**

• "Follow the corners"

	/		
/			
			/
/			≻

Algorithm **Intuition: Active Corners**

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners

	/		
/			
			/
/			≻

Algorithm **Intuition: Active Corners**

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners

-	1		
/		<u> </u>	
	_		/
	/		÷
			-

Algorithm Intuition: Choosing active corners

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners
- Choose which active corners to follow based on the angle of the trajectory

Algorithm Intuition: Choosing active corners

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners
- Choose which active corners to follow based on the angle of the trajectory

Algorithm Intuition

MICHIGAN ENGINEERING

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners
- Choose which *active corners* to follow based on the angle of the trajectory
- At *transition points*, the active corner changes: must also include polygon in the region

Automating Geometric Proofs of Collision Avoidance with Active Corners

Algorithm Intuition

- "Follow the corners"
- We found that the safe region boundaries were either sides of the polygon or trajectories of its corners
- Choose which *active corners* to follow based on the angle of the trajectory
- At *transition points*, the active corner changes: must also include polygon in the region
 - Using only corners misses the *notch* (red)

fmcad.²²

- Proved equivalence of our method's output to the input implicit region
- Correctness implication: $safe_{expl} \implies safe_{impl}$

• safe_{expl}:
$$\left(\left(y_O \ge x_O + w + h - 15 \right) \lor \left(y_O \le x_O - w - h - 15 \right) \right)$$

• safe_{impl}: $\forall (x_{\mathcal{T}}, y_{\mathcal{T}}) \in \mathcal{T}, (|x_O - x_{\mathcal{T}}| > w \lor |y_O - y_{\mathcal{T}}| > h)$

- Proved equivalence of our method's output to the input implicit region
- Correctness: $safe_{expl} \implies safe_{impl.}$ By contradiction: $unsafe_{impl} \implies unsafe_{expl}$
- Intuitively: "any point inside any polygon along the trajectory lies either between the active corners or in a transition point"

- Proved equivalence of our method's output to the input implicit region
- Correctness: $safe_{expl} \implies safe_{impl.}$ By contradiction: $unsafe_{impl} \implies unsafe_{expl}$
- Intuitively: "any point inside any polygon along the trajectory lies either between the active corners or in a transition point"

- Proved equivalence of our method's output to the input implicit region
- Proof deals with (rotated) segments of trajectory over which there is no active corner change and includes start & end transition points
 - Accounts for notch handling this way

- Proved equivalence of our method's output to the input implicit region
- Proof deals with (rotated) segments of trajectory over which there is no active corner change and includes start & end transition points
 - Accounts for notch handling this way

• We have built an open-source library implementing the active corner method

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions
- Available on Github

fmcad.²²

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions
- Available on Github

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions
- Available on Github

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions
- Available on Github

- We have built an open-source library implementing the active corner method
- Uses Python and Sympy for symbolic math
- Automatically generates fully symbolic safe or unsafe regions
- Available on Github

fmcad.²²

Related Work Reachability & Safety

fmcad.²²

Automating Geometric Proofs of Collision Avoidance with Active Corners

Collins, ATFL 1975. Ben-Or, Kozen, and Reif, JCSS 1986.

Related Work **Reachability & Safety**

- Zonotope Reachability
 - Given a range of initial conditions and a differential equation \bullet
 - Propagate initial condition through differential equation and overapproximate reachable set
 - Results are not exact, unlike our method
- Quantifier Elimination by Cylindrical Algebraic Decomposition (CAD), Ben-• Or, Kozen, and Reif (BKR), etc

Related Work **Reachability & Safety**

- Zonotope Reachability
 - Given a range of initial conditions and a differential equation \bullet
 - Propagate initial condition through differential equation and overapproximate reachable set
 - Results are not exact, unlike our method
- Quantifier Elimination by Cylindrical Algebraic Decomposition (CAD), Ben-• Or, Kozen, and Reif (BKR), etc

$$\exists x \in \mathbf{R} . (a \neq 0 \land ax^2 + bx + c = 0) \Longleftrightarrow a \neq 0 \land b^2 - 4ac \ge 0$$

