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DeFi in one slide

⬢ Economic process completely
defined by code

⬢ Fairly complex code
⬢ Examples

⬡ Stable coins
⬡ Landing
⬡ Exchange
⬡ Options
⬡ Auctions

⬢ 300 Billion dollars in the bear market



Pain Point:
Financial losses due to bugs in smart contracts 

⬢ Reentrancy attacks $110M

⬢ Rounding Errors $232M

⬢ Price manipulation attacks $486M 

⬢ Other logical mistakes $493M

⬢ Access Control and Governance $1.3B

      

  

     



Why Formally Verify DeFi?

❗ Code is law

💰 Billions of dollars at stake

Σ Code is typically small/modular with natural spec

🐛 But bugs are hard to find
Happens in rare scenarios

🔄 New code is produced frequently

https://www.ibtimes.com/economy-markets

He further revealed that significant safeguards were 
put in place to prevent an attack similar to the 
2023 exploit. For one, Euler went through code 
security provider Certora's verification. "Certora's 
formal verification has successfully proven the 'Holy 
Grail' property for the Eueler v2 Vault, ensuring that 
accounts stay healthy under all conditions. This 
robust approach would have prevented the Euler v1 
vulnerability, providing strong assurance for the 
security-first Euler v2," he explained.

https://www.ibtimes.com/economy-markets
https://www.certora.com/blog/the-holy-grail
https://www.certora.com/blog/the-holy-grail


Agenda

⬢ Overview of the Certora Prover 
technology

⬢ Automatic Market Makers (AMM)

⬢ Blackbox  SMT timeout Mitigation 
applied to AMM



Formal Verification
Prevents Unknown Attacks

https://en.wikipedia.org/wiki/Johari_window

Credit Ernesto Boado

⬢ Security is asymmetric:
⬡ System defenders must rule out all 

vulnerabilities
⬡ Attackers need only find one

⬢ Verification can break the asymmetry 
and rule out unknown threats
⬡ Need to prove the right properties!

https://en.wikipedia.org/wiki/Johari_window
https://x.com/eboadom


The Certora Prover:
Automatic formal verification

Unknown
Timeout

Invariants

Code

Proofs that the 
invariants hold 
forever

A hard to find 
behavior which 
violates the 
invariants

Certora Prover



CI Integration
Verification driven development

Invariants

.sol v1

.sol v2Developer

Iterated

Certora Prover



Mitigating SMT complexity

1. Trust but Verify 
2. Abstract Interpretation:

Recover types
Memory analysis

.SOL
Sol C

.EVM

Decompile

.SPEC
Compile VC generation

.SMT2
SMT Solve

Correctness preserving 
transformations

.TAC Analyze

Report

“We thank all contributors who made this release possible.
Special thanks goes to @johnadtoman of @CertoraInc for
reporting the inline assembly memory side effects bug!”

Solidity
@solidity_lang

Bug

Similar versions for Rust(WASM, eBPF)

Certora Prover Architecture



Simple Example
Money transfer

CODE
transfer (address from, address to, uint256
amount) {
  require (balances[from] ≥ amount);
  balancesFrom = balances[from] - amount;
  balancesTo = balances[to] + amount;
  balances[from] = balancesFrom;
  balances[to] = balancesTo;
}

TEST
From = “Alice”
To = “Alice”
Amount = 18
old.balances(Alice) = 20
new.balances(Alice) = 38

INVARIANT

total = Σ a: address balances[a]

Certora
Prover



Simple Example
Money transfer

CODE
transfer (address from, address to, uint256
amount) {
  require (balances[from] ≥ amount);
  balances[from] := balances[from] - amount;
  balances[to] := balances[to] + amount;
}

PROOF

Σ a:address old.balances[a]

Σ a:address new.balances[a]

INVARIANT

total = Σ a: address balances[a]

Certora
Prover



⬢ Bytecode analysis => Arbitrary code but harder
⬡ Static analysis recovers compiled code properties and identifies compiler errors

⬢ Inline loops and procedures unless specified otherwise
⬢ Heavily rely on static analysis
⬢ Abstractions

⬡ Built in
■ Linear over-approximation

⬡ User defined

Design Decisions



Certora Prover Scaling Techniques

⬢ Static analysis (OOPSLA ‘2024), e.g.:
⬡ Memory analysis
⬡ Pattern rewriter

⬢ Splitting control flow paths
⬢ Parallelisation
⬢ Intervals Rewriter
⬢ Over approximation

⬡ Uninterpreted nonlinear abstractions with axioms
⬢ Quantifiers grounding



Splitting



Splitting
Experimental Evaluation



Parallelisation - Two Main Approaches

⬢ Sequential Splitter:
⬡ One split at a time
⬡ Large parallel smt solvers portfolio

■ Z3, cvc5, cvc4, smtinterpol, bitwuzla, yices, …
■ Various solver configurations & random seeds
■ Various encodings (LIA, NIA, BV)

⬢ Parallel Splitter:
⬡ Many splits in parallel
⬡ Small solvers portfolio per split

Sidenote: we parallelize also solving of individual rules



Parallel Splitter
Experimental Evaluation



⬢ Similar to constant propagation, but propagating intervals of possible 
values of Boolean and numeric expressions

⬢ Both forward and backward propagation, possibly fixpoint
⬢ Remove branches that are unreachable or irrelevant
⬢ Remove/simplify commands that are redundant
⬢ Add explicit assumes to the program about the deduced intervals
⬢ The SMT solvers also do this, so why should we?

