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A Match Made in Heaven or a Deal with the Devil?

Deduction and Induction
A Match Made in Heaven or a Deal with the Devil?
The
Machine

Stephan Schulz erence g Learning

Engine

[Stephan Schulz’s talk at AITP’16]


https://aitp-conference.org/2016/slides/StSGuidance.pdf
https://aitp-conference.org/2016/

Intuition vs Formal Reasoning — Poincaré vs Hilbert

Henri Poincaré, the great
French genivs, a strong

A believer tn the importonce ==
of Ihuwon intuition.

less greof, the | =5
Grerwian apostle |B57
of the rigorous
exoctress of
logical proof.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]



Quick intro: Prove/Learn feedback loop on formal math

« Done on 57880 Mizar Mathematical Library formal math problems in 2019
« Efficient ML-guidance inside the best ATPs like E prover (ENIGMA)

« Training of the ML-guidance is interleaved with proving harder problems

- Ultimately a 70% improvement over the original E strategy:

« ... from 149383 proofs to 25397 proofs (all in 10s CPU - no cheating)

| S |SoOM) soM|SOM! SEMI|SOME SEM2|SOMS soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
S§% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8%  +58.4

S+ +0 +4364  +6215 | +7774  +8414 | +8407 +8964 | +8822  +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| SOM, SOM, | SOMi; SOMj,
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S— -535 -295 -309 -183

+ 75% of the Mizar corpus (43414) reached in July 2021 - higher times and
many prove/learn cycles: https://github.com/aidreason/ATP_Proofs
+ Details in our Mizar60 paper: https://arxiv.org/abs/2303.06686


https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://github.com/ai4reason/ATP_Proofs
https://arxiv.org/abs/2303.06686
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https://bit.ly/3C0Lwa8

Can you do this in 4 minutes? (human-written code
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proof
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proo

let x be set ; :: according to Tkt : thesis:

assume x in CUA; :: thesis:

then x in (CURT) /\ (CL ab) by A2, A4;
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Shue (.ab.) c= CLA ¢ thesis

proo
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P B+ b/ 20
proof
per cases by cici o.15
suppose nin (pp, ((6's b 7 20) = thesis
5 < nin (B, ((p + ) / 2)) by AI0, st 1mi i+ thesis
suppose min (pp, ((p + b) / 2)) = (p +b) / 2 ; :: thesis:
hence p < min (pp,((p + b) / 2)) by A8, wnea 1.226 thesis
end;
end?

hen consider 0 being rational nunber such that
All: p<Q a

412 0 < nin (pp, (54 B) / 2)) by w7
P +b) /2 <b by A8, meu 12

then min’ (5p, ((p.+ m /2) < n by 49, w
then A13: Q < b by o

i Ty e by anens 0:17;

then 414: (min (pp, ((p + b) / 2))) - p <= pp - p by s
reconsider P = Q as Element of RealSpace by rermic .ser 13, xic
P - p < (in (pp,((p +b) / 2))) - p by A1Z, min 1
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hen Q in A by A2, AI6, xeoolc o

henu Ball (p,r) meets A by A15, 1 :: thesis

e % in CL A by cosouteror romemser 65 ++ thesis



Intro2: Search/Check/Learn feedback loop on OEIS
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Figure 12: Number y of solved OEIS sequences after x iterations



Search-Verify-Train Positive Feedback Loop (OEIS)

programs

Search

examples

+ Small Turing-complete DSL for our programs, e.g.:
2* = [)_42 = loop(2 x x,x,1)
x! =TT,_4 ¥ = loop(y x x,x,1)
+ Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — Machine Learner for Automated Reasoning — MaLARea))

+ However, OEIS allows much faster feedback on symbolic conjecturing
+ 670 iterations and still refuses to plateau - counters RL wisdom?

« Since it interleaves symbolic breakthroughs and statistical learning?

