Learning DFA Decompositions from **Examples and Demonstrations**

Niklas Lauffer*, Beyazit Yalcinkaya*, Marcell Vazquez-Chanlatte, Ameesh Shah, and Sanjit A. Seshia *equal contribution

University of California, Berkeley

Actions = $\left\{ \right.$

З

Actions

 $Pr(slip \downarrow) = 1/32$

Actions

 $Pr(slip \downarrow) = 1/32$

Specification mining

Learning from demonstrations

Learning decompositions

Monolithic specifications can often be difficult to understand

System-level specifications are often conjunctions of sub-specifications

Inductive bias matters when learning from few demonstrations

Contributions

1. SAT-based encoding for identifying a DFA decomposition of a specific size from labeled examples

Contributions

size from labeled examples

1. SAT-based encoding for identifying a DFA decomposition of a specific

2. An algorithm for enumerating the full Pareto-frontier of decompositions

Contributions

size from labeled examples

1. SAT-based encoding for identifying a DFA decomposition of a specific

2. An algorithm for enumerating the full Pareto-frontier of decompositions

3. Experimental analysis and extension to learning from demonstrations

Structure of the talk

- 1. Technical details
- 2. Scalability analysis
- 3. Learning from demonstrations

State merging via coloring

State merging via coloring

State merging via coloring

Implemented as an extension of existing work*

*Ulyantsev, Vladimir & Zakirzyanov, Ilya & Shalyto, Anatoly. (2015). BFS-based Symmetry Breaking Predicates for DFA Identification

A SAT encoding

Implemented as an extension of existing work*

• Each negative example must be rejected by at least one DFA:

*Ulyantsev, Vladimir & Zakirzyanov, Ilya & Shalyto, Anatoly. (2015). BFS-based Symmetry Breaking Predicates for DFA Identification

A SAT encoding

A SAT encoding

Implemented as an extension of existing work*

• Each negative example must be rejected by at least one DFA:

 $v \in V_k \in [n] i \in [m]$

 \bigwedge \bigwedge \bigwedge $v_{\in V_{v_{\pm}} \in V_{\pm} k \in [k]$

$$\begin{array}{c} x_{v,i}^k \implies \neg z_i^k \\ x_k \end{array}$$

• Accepting and rejecting states of *individual* prefix trees cannot be merged:

$$\bigwedge_{i} (x_{v_{-},i}^{k} \wedge \neg z_{i}^{k}) \implies \neg x_{v_{+},i}^{k}$$

*Ulyantsev, Vladimir & Zakirzyanov, Ilya & Shalyto, Anatoly. (2015). BFS-based Symmetry Breaking Predicates for DFA Identification

Structure of the talk

Positive	Negative	
а	Ø	
	b	
	ba	
	ab	
	aab	

Examples

2. Scalability analysis

3. Learning from demonstrations

1. Technical details

Pareto front of DFA decompositions

Structure of the talk

Exan		
Positive	Negative	
a	Ø b ba ab aab	

2. Scalability analysis

3. Learning from demonstrations

1. Technical details

Pareto front of DFA decompositions

Overhead comparable to the monolithic baseline

Baseline, 2 Symbols, 4 DFAs, Time

- This Work, 2 Symbols, 4 DFAs, Time

Baseline, 2 Symbols, 4 DFAs, Time Count

This Work, 2 Symbols, 4 DFAs, Time Count

Overhead comparable to the monolithic baseline

0 100 110 120 130 140 150 160 170 180 190 Count 90 100 110 120 130 140 150 160 170 180 190

Number of Examples

Structure of the talk

- 1. Technical details
- 2. Scalability analysis
- 3. Learning from demonstrations

Learning from demonstrations

6

Actions

 $Pr(slip \downarrow) = 1/32$

40

Demonstration Informed Specification Search (DISS)

Learning from Demonstrations

*Vazquez-Chanlatte, Marcell Jose. Specifications from Demonstrations: Learning, Teaching, and Control. Diss. UC Berkeley, 2022.

Demonstration Informed Specification Search (DISS)

Learning from Demonstrations

*Vazquez-Chanlatte, Marcell Jose. Specifications from Demonstrations: Learning, Teaching, and Control. Diss. UC Berkeley, 2022.

A helpful inductive bias from decompositions

A helpful inductive bias from decompositions

Reach 🗲 while avoiding 🔂. If you ever touch
, you must then touch before reaching 🥖.

Identified monolithic DFA (incorrect)

A helpful inductive bias from decompositions

Reach 🗲 while avoiding 🔂. If you ever touch
, you must then touch before reaching 4.

- Easy to extend to disjunctions and boolean combinations of DFAs ightarrow

Conclusion

Known symmetry-breaking optimization still missing from the encoding