⬡ We see the program structure

Interval Rewriter



Interval Rewriter
Experimental Evaluation



Introduction to AMMs

https://dl.acm.org/doi/book/10.5555/2519299

https://dl.acm.org/doi/book/10.5555/2519299


Automatic Market Makers (AMMs)

⬢ A  decentralized source of crypto token exchange between every two 
parties in the blockchain

⬢ Assets (tokens) are provided by any actor (liquidity providers), and are 
aggregated in smart contracts which are usually called pools

⬢ Aggregation of tokens leads to better capital efficiency - the more there 
are, the easier it is to leverage oneself (avoid price slippage)



AMMs(DeFi) vs. Traditional Exchanges

⬢ Usually exchanges work 
according to the ledger model
⬡ Buyers and sellers open positions,

and the ledger aims to match 
between the two parties

⬡ Highly inefficient in a decentralized 
fast environment like a blockchain

⬢ Exchange dynamics 
(transactions) change the price 
based on supply and demand

⬢ AMMs tend to reflect supply 
and demand of the tokens in 
the pool in the pricing 
mechanism



Example - constant product pool

⬢ Very simple (but ubiquitous) type 
of an AMM is a constant product 
pool

⬢ A single pool has two types of 
tokens (e.g. ETH and USDC*) with 
reserves for each, which are the 
sum of all tokens supplied to the 
pool.

⬢ X - total ETH, Y - total USDC

⬢ Every swap (tokens exchange) must 
maintain an invariant:
⬡ X * Y = K = L2 (pricing curve)
⬡ where L is a measure of the total liquidity 

of the pool.

⬢ The price, at any point along the curve, is 
determined by the ratio of tokens:

⬢ P(buy USD, sell ETH) = X / Y

* USDC is the crypto stable coin of USD, being 
equal in worth +- 0.1%.



Example - constant product pool (cont)

Source: Constant Product Automated Market Maker: 
Everything you need to know | by Pari Tomar | Medium

Swap (move along the curve)

Buy Y, Sell X

Price changed 
due to swap!
(Slippage)

https://medium.com/@tomarpari90/constant-product-automated-market-maker-everything-you-need-to-know-5bfeb0251ef2
https://medium.com/@tomarpari90/constant-product-automated-market-maker-everything-you-need-to-know-5bfeb0251ef2


Example - constant product pool (cont)

⬢ Buying more of token X 
increases its price in the pool 
(less reserves - more demand)

⬢ The more liquidity (reserves) 
there is, the more tokens it 
takes to swap to change the 
price

⬢ Liquidity providers (LPs) earn 
swap fees (economical 
incentive to lock tokens)

⬢ Any Pool should always hold 
enough reserves to pay back to 
all of its LPs (Pool solvency - 
everybody wants to withdraw)



Top DeFi AMMs
⬢  $5B

⬢  $1.8B

⬢        Curve $1.8B

⬢  $762M

⬢  $184M



Harnessing SMT Solvers for Reasoning 
about AMMs



Thinking of Properties

⬢ Start with formulating properties 
that characterize the system under 
inspection

⬢ A violation of a fundamental 
property indicates the existence of 
a bug

⬢ A proof of such property (for every 
state and every possible operation) 
is the ultimate goal - the protocol is 
(relatively) safe.

⬢ Assumptions have to be made 
(context, token balance limits, etc.)

⬢ A property is eventually converted 
into several rules, to be 
implemented in CVL



Properties of AMMs

⬢ It’s impossible to buy tokens from a swap() operation without selling any 
(no free tokens!)

⬢ No one can earn from immediate inverse operations (deposit-withdraw, 
swap back and forth)
⬡ No benefits to the issuer from sequences of transactions



What happens in the code?

⬢ Usually every operation inside the 
Pool (the program) involves 
mathematical calculations, based 
on the implementation of the 
pricing curve

⬢ Almost always nonlinear

⬢ In Solidity (Ethereum),
only integer arithmetic is used 
(division rounding errors)

⬢ For example:
⬡ dy = Buy(dx) - how many tokens 

one has to sell (Y)  in order to buy 
(X) of the other.

⬡ dL = liquidity(dX,dY) - how many 
liquidity points one achieves by 
supplying tokens to the pool.

⬢ And these operations are the ones 
we formally test using our rules!