- Most general approach for generating an exact explicit safe region
- Runtime is prohibitive for symbolic applications: doubly exponential

fmcad.²²

Applications

- Applied to two past papers from our group performing collision avoidance verification
- TACAS '15 ACAS X paper verifying aircraft collision avoidance advisories
 - Rectangular object
 - Parabolic-then-linear path

fmcad.²²

4000 *r*(ft)

Performance Evaluation Case Study 1

- TACAS '15 ACAS X verification paper with side-view of aircraft collision avoidance advisories
- For this polynomial example, CAD performs comparably to our implementation for numeric cases
- Our implementation begins to beat CAD as the problem becomes increasingly symbolic

Performance Evaluation Case Study 1

- TACAS '15 ACAS X verification paper with side-view of aircraft collision avoidance advisories
- As for memory usage, CAD uses less **memory** than our implementation
- Note that Mathematica is purpose-built for efficient mathematical computation

Automating Geometric Proofs of Collision Avoidance with Active Corners

Applications Case Study 2

- UAV top-down collision avoidance
 - Approximate circle as a hexagon
 - Circular-then-linear path

Performance Evaluation Case Study 2

- UAV top-down collision avoidance
- CAD does not terminate for all but the fully numeric example
- Ran overnight on an iMac Pro with **128GB RAM**
- Our implementation runs in under a minute at worst

Automating Geometric Proofs of Collision Avoidance with Active Corners

Performance Evaluation Case Study 2

- UAV top-down collision avoidance
- For all but the fully numeric case, CAD memory usage explodes to over 50 GB
- Our implementation keeps memory usage under 25 MB

Performance Evaluation **Dubins Path**

- Tested the active corner method with a highly non-polynomial trajectory
- Fully symbolic Dubins path: semicircular segments connected by straight lines
- Commonly used for robot motion planning

$$\begin{cases} \sqrt{R^2 - x^2} \\ R\sin\left(\theta\right) - \frac{-R\cos\left(\theta\right) + x}{\tan\left(\theta\right)} \\ \frac{R}{\sin\left(\theta\right)} - \frac{p}{\tan\left(\theta\right)} - \sqrt{\frac{p^2}{\cos^2\left(\theta\right)} - \left(-2p + x\right)^2} + \left|p\tan\left(\theta\right)\right| \\ \frac{R}{\sin\left(\theta\right)} - \frac{p}{\tan\left(\theta\right)} + \frac{(-b + x)(-2p + x)\left|\cos\left(\theta\right)\right|}{\sqrt{p^2 - (b - 2p)^2\cos^2\left(\theta\right)}} - \frac{\sqrt{-b^2\cos^2\left(\theta\right) + x^2}}{\sqrt{b^2 - b^2\cos^2\left(\theta\right)}} \end{cases}$$

fmcad.²²

$$\begin{aligned} & \text{for } x > \frac{R}{\sqrt{\tan^2{(\theta)}+1}} \\ & \text{for } p < x \\ & \text{for } b < x \\ \hline \frac{4bp\cos^2{(\theta)}-4p^2\cos^2{(\theta)}+p^2}{|\cos{(\theta)}|} + |p\tan{(\theta)}| & \text{otherwise} \end{aligned}$$

Performance Evaluation **Dubins Path**

- Fully symbolic Dubins path: semicircular segments connected by straight lines
- CAD does not terminate for any case, including numeric examples
- Active corner method fails to terminate for a symbolic hexagon
 - Too many transition points
- Ran overnight on an iMac Pro with 128GB RAM

fmcad.²²

Summary

- Automated method for constructing symbolic geometric safe regions without quantifiers from convex polygon and piecewise trajectories
- Proof of correctness for the active corner method
- Open-source Python implementation using Sympy

fmcad.²²

Performance study and comparison to Cylindrical Algebraic Decomposition

Future Work

- Automatic proof certificate generation using PVS¹
- Extension of this method to rotating objects or n-dimensional settings

Automating Geometric Proofs of Collision Avoidance with Active Corners

Any questions?