« Cheap: The electricity bill is only $1k-$3k, you can do this at home

+ ~4.5M explanations invented: 50+ different characterizations of primes



Some Invented Explanations for OEIS (

« https://oeis.org/A4578: Expansion of sqrt(8) in base 3:
loop2(((y *y) div (X +Y)) +V, ¥, X + X, 2, loop((1 + 2) * X, X, 2)) mod (1 + 2)

« https://oeis.org/A4001: Hofstadter-Conway $10k seq: a(n) =
a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1:
loop(push(loop(pop(x), y-x,pop(x)),X) + loop(pop(x), x-1, x), x - 1, 1)

« https://oeis.org/A40: prime numbers:
2 + compr((loop(x *y, X, 2) + x) mod (2 + x), X)

« https://oeis.org/A30184: Expand n(q) = n(g%) * n(q°) * n(q") in
powers of g (elliptic curves):
loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (1 + (y +V))) <= 0 then (x + x) else x, 2, y)) else x, y, push(0, y))) + X,
y, push(0, x)), x) divy, x, 1)

« https://oeis.org/A51023: Wolfram’s $30k Rule 30 automaton:
loop2(y, y div 2, x, 1, loop2(loop2((((y div (0 - (2 + 2))) mod 2) + X) + X, ¥
div2,y, 1, loop2(((y mod 2) + X) + x, y div2,y,1,x)),2+V, X, 0, 1)) mod 2


https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A4578
https://oeis.org/A4001
https://oeis.org/A40
https://oeis.org/A30184
https://oeis.org/A51023
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Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
— Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fdngt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
— Novalis, quoted by Popper — The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
— G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science." Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

— R. Hamming - Mathematics on a Distant Planet



History, Motivation, Al/TP/ML

« Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
+ 50s-60s: Beginnings of ATP and ITP — Davis, Simon, Robinson, de Bruijn
- Lenat, Langley: AM, manually-written heuristics, learn Kepler laws,...

+ Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:
Learning from Previous Proof Experience (Tree NNs for ATP, E prover, ...)

« My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar

« Since: Use large formal math corpora: Mizar, Isabelle, HOL, Coq, Lean
... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
... hammer-style methods, internal guidance, feedback loops, ...

« Buzzword bingo timeline: Al vs ML vs NNs vs DL vs LLMs vs AGl vs ...?7
See Ben Goertzel's 2018 Prague talk: https://youtu.be/Zt2HSTuUGBnS


https://youtu.be/Zt2HSTuGBn8

Why Combine Learning and Reasoning Today?

Practically Useful for Verification of Complex HW/SW and Math

Formal Proof of the Kepler Conjecture (2014 — Hales et al — 20k lemmas)
Formal Proof of the Feit-Thompson Theorem (2012 — Gonthier et al)
Verification of several math textbooks and CS algorithms

Verification of compilers (CompCert)

Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
Verification of cryptographic protocols (Amazon), etc.

Blue Sky Al Visions:

Get strong Al by learning/reasoning over large KBs of human thought?
Big formal theories: good semantic approximation of such thinking KBs?
Deep non-contradictory semantics — better than scanning books?

Gradually try learning math/science

automate/verify them, include law, etc. (Leibniz, McCarthy, ..)
* What are the components (inductive/deductive thinking)?
* How to combine them together?

As of 2022/23: Overlaps/analogies/differences with LLMs?



Sample of Learning Approaches

+ neural networks (statistical ML, old!) — backprop, SGD, deep learning,
convolutional, recurrent, attention/transformers, tree NNs, graph NNs, etc.

- decision trees, random forests, gradient boosted trees — find good
classifying attributes (and/or their values); more explainable, often SoTA

- support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

+ k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions, good for online learning (important in ITP)

 haive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features, i.e., just multiplying
probabilities: P(y|X) = P(xy|y) = P(Xa|y) * ... * P(Xaly) = P(y)/P(X)

- inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

- genetic algorithms — evolve large population by crossover and mutation

- various combinations of statistical and symbolic approaches

- supervised, unsupervised, online/incremental, reinforcement
learning (actions, explore/exploit, cumulative reward)



Learning — Features and Data Preprocessing

- Extremely important - if irrelevant, there is no way to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery/engineering — a big field, a bit overshadowed by DL

- Deep Learning (DL) — deep neural nets that automatically find important
high-level features for a task, can be structured (tree/graph NNs)

- Data Augmentation and Selection — how do we generate/select
more/better data to learn on?

- Latent Semantics, PCA, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them; or just use hashing

- word2vec and related/neural methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

- math and theorem proving: syntactic/semantic/computational
patterns/abstractions/programs

+ How do we represent math data (formulas, proofs, models) in our mind?