Timeouts

⬢ If the rule is rather complex (many storage state updates, multiple 
function calls), we might encounter a solver timeout

⬢ This means we have no final result whether the rule is correct or not

⬢ But the problem is that even if we reduce the rule to a minimal test, we 
might still get timeouts because the underlying math is highly nonlinear - 
pain point of SMT solvers



Approaches for resolving timeouts

⬢ Modular proofs - smaller steps, less code / paths involved in each rule

⬢ Code summarization

⬢ Over approximations (Linear Integer Arithmetic over-approximation; LIA)
⬡ Builtin
⬡ Abstracting solidity functions

⬢ Modulate solver settings
(splitting depth, increase time per sub-program, custom portfolio)



Resolving timeouts - code summarization

⬢ Code summarization replaces actual code (functionality) with 
uninterpreted functions (behavior / axioms)

⬢ Relies on the idea that in order to prove a claim, one needs only some 
relation between input and output

⬢ All other aspects of the function are useless for the proof and thus could 
be “skipped”

⬢ The summarized function is replaced by an uninterpreted function call
⬢ Saves SMT solving - better performance
⬢ We employ this methodology to pure functions



Example: tick to price conversions (Uniswap)

getSqrtPriceAtTick:

⬢ Inline assembly
⬢ Bitvector operations
⬢ with 256 bits
⬢ Many multiplications
⬢ Fixed-point arithmetic



Code summarization - example

⬢ In UniswapV3/V4, the price range is made discrete according to ticks:
⬡ Square root of price(tick) =                     (as 64+96 bit fixed-point number)

⬢ The code introduces two functions to convert one to the other:
function getSqrtPriceAtTick(int24 tick) internal returns (uint160) - exponent
function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal returns (int24) - logarithm
⬡ Both are highly nonlinear- nightmare for solvers

⬢ Our summary - uninterpreted functions with axioms
function getSqrtPriceAtTickCVL(int24 tick) internal returns (uint160)
function getTickAtSqrtPriceCVL(uint160 sqrtPriceX96) internal returns (int24)
⬡ Monotonicity: x < y ⇒ getSqrtPriceAtTickCVL(x) < getSqrtPriceAtTickCVL(y)
⬡ Inverse: getTickAtSqrtPriceCVL(x) = max{tick | getSqrtPriceAtTickCVL(tick) ≤ x}



Summarization Soundness

⬢ Replacement of code with summary is sound, as long as the function 
satisfies the axioms for every input. We do not miss behavior, but rather 
generalize it - no path is excluded.

⬢ Separately check
⬡ Overflow cases
⬡ Functions satisfy axioms 
⬡ Code error / panic

⬢ Upside: no bugs that were formerly present are excluded
⬢ Downside: Potentially introducing spurious paths that don’t exist in reality 

(false positives)



Summarization Procedure

⬢ We look for “hard” functions in the code and summarize them with 
uninterpreted functions.

⬢ We add axioms if needed, in conjunction to proving those for the 
underlying code (assert and assume).

⬢ Continue until timeouts are resolved.
⬢ If rules are proven - we are done, it means we proved it for the actual code 

too.
⬢ If rules are violated - investigate the counterexample

○ If path is unfeasible - constrain the summary further
○ If path is feasible - Possible bug!



Speedups

*we still summarize basic operations like mulDiv(x,y,z) = x*y/z for reasonable performance.

Original code* With Summarization

Nonlinear operations count 89 - 97 3

Max polynomial degree 10 2

RULE #1

Result - Time UNSAT (Z3) - 2m 41s UNSAT (Z3) - 1m 49s

RULE #2

Result - Time TIMEOUT  (6% UNSAT) UNSAT (several) - 35m 54s (100% UNSAT)

RULE #3

Result - Time UNSAT (Z3, CVC5) - 16m 50s UNSAT (Z3, CVC4) - 3m



Some Recent Success Stories 

1. Formally verified the Holy Grail of Euler V2 
2. Lido Dual Governance mechanism
3. External formal specification competitions with many participants writing 

formal specifications
a. > 100 participants
b. > 5000 rules
c. > $500,000 rewarded
d. Follow us on twitter @certorainc

https://www.certora.com/blog/the-holy-grail


Challenges Prover

1. Specs are hard
a. Mutation testing and Unsat 

Cores help

2. Unpredictability of SMT solvers

3. Ease of use
a. Counterexample 

understanding
b. Timeouts
c. Summarization
d. Soundness
e. Static analysis robustness



Take away

1. Code is law is an interesting concept

2. SMT solvers can be used to formally verify high-leve properties by 
software developers

3. Bugs are very useful to initially explain the value of FV

4. But Proofs is the only way to make FV standard



Come Join Us make FV standard in DeFi and beyond

1. Senior compiler writer

2. FV wizards

3. FV evangelists

4. FV and code security content 
creators

5. Sabbaticals

6. Competition participants
a. Solidity and Rust

7. No interns
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