
Automatically Converting Axiomatic
to Operational Models

Adwait Godbole1 Yatin A. Manerkar2 Sanjit A. Seshia1
1University of California, Berkeley 2University of Michigan

FMCAD 2022

Axiomatic vs. Operational

Axiomatic models - specification oriented:

“Behaviour of counter: it is incremented by one and resets at 15”

Operational models - implementation oriented:

2

counter : bv4

repeat(*)
 counter <= counter + 1;

Axiomatic vs. Operational

Axiomatic models produce validity judgements over executions:

Execution → { Valid, Invalid }

Operational models produce valid executions:

* → Execution (Valid by definition)

3

Operational models are useful

- structural composition with system-under-test

- leveraging existing MC techniques

- compilation to substrates (hardware/emulation platforms)

4

Desire

Convert a given axiomatic model into an equivalent
operational model

5

Desire

Convert a given axiomatic model into an equivalent
operational model

6

???

???

???

Outline

- Axiomatic microarchitectural models

- Theoretical results

- Underapproximation and axiom automata

- Case studies

7

Microarchitectural models

Architectural execution

“net effect” of instructions

Microarchitectural execution

intra-instruction detail

8

Microarchitectural execution proceeds in stages

μspec: Axiomatic microarchitectural models

9

Modelling feature:

Decompose instruction execution into events

Axioms allow specification of orderings
between events:

“FP add will reach A4 before previous FP multiply reaches M7”

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

10Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

11Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

quantification
over instructions

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

12Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

events

quantification
over instructions

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

13Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

events

predicates over instructions
quantification

over instructions

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

14Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

events

predicates over instructions

happens-before
predicate

quantification
over instructions

μspec: a DSL for microarchitectural ordering models

Formalizes the syntax and semantics of ordering axioms

15Lustig et al. “COATCheck: Verifying Memory Ordering at the Hardware-OS Interface” [ASPLOS 2016]

events

predicates over instructions

happens-before
predicate

quantification
over instructions

Axioms are interpreted over graphs

16

Choice of axiomatic framework: μspec

μspec has been used widely

- memory consistency PipeCheck [MICRO 14]

- verification against RTL RTLCheck [MICRO 17]

- cache coherence CCICheck [MICRO 15]

- security analysis CheckMate [MICRO 19]

has semantic resemblance with event structure-like models

17

Manual axiomatic ←→ operational equivalence

18

Problem statement

Convert a given axiomatic model into an equivalent
operational model

19

μspec

???

???

Operational model

20

i0 i1 … …

i0 i1 … …

totally ordered sequence of events:
i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

Formally:
Multi-input, single-output transducer

Operational model

21

control state

input tapes with
instructions

transition (outputs)
labelled with events

i0 i1 … …

i0 i1 … …

totally ordered sequence of events:
i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

Operational model

22

control state

input tapes with
instructions

transition (outputs)
labelled with events

Desideratum: finite state

finite control
state

bounded history
of instructions

i0 i1 … …

i0 i1 … …

totally ordered sequence of events:
i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

Outline

- Axiomatic microarchitectural models

- Theoretical results

- Underapproximation and axiom automata

- Experimental results

23

Problem statement

Convert a given axiomatic model into an equivalent
operational model

24

μspec

transducer-like
model

???

Alignment issues

25

Axiomatic model

Execution → { Valid, Invalid }

Operational model

* → Execution

Partially ordered executions Totally ordered executions

Validity only over complete
executions

Incremental generation of
execution requires validity
judgement at each step

i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

Alignment issues

26

Axiomatic model

Execution → { Valid, Invalid }

Operational model

* → Execution

Partially ordered executions Totally ordered executions

Validity only over complete
executions

Incremental generation of
execution requires validity
judgement at each step

i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

(consider linearizations)

(local liveness guarantee)

Alignment issues

27

Axiomatic model

Execution → { Valid, Invalid }

Operational model

* → Execution

Partially ordered executions Totally ordered executions

Validity only over complete
executions

Incremental generation of
execution requires validity
judgement at each step

i0.Fet i0.Fet i0.Exe … i1.Exe i1.Exe

(consider linearizations)

(local liveness guarantee)

refinability

extensibility

Refinability and extensibility

Refinability:

Linearizations of valid graphs are valid

Extensibility:

Partial executions can be stitched together to form valid complete executions

28

Refinability and extensibility

Refinability:

Linearizations of valid graphs are valid

Extensibility:

Partial executions can be stitched together to form valid complete executions

μspecRE: subset of μspec which has refinable and extensible axioms

29

efficiently
checkable

efficiently
checkable

Equivalence

Operational model Axiomatic model

Soundness

Every generated execution… should be a linearization of a
valid graph

Completeness

All linearizations should be
generated…

for every valid graph.

30

Impossibility result

Thm 1. Axiomatic to (finite) operational models conversion is not generally
possible

Axiom A#: “order of T-events should be identical to order of S-events”

31

Impossibility result

Thm 1. Axiomatic to (finite) operational models conversion is not generally
possible

Axiom A#: “order of T-events should be identical to order of S-events”

32

…
i2 i1

8

i7 …
…

i2 i1
8

i7 …
⇒

- Axiomatic microarchitectural models

- Theoretical results

- Underapproximation and axiom automata

- Case studies

Outline

33

Bounded reorderings

Relax completeness to t-bounded completeness

t-bounded completeness:

- Reordering depth is limited to
t instructions

- A core cannot be starved while > t
instructions execute on another

34

ik … ik+t

ik … ik+t

ij

Axiom automata

Monitor for axiom violation

Key result: only bounded-many automata for t-bounded executions

⇒ Thm 2. finite state operationalization is possible for t-bounded executions

35

Outline

- Axiomatic microarchitectural models

- Theoretical results

- Under-approximation and axiom automata

- Case studies

36

Case studies

37

1. Applying symbolic TS techniques (e.g. PDR) for axiomatic models

Case studies

2. Technique is not limited to processor pipelines

Verification of host interface for SDRAM controller

3. Also can help in bug hunting

RAW dependency violation in OoO processor due to incorrect RAT reset

38

writes, reads and SDRAM bank refresh

Future work

1. Static checks (e.g. type systems) for μspecRE

2. Quantitative extensions to μspec

3. Richer operational models

39

Conclusion

Contributions at a glance:

40

Conclusion

Contributions at a glance:

- Study of the alignment problem between axiomatic and operational models
Refinability and extensibility

41

Conclusion

Contributions at a glance:

- Study of the alignment problem between axiomatic and operational models
Refinability and extensibility

- General μspec makes for a costly verification problem
Finite operationalization is not possible unconditionally

42

Conclusion

Contributions at a glance:

- Study of the alignment problem between axiomatic and operational models
Refinability and extensibility

- General μspec makes for a costly verification problem
Finite operationalization is not possible unconditionally

- Underapproximations are possible and useful
t-bounded underapproximation allows finite operationalization

43

Conclusion

Contributions at a glance:

- Study of the alignment problem between axiomatic and operational models
Refinability and extensibility

- General μspec makes for a costly verification problem
Finite operationalization is not possible unconditionally

- Underapproximations are possible and useful
t-bounded underapproximation allows finite operationalization

- Operationalization has verification value
More easily connects with HW design
Opens the door to TS-based model checking 44

END

45