Learning of Theorem Proving - Overview



Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

« high-level: pre-select a good ATP strategy/portfolio for a problem

« low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs, learn new tactics

- mid-level: invent suitable strategies/procedures for classes of problems
- mid-level: invent suitable conjectures for a problem

+ mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IKTgX to formal



Demos



Al/TP Examples and Demos

« ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPANn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma—ex.pdf) and
simplified Carmichael https://bit.1y/30GBdRz,

+ 3-phase ENIGMA: https://bit.1ly/3C0Lwa8,
https://bit.ly/3BWQR6K

« Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

« Extreme Deepire/AVATAR proof of ¢ = w* nttps://bit.ly/3NedWNX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/outd.ogv

+ TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

+ TacticToe longer: https://www.youtube.com/watch?v=B0O4Y8ynwT6Y

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

« QSynt: Al rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=240ejR9wsXs


https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://www.youtube.com/watch?v=BO4Y8ynwT6Y
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

High-level Reasoning Guidance: Premise Selection



Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\A /—\A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP _

How much can it do?
+ Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
+ HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success by 2016, 60% on Mizar as of 2021



High-level feedback loops — MALARea, ATPBoost

« Machine Learner for Autom. Reasoning (2006) — infinite hammering
feedback loop interleaving ATP with learning premise selection

both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated
winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

\J

initial settings

solve problems
(ATP)
' >
N, YT EEE
<all proved? ——p- st
LI i MalARe] E Zipperpil] Leo-Ill |ATPBoos| GKC | Leodil
N 09 LTB-25 LTB-20 LTB-15 10 LTB05.1 LTB-1.4
-y Solvediomo 7054 000 3393 om0 1699 00m] 1413100| 1237000] 493 u10m| 1341000
leamn i 7054|3393 1699 0] 141310 12371 493 m] 1341
from proofs (ML)
premise
selections (ML)
L 1
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Prove-and-learn loop on MPTP2078 data set
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Low Level Guidance of Theorem Provers



Low-level: Statistical Guidance of Connection Tableau

« learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

- alot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

« good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)

Cr P(X) | \

¢ : Rx, —P(x) v Q(y) R(a, b) —P(a) Q(b)
Cs: S(x v ﬁO b)

s =8(x) v ~Q(x) —R(a,b) Q(b) S(b)  —Q(b)
s —Q(x) v —A(a,x) / N\ / N\

o ~R(EX) v O%) -Q(b) —R(ab) —S(b) —Q(b)



leanCoP: Minimal Prolog FOL Theorem Prover

% prove(Cla, Path, PathLim,Lem, Set)
prove ([ Lit |Cla], Path,PathLim,hLem, Set) :—
(—NeglLit=Lit;—Lit=NegLit) —
(
member (NegL , Path),
unify_with_occurs_check (NegL, NegLit)

% main nondeterminism
lit (NegLit,NegL,Clatl,Grnd1),
unify_with_occurs_check (NegL, NeglLit),
prove (Clal ,[ Lit |Path],PathLim,hLem, Set)
)
prove (Cla, Path, PathLim ,Lem, Set).
prove([] 7_!_!_7_)'



Statistical Guidance of Connection Tableau — rICoP

+ 2018: strong learners via C interface to OCAML (boosted trees)

« remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS) (inspired by AlphaGo/Zero)
« MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

UCT (i) = % +c-pi lr;N (UCT - Kocsis, Szepesvari 2006)

i i

- learning both policy (p) (clause selection) and value (w) (state evaluation)
- clauses represented not by names but also by features (generalize!)

« binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers

« many iterations of proving and learning

+ More recently also with GNNs (Olsak, Rawson, Zombori, ...)



Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

« rlCoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591




ENIGMA (2017): Guiding the Best ATPs like E Prover

- The proof state are two large heaps of clauses processed/ unprocessed
« learn on E’s proof search traces, put classifier in E
+ positive examples: clauses (lemmas) used in the proof
+ negative examples: clauses (lemmas) not used in the proof
+ 2021 multi-phase architecture (combination of different methods):
- fast gradient-boosted decision trees (GBDTs) used in 2 ways

- fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
+ Sparse - vastly more efficient than transformers (~100k symbols)

+ 2021: leapfrogging and Split&Merge:

- aiming at learning reasoning/algo components



Feedback prove/learn loop for ENIGMA on Mizar data

+ Done on 57880 Mizar problems recently

+ Serious ML-guidance breakthrough applied to the best ATPs

- Ultimately a 70% improvement over the original strategy in 2019

+ From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

« Went up to 40k in more iterations and 60s time in 2020

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

| S |SOM) saMI|SOM! SEMI|SOME SEME|SOMS soMd
solved [ 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8%  +58.4

S+ +0 +4364  +6215 +7774  +8414 | +8407 +8964 +8822  +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| sSoMS, SoMp, | SoMy; SeMi
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -635 -295 -309 -183


https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

« The GNN and GBDTs only learn from formula structure, not symbols

+ Not from symbols like + and = as Transformer & Co.

