_Formally Verified Quite OK

Image Format
With Stainless

Mario Bucev Viktor Kuncéak

EPFL IC LARA
FMCAD’22, October 215t 2022

=Pi-L

The Quite OK Image Format (QOIl)

e Invented by Dominic Szablewski, announced a first version
the 24" Nov. 2021

o Finalized the 20t December

e Efficient and simple lossless image compression algorithm

o Cimplementation with 311 LOC

o Similar compressionratio as 1ibpng

o 3-4x and 30x higher throughput for decoding and encoding
e Only4 methods to encode pixels!

o RLE, dictionary, A color, full RGB(A)

Stainless

;i | —> Stainless

Scala program
+ contracts

Stainless

pA-qV f(z,y)

—> Stainless _»| -

z<yVz €S

Scala program Verification
+ contracts Conditions

Stainless

pA-qV f(z,y)

—>» Stainless _»| =« _5 Inox

r<yVzeS

Scala program Verification
+ contracts Conditions

Stainless

pA-qV f(z,y)

—> Stainless _»>|«e-»| _5 |nox —» SMT Solvers

r<yVzeS

Scala program Verification
+ contracts Conditions

Stainless

pA-qV f(z,y) m

—>» Stainless _»|=w-+| _5 Inox — SMT Solvers

z<yvVzeSs

Scala program Verification
+ contracts Conditions

Icon borrowed from chess.com

7

Stainless

—>» Stainless ™~_»

pA=qV f(z,y)
tail(zs) = ys
z<yVzeS

— Inox — SMT Solvers

Scala program Verification
+ contracts Conditions

Icon borrowed from chess.com

8

Stainless

Scala program

+ contracts

pA-qV f(z,y)

Stainless _»|==-+| X5 lnox %5 SMT Solvers

r<yVzeS

Verification
Conditions

zs — Cons(1,Cons(2, Nil))
ys — Nil

Sound & complete for
counterexamples

Icon borrowed from Google Fonts

9

Stainless

. pA-qV f(z,y)
—> Stainless _»>|=~-»| £ |nox X5 SMT Solvers

r<yVzeSs

Scala program Verification
+ contracts Conditions
Sound for

. .
Va I I d Ity Icon borrowed from Google Fonts
10

Stainless

;i —> Stainless —~_»

Scala program C program

11

Stainless & QOI: what to verify

e Algorithmic correctness: decoding is the inverse of encoding
o Why isinvertibility the right high-level property to check?
o Because it guarantees no data loss
o For compression, it can be empirically checked

e Enforced properties: runtime safety, termination, invariants

12

Stainless & QOI

def decodeEncodelsIdentityThm(pixels: Array[Byte], w: Long, h: Long, chan: Long): Boolean = {
require (inputInv (pixels, w, h, chan))

val EncodedResult (bytes, outPos) = encode(pixels, w, h, chan)

decode (bytes, outPos) match

case SomeMut (DecodedResult (decodedPixels, ww, hh, cchan)) =>
WW == W &&
hh == h &&
cchan == chan &&
arraysEqg(pixels, decodedPixels, 0, pixels.length)

case NoneMut () => false

} .holds

Stainless & QOI

def decodeEncodeIsIdentityThm(ppixels: Array[Byte],

W?

Long,

h: Long,

chan: Long): Boolean =

requireqinputlnv(pixels, w, h, chan)

Vpixels,w,h,chan
within bounds

{

14

Stainless & QOI

def decodeEncodeIsIdentityThm(pixels: Array|[Byte], w: Long, h: Long, chan: Long): Boolean = {

decode (bytes, outPos) match N
case SomeMut (DecodedResult (decodedPixels, ww, hh, cchan)) =>
WW == W &&
hh == h && > this expressionis true
cchan == chan &&

arraysEqg(pixels, decodedPixels, 0, pixels.length)
case NoneMut () => false
}.holds

Stainless & QOI

def decodeEncodeIsIdentityThm(pixels: Array|[Byte], w: Long, h: Long, chan: Long): Boolean = {

val EncodedResult (bytes, outPos) = encode(pixels, w, h, chan)

decode (bytes, outPos) Decoding what we just encoded must...

16

Stainless & QOI

def decodeEncodeIsIdentityThm(pixels: Array|[Byte], w: Long, h: Long, chan: Long): Boolean = {

decode (bytes, outPos) match

case NoneMut() => false always succeed (decoding cannot fail)

17

Stainless & QOI

def decodeEncodeIsIdentityThm(pixels: Array|[Byte], w: Long, h: Long, chan: Long): Boolean = {

decode (bytes, outPos) match

case SomeMut (DecodedResult (, Ww, hh,)) => . . .
— yield animage whose dimensions match
hh - 1 the original one...

18

Stainless & QOI

def decodeEncodeIlsIdentityThm(pixels: Array[Byte],

decode (bytes,

case SomeMut (DecodedResult (

outPos)

cchan

chan

match

W?

Long, h: Long, chan: Long): Boolean = {

cchan))

=>

...with the same # of channels...