Any questions? Backup slides next

fmcad.²²

Backup

Proof Structure (Mild) Assumptions

- Proof considers trajectories with a finite number of transition points over a a finite domain
- Without this, there are an infinite number of notches to account for even on finite domains
- In practice, this assumption is mild, though pathological trajectories do exist

Х
Performance Evaluation Dubins Path

- Fully symbolic Dubins path: semicircular segments connected by straight lines
- CAD RAM usage grows to several GB as it fails to terminate
- Active corner method memory usage stays under 100 MB if terminating

Automating Geometric Proofs of Collision Avoidance with Active Corners

Example	Instance	Active Corners Time	Active Corners RAM	CAD Time	CAD RAM
UAV	Fully Numeric	0.48 sec	7.1 MB	2381 * sec	30.89 MB
UAV	Numeric Trajectory	0.82 sec	8.4 MB	DNF	50+ GB
UAV	Numeric Hexagon	38 sec	22 MB	DNF	100+ GB
UAV	Fully Symbolic	$45 \sec$	$24 \mathrm{MB}$	DNF	100+ GB
Dubins	Fully Numeric	1.2 sec	9.0 MB	DNF	11+ GB
Dubins	Fully Symbolic: Rectangle	4505 sec	91 MB	DNF	4+ GB
Dubins	Fully Symbolic: Hexagon	DNF	N/A	DNF	8+ GB
ACAS X	Fully Numeric	0.13 sec	5.9 MB	0.04 sec	160 KB
ACAS X	Numeric Trajectory	0.48 sec	6.6 MB	$0.04 \sec$	188 KB
ACAS X	Numeric Rectangle	0.51 sec	6.6 MB	0.2 sec	325 KB
ACAS X	Fully Symbolic	0.57 sec	6.6 MB	$1.1 \mathrm{sec}$	$1.8 \ \mathrm{MB}$

Better results **bolded**. DNF: example did not finish in 8+ hours. *: incorrect answer

Example	Instance	Active Corners Time	Active Corners RAM	CAD Time	CAD RAM
UAV	Fully Numeric	0.48 sec	7.1 MB	2381 * sec	30.89 MB
UAV	Numeric Trajectory	0.82 sec	$8.4 \ \mathrm{MB}$	DNF	50+ GB
UAV	Numeric Hexagon	38 sec	$22 \mathrm{MB}$	DNF	100+ GB
UAV	Fully Symbolic	$45 \sec$	$24 \mathrm{MB}$	DNF	100+ GB
Dubins	Fully Numeric	1.2 sec	9.0 MB	DNF	11+ GB
Dubins	Fully Symbolic: Rectangle	4505 sec	91 MB	DNF	4+ GB
Dubins	Fully Symbolic: Hexagon	DNF	N/A	DNF	8+ GB
ACAS X	Fully Numeric	0.13 sec	5.9 MB	0.04 sec	160 KB
ACAS X	Numeric Trajectory	0.48 sec	6.6 MB	$0.04 \sec$	188 KB
ACAS X	Numeric Rectangle	0.51 sec	6.6 MB	0.2 sec	325 KB
ACAS X	Fully Symbolic	0.57 sec	6.6 MB	$1.1 \mathrm{sec}$	$1.8 \ \mathrm{MB}$

Better results **bolded**. DNF: example did not finish in 8+ hours. *: incorrect answer

 $\begin{cases} cx^2 & \text{for } b > x \\ b^2c + 2bc\left(-b + x\right) & \text{otherwise} \end{cases}$ ACAS X

fmcad.²²

Example	Instance	Active Corners Time	Active Corners RAM	CAD Time	CAD RAM
UAV	Fully Numeric	0.48 sec	7.1 MB	2381 * sec	30.89 MB
UAV	Numeric Trajectory	0.82 sec	8.4 MB	DNF	50+ GB
UAV	Numeric Hexagon	38 sec	22 MB	DNF	100+ GB
UAV	Fully Symbolic	$45 \sec$	$24 \mathrm{MB}$	DNF	100+ GB
Dubins	Fully Numeric	1.2 sec	9.0 MB	DNF	11+ GB
Dubins	Fully Symbolic: Rectangle	$4505 \sec$	91 MB	DNF	4+ GB
Dubins	Fully Symbolic: Hexagon	DNF	N/A	DNF	8+ GB
ACAS X	Fully Numeric	0.13 sec	5.9 MB	0.04 sec	160 KB
ACAS X	Numeric Trajectory	0.48 sec	6.6 MB	$0.04 \sec$	188 KB
ACAS X	Numeric Rectangle	0.51 sec	6.6 MB	0.2 sec	325 KB
ACAS X	Fully Symbolic	0.57 sec	6.6 MB	$1.1 \mathrm{sec}$	$1.8 \ \mathrm{MB}$

Better results **bolded**. DNF: example did not finish in 8+ hours. *: incorrect answer

 $\begin{cases} cx^2 & \text{for } b > x \\ b^2c + 2bc\left(-b + x\right) & \text{otherwise} \end{cases}$ ACAS X

fmcad.²²

$$\begin{cases} \sqrt{R^2 - x^2} & \text{for } x > \frac{R}{\sqrt{\tan^2(\theta) + 1}} \\ R\sin(\theta) - \frac{-R\cos(\theta) + x}{\tan(\theta)} & \text{otherwise} \end{cases} \end{cases}$$

Example	Instance	Active Corners Time	Active Corners RAM	CAD Time	CAD RAM
UAV	Fully Numeric	0.48 sec	7.1 MB	2381 * sec	30.89 MB
UAV	Numeric Trajectory	0.82 sec	$8.4 \ \mathrm{MB}$	DNF	50+ GB
UAV	Numeric Hexagon	38 sec	22 MB	DNF	100+ GB
UAV	Fully Symbolic	$45 \sec$	$24 \mathrm{MB}$	DNF	100+ GB
Dubins	Fully Numeric	1.2 sec	9.0 MB	DNF	11+ GB
Dubins	Fully Symbolic: Rectangle	$4505 \sec$	91 MB	DNF	4+ GB
Dubins	Fully Symbolic: Hexagon	DNF	N/A	DNF	8+ GB
ACAS X	Fully Numeric	0.13 sec	5.9 MB	0.04 sec	160 KB
ACAS X	Numeric Trajectory	0.48 sec	6.6 MB	$0.04 \sec$	188 KB
ACAS X	Numeric Rectangle	0.51 sec	6.6 MB	0.2 sec	325 KB
ACAS X	Fully Symbolic	0.57 sec	6.6 MB	1.1 sec	$1.8 \ \mathrm{MB}$

Better results **bolded**. DNF: example did not finish in 8+ hours. *: incorrect answer

$$\begin{cases} \sqrt{R^2 - x^2} & \text{for } x > \frac{R}{\sqrt{\tan^2(\theta) + 1}} \\ R \sin(\theta) - \frac{-R \cos(\theta) + x}{\tan(\theta)} & \text{for } p < x \\ \frac{R}{\sin(\theta)} - \frac{p}{\tan(\theta)} - \sqrt{\frac{p^2}{\cos^2(\theta)} - (-2p + x)^2} + |p \tan(\theta)| & \text{for } b < x \\ \frac{R}{\sin(\theta)} - \frac{p}{\tan(\theta)} + \frac{(-b + x)(-2p + x)|\cos(\theta)|}{\sqrt{p^2 - (b - 2p)^2 \cos^2(\theta)}} - \frac{\sqrt{-b^2 \cos^2(\theta) + 4bp \cos^2(\theta) - 4p^2 \cos^2(\theta) + p^2}}{|\cos(\theta)|} + |p \tan(\theta)| & \text{otherwise} \\ \end{bmatrix}$$

$$Dubins$$

fmcad.²²