 E.g., learning on additive groups thus transfers to multiplicative groups
+ Evaluation of old-Mizar ENIGMA on 242 new Mizar articles:

+ 13370 new theorems, > 50% of them with new terminology:

+ The 3-phase ENIGMA is 58% better on them than unguided E

« While 53.5% on the old Mizar (where this ENIGMA was trained)

+ Generalizing, analogizing and transfer abilities unusual in the large
transformer models



More Low-Level Guidance of Various Creatures

+ Neural (TNN) clause selection in Vampire (Deepire - M. Suda):
Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.

« Fast and surprisingly good: Extreme Deepire/AVATAR proof of

€0 = w*’ https://bit.ly/3NedWNX

+ 1193-long proof takes about the same resources as one GPT-3/4 reply
+ GNN-based guidance in iProver (Chvalovsky, Korovin, Piepenbrock)

- New (dynamic data) way of training

+ Led to doubled real-time performance of iProver’s instantiation mode

« CVC5: neural & GBDT instantiation guidance (Piepenbrock, Jakubuv)
very recently 20% improvement on Mizar

+ Hints method for Otter/Prover9 (Veroff):

- boost inferences on clauses that match a lemma used in a related proof
+ symbolic ML - can be combined with statistical - proof completion vectors


https://bit.ly/3Ne4WNX

Mid-level Reasoning Guidance



TacticToe: mid-level ITP Guidance (Gauthier'17,18

« TTT learns from human and its own tactical HOL4 proofs
« No translation or reconstruction needed - native tactical proofs
+ Fully integrated with HOL4 and easy to use
- Similar to rlICoP: policy/value learning for applying tactics in a state
- Demo: nttp://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
- However much more technically challenging - a real breakthrough:

« tactic and goal state recording

« tactic argument abstraction

« absolutization of tactic names

 nontrivial evaluation issues

« these issues have often more impact than adding better learners

« policy: which tactic/parameters to choose for a current goal?
« value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar followup work for HOL Light (Google), Coq, Lean, ...


http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

« Tactical guidance of Coq proofs
« Technically very challenging to do right - the Coq internals again nontrivial

+ 39.3% on the Coq standard library, 56.7% in a union with CogHammer
(orthogonal)

« Fast approximate hashing for k-NN makes a lot of difference

- Fast re-learning more important than “cooler”/slower learners

« Fully integrated with Coq, should work for any development

- User friendly, installation friendly, integration/maintenance friendly

« Demo: nttps://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

- Took several years, but could become a common tool for Coq formalizers

+ Recently GNNs added, a major comparison of k-NN, GNN and LMs
(Graph2Tac - https://arxiv.org/abs/2401.02949)


https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
https://arxiv.org/abs/2401.02949

Synthesis



More on Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
« Unrestricted (theory exploration):

« Creation of interesting conjectures based on the previous theory

« One of the most interesting activities mathematicians do (how?)

« Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

« ... just (recursively) divide Fermat into many subtasks ...

- ... and conquer (I mean: hammer) them away



Conjecturing and Proof Synthesis by Neural Methods

- Karpathy’15 - RNN experiments with generating fake Math over Stacks
- | have tried to use that for formal math in 2016 but it looked weak

+ GPT (-2,3) looks stronger
+ Renewed experiments in 2020 (JU & J. Jakubuv: First Neural
Conjecturing Datasets and Experiments. CICM’20) on:

 All Mizar articles, stripped of comments and concatenated together (78M)

« Articles with added context/disambiguation (156M) (types, names, thesis)

» TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

« Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
+ Quickly taken up by others on HOL, Isabelle, MetaMath ...

+ Caveat: Watch for "model pretraining" on undisclosed corpora - often
GitHub/math repos that may contain (translations of) the testing data



Can you find the flaw(s) in this fake GPT-2 proof?

© Applications Places & W ©51471GHz ¢ Wed 1502 Wed 15:02

emacs@dell

RