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Background: Pushdown Reachability

We are interested in reachability!

E.g. to check for safety:
Can a system get into some bad configuration?

Or more generally:
Let C be a set of initial configurations.
Let C' be a set of final configurations.

Is C' reachable from C?  

Applications:
• Interprocedural control-flow analysis of recursive programs
• Static analysis of Java, C and C++.
• Communication network analysis
• Analysis MPLS communication protocols.

∃c ∈ C, c′ ∈ C′ . c ⇒* c′ 
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• For set  of configurations define:

• Predecessors: 
• All configurations that can reach C.

• Successors:    
• All configurations that C can reach.

• C, pre*(C), and post*(C) can be infinite.

• Rephrasing reachability of C' from C:
 ?  

Is there a configura<on that is ini<al and can reach the finals? 

• For regular sets: We can calculate pre* and decide reachability!

𝐶 ⊆ 𝑃 × Γ∗

𝑝𝑟𝑒∗(𝐶)  = {𝑐  |  ∃𝑐′ ∈ 𝐶,   𝑐 ⇒∗ 𝑐′ }

𝑝𝑜𝑠𝑡∗(𝐶) = {𝑐  |  ∃𝑐′ ∈ 𝐶,   𝑐′ ⇒∗ 𝑐}

C ∩ pre * (C′ ) ≠ ∅

Background: Reachability
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For a regular set of configurations ,  is regular.  [Büchi 1964]

Saturation procedure in polynomial time  [CONCUR’97, INFINITY’97] 
Algorithm with improved complexity  [S. Schwoon 2002] 
Fast algorithm in practice                        [ATVA'21]

Add transitions to P-Automaton until saturation.

𝐶 𝑝𝑟𝑒∗(𝐶)
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Background: P-automata

P-automata are representations of regular sets of configuration.
Here is an example:

14

-automaton𝒫

𝑙𝑎𝑛𝑔(𝒜) =
{⟨𝑝2, 𝑦𝑥⟩, ⟨𝑝3,  𝑥𝑥⟩}

𝐶

Set of configurations

example

𝑝1

𝑝2

𝑝3

𝑞1

𝑦
𝑞2

𝑥
𝑥

𝒜

Sets recognized by some -automaton are called regular.

For these sets pre* can be calculated!
We will now look at why and how.

𝒫



Background: Example of  saturation procedure𝑝𝑟𝑒∗

15

𝑝2

𝑝1

𝑝3

𝑦; push(𝑥)

𝑥; swap(𝑦)

𝑥; pop

𝑦; swap(𝑥)

𝒫
Pushdown system

lang(𝒜) = {⟨p2, yx⟩, ⟨p3, xx⟩}

𝐶

Set of configurations



Background: Example of  saturation procedure𝑝𝑟𝑒∗

16

𝑝2

𝑝1

𝑝3

𝑦; push(𝑥)

𝑥; swap(𝑦)

𝑥; pop

𝑦; swap(𝑥)

𝒫
Pushdown system

𝑝1

𝑝2

𝑝3

𝑞1

𝑦

𝑞2
𝑦

𝑥

𝒫-automaton
𝒜

lang(𝒜) = {⟨p2, yx⟩, ⟨p3, xx⟩}

𝐶

Set of configurations



Background: Example of  saturation procedure𝑝𝑟𝑒∗

16

𝑝2

𝑝1

𝑝3

𝑦; push(𝑥)

𝑥; swap(𝑦)

𝑥; pop

𝑦; swap(𝑥)

𝒫
Pushdown system

𝑝1

𝑝2

𝑝3

𝑞1

𝑦

𝑞2
𝑦

𝑥

𝒫-automaton
𝒜

𝑝1

𝑝2

𝑝3

𝑞1 𝑞2
𝑦

𝑦

𝑥

Saturated 𝒫-automaton
𝒜′ 

𝑥

𝑦
𝑥

lang(𝒜) = {⟨p2, yx⟩, ⟨p3, xx⟩}

𝐶

Set of configurations

𝑦



Background: Example of  saturation procedure𝑝𝑟𝑒∗

16

𝑝2

𝑝1

𝑝3

𝑦; push(𝑥)

𝑥; swap(𝑦)

𝑥; pop

𝑦; swap(𝑥)

𝒫
Pushdown system

𝑝1

𝑝2

𝑝3

𝑞1

𝑦

𝑞2
𝑦

𝑥

𝒫-automaton
𝒜

𝑝1

𝑝2

𝑝3

𝑞1 𝑞2
𝑦

𝑦

𝑥

Saturated 𝒫-automaton
𝒜′ 

𝑥

𝑦
𝑥

lang(𝒜) = {⟨p2, yx⟩, ⟨p3, xx⟩}

𝐶

Set of configurations

 

 

 

lang(𝒜′ ) = {⟨p1, y⟩, ⟨p1, xy⟩, ⟨p2, yy⟩}
∪ {⟨p2, xynxy⟩ |n ≥ 0}
∪ {⟨p2, ynxy⟩ |n > 0}

𝑝𝑟𝑒∗(𝐶 )

Set of predecessor configurations

𝑦
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This can be done in polynomial time.



PDAAAL

An implementation of pushdown reachability.

Used in particular for analysis of MPLS communication protocols.

Based on pre*, post* and a new algorithm dual*. [ATVA'21]

What if PDAAAL has a bug?

We want to avoid that!

18
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PDAAAL output (Yes/No)

output' (Yes/No)

=
?

What is the ideal tool to test against?

Input Another tool
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PDAAAL output (Yes/No)

output' (Yes/No)

=
?

Oracle
Input



Oracle

How do we build an              ? 

With Isabelle/HOL!

22

Oracle



Isabelle/HOL
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Isabelle/HOL
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Isabelle/HOL
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inductive pre_star_rule where  
 "(p, γ) ↪ (p', w) ⟹  
 (Init p', lbl w, q) ∈ LTS.trans_star A ⟹ 
 (Init p, γ, q) ∉ A ⟹  
 pre_star_rule A (A ∪ {(Init p, γ, q)})"

pre_star_rule is the least relation
satisfying the above implication



Isabelle/HOL
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Isabelle/HOL
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Formalized Correctness Theorem

28

We prove similar theorems for post* and dual*.

Total effort:
  4400 Isabelle LOC.  ~2 person months.



We followed [S. Schwoon 2002].
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Differential testing
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PDAAAL

Input

output (Yes/No)

output' (Yes/No)

=
?

Oracle

What do we pick for the input?



What do we pick for the input?
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Phase 1
• Real world test from the network domain
• In total: 25 512 test cases.

Phase 2
• Randomly generated pushdown systems

• 4 control locations, 5 labels, up to 200 pushdown rules, up to 13 
automata transitions

• In total: 15 000 test cases.

Phase 3
• Exhaustive testing up to a small size

• 2 control locations, 2 stack symbols, up to 2 pushdown rules, automata 
with respectively 2 and 1 initial state, up to 2 automata transitions

• In total: 27 000 000 test cases.
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Differential testing
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=

PDAAAL and the oracle agree!

PDAAAL

Phase 1
Network domain

output (Yes/No)

output' (Yes/No)

Oracle
Input
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Differential testing
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Phase 2
Random tests

PDAAAL output (Yes/No)

output' (Yes/No)

Oracle
Input

=
?



Differential testing
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Phase 2
Random tests

≠

~1500 test where they disagree!

PDAAAL output (Yes/No)

output' (Yes/No)

Oracle
Input



Let's look at an example
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Let's look at an example
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It's hard to diagnose
the problem on big 
examples like this.



Delta Debugging

40

• We implement Delta Debugging.
• Fully automatic minimization of failing test cases.

• A failing test case is seen as a set of features.
• Delta Debugging checks if some subset also fails.
• Does so until a minimal set is found.

• We fix the set of features to contain
• (i) each pushdown rule, 
• (ii) each transition in either of the P-automata, 
• (iii) each final state in a P-automaton 

• (as opposed to it not being final).



Result

41



What was the problem?

• We looked at a number of minimized failing test cases.
• Common trait: P-automaton  accepted the empty word.

• The problem:
• ε-transitions were not handled correctly by PDAAALs intersection 

algorithm.

A′ 
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We fixed the bug and ran the tests.
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46

Phase 2
Random tests

PDAAAL output (Yes/No)

output' (Yes/No)
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Input

=
?



Differential testing
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Phase 2
Random tests

≠

PDAAAL output (Yes/No)

output' (Yes/No)

Oracle
Input

1 test where they disagree!



Fixing another bug

We minimized the input.
We diagnosed the problem.

It involves PDAAAL's implementation of early termination.
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PDAAALs algorithm
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PDAAAL does not do 1., 2., 3. in sequence like this.
Instead it follows this idea:
When an edge is added in the calculation of pre*(A'):
       Corresponding edges are added in calculation of intersection.
       Check if intersection is non-empty.

Given a PDA, a P-automaton A, and a P-automaton A':
1. Calculate pre*(A')
2. Calculate intersection automaton:  A ∩ pre*(A')

3. If A ∩ pre*(A') is non-empty

return "Reachable"
else

return "Non-reachable"



Fixing the bug

Algorithm:     Automata transitions updated before nonemptiness check.
In PDAAAL:   Automata transitions updated after nonemptiness check.

Should happen before.

Commit fixing the problem:

50



Differential testing
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=

PDAAAL and the oracle agree!

PDAAAL

Phase 1
Network domain
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output' (Yes/No)

Oracle
Input



Differential testing
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Phase 2
Random tests
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=



Differential testing

53

Phase 3
Exhaustive tests

PDAAAL output (Yes/No)
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=
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Differential testing
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≠

PDAAAL output (Yes/No)

output' (Yes/No)

Oracle
Input

Thousands of test where they 
disagree!

Phase 3
Exhaustive tests



Fixing another bug

We minimized the input.
We diagnosed the problem.

It involves PDAAAL's parser.

55



Fixing another bug
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PDAAAL's parser
Pushdown rule
data structure

Assumes rules can be 
added without knowing 
labels in advance.

Assumes all labels are 
known in advance.



Fixing another bug
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PDAAAL's parser
Pushdown rule
data structure

Assumes rules can be 
added without knowing 
labels in advance.

Assumes all labels are 
known in advance.

A mismatch!



We fixed the bug and ran the tests.
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Differential testing after fixing the mistakes
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=
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Input
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Differential testing after fixing the mistakes
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Differential testing after fixing the mistakes
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PDAAAL output (Yes/No)

output' (Yes/No)

=

Oracle

PDAAAL and the oracle agree!

Input
Phase 3

Exhaustive tests



Conclusion

On the "theory level":
We formalized correctness of post*, pre* and dual*.
Thus PDAAAL is based on correct algorithms.

On the "implementation level":
A fully automatic toolchain for improving tools for pushdown reachability
1. It does differential testing against our oracle.
2. It automatically minimizes counter examples using delta debugging.

The toolchain helped us find bugs in PDAAAL.
We have fixed these bugs.
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Thank you 😀
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For the network test cases
The average CPU time (on AMD EPYC 7642 processors
at 1.5 GHz) per test case was 35 seconds for Isabelle,
while PDAAAL used less than 0.02 seconds on most cases.

Execution
The execution of all tests in the three phases took 303 CPU days. 
We executed the tests on a compute cluster with 1 536 CPU cores.

Performance