19

Stainless & QOI

def decodeEncodeIsIdentityThm(pixels: Array|[Byte], w: Long, h: Long, chan: Long): Boolean = {

decode (bytes, outPos) match

case SomeMut (DecodedResult (decodedPixels)y) =>

arraysEqg(pixels, decodedPixels, 0, pixels.length) ...and identical piXGlS

Verification endeavor

e ~4to5weekstoimplement & formally verify

e Afirst version using imperative loops was quickly out

o Proving runtime safety was easy

o Specifying interesting properties was inconvenient :(

e Multiple rewrites were needed to achieve invertibility
o Leverage recursion instead and split code parts into small functions

e Verification cache was helpful during these iterations

21

Restructuration example
def encode (...) = {

require(...)

if remaining then

if rle then

else
if otherRLE then
if dictionary then
else.if diff then
else

assert(...)

encode(...)

} .ensuring(...)

22

Restructuration example

def encode (...) = {
require(...)

if remaining then

if rle then

else
if otherRLE then
if dictionary then
else if diff then

else

assert(...)
encode(...)

} .ensuring(...)

Main encoding logic

23

Restructuration example

def encode (...) = {
require(...)

if remaining then

if rle then

else
if otherRLE then
if dictionary then
else if diff then

else /

assert(...)

- Express properties about encoding

encode(...)

} .ensuring(...)

24

Restructuration example

def encode (...) = {
require(...)

if remaining then

if rle then

else
if otherRLE then
if dictionary then
else if diff then

else

assert(...)

encode(...)

}|.ensuring(...)

Implementation details result in huge VCs
Postcondition is too hard to prove!

25

Restructuration example

if rle then

else

if otherRLE then def encodeSingleStep (...) =
require(...)
if rle then
if dictionary then
else

else if diff then if otherRLE then

else

if dictionary then

else if diff then

else

Restructuration example

def encode(...) =

{

def encode (...) = {

require(...)

if remaining then

encode(...)

} .ensuring(...)

>

def encodeSingleStep (...

require(...)

if remaining then

encodeSingleStep (...

encode (...)

27

Restructuration example

assert(...)

def encode (...) = {

}
def encodeSingleStep (...)

}|. ensuring (.. .)

{

28

Restructuration example
def encode (...) = {
require(...)

if remaining then

IencodeSingleStep(...)

encode (...)

Only the core, desired } .ensuring(...)
properties are visible [eopaque] des encodesingiesten (...) =

}|. ensuring (.. .)

Restructuration example

Do the same for RLE

Qopaque def encodeSingleStep (...)

if

rle then

=
el

se'

—

if otherRLE then

30

Take away

e The main efforts arein:
o Structuring the implementation to ease verification

o Abstracting away details to describe high-level properties

31

Verification statistics

e Without proof code, our Scala implementationis 313 LOC
o Against 311 for the C reference

e With proof code, it reaches 2789 LOC
o Of which 1405 are dedicated to lemmas

e 42 lemmas, of which 19 are general-purpose
e 3591 Verification Conditions (VCs)
e ~50minstorunona20-coresserver

o 66% of VCs are dedicated to checking preconditions and 22% to assertions

32

C code generation with Stainless

e Theimplementation happens to follow the C codegen restrictions

e Ghost code (contracts, assertion) is erased

e Generated C code has 661 LOC (against 311 for the reference)

e With-O3, the generated code is on-par with the reference for both encoding and decoding

o Modern C compilers are amazing :)

Decoding [MP/s] Encoding [MP/s]

Reference 90.92 86.24

Transpiled 97.65 84.45

33

Final words

e QOlisasimpleyet practical image compression algorithm
e Weproved its correctness with Stainless
o Implementation adaptation and restructuration helped in that regard
e Thetranspiled C code exhibits similar performance as the reference
o Verified code does not need to compromise over performance
e Stainless project: https://github.com/epfl-lara/stainless
e QOI Case Study: https://github.com/epfl-lara/bolts/tree/master/qoi

[=] Zre [l

(=] 2%

Stainless

34

FIRST-AID SLIDES

OPEN IN CASE OF WICKED QUESTIONS

THIS DECK IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED SUCCESS

VCs (tree) size distribution

500 A

400 A

300 A

VCs

200 ~

100 A

0 500 1000 1500 2000 2500
VC size

-

Unusually large

Very large

Bounds requirements

def inputInv (pixels: Array[Byte], w: Long, h: Long, chan: Long): Boolean =
< w && w <= MaxWidth &&
< h && h <= MaxHeight &&

<= chan && chan <= 4 &&

5 w o o

* h * chan == pixels.length

Invertibility?

def encode (img: Array[Byte]): Array[Byte] = img

def decode (data: Array[Byte]): Array[Byte] = img

def bigBrain(img: Array|[Byte]): Boolean = ({
decode (encode (img)) == img

} .holds

e Oh no, there goes our contribution :(

Invertibility?

def encode (img: Array[Byte]): Array[Byte] = img

def decode (data: Array[Byte]): Array[Byte] = img

def bigBrain(img: Array|[Byte]): Boolean = ({
decode (encode (img)) == img

} .holds

B e R
e Thissolution does not adhere to QO specifications

e Canwe be certain ours does?

e No, but we can be sure data is never lost by the implemented compression
(whether or not it follows the QOI format)

On the trustworthiness of Stainless

& epfl-lara/ stainless @ epfl-lara/inox pubic

<> Code (©) Issues 232 ¢> Code (%) Issues 10

On the trustworthiness of Stainless

& epfl-lara/ stainless & epfl-lara/inox pubiic

<> Code () Issues 232 ¢> Code (%) Issues 10

e ltistruethe trust we put may not always be justified
e Nevertheless, it increases the confidence we have, more than testing would do

o Though tests are always welcome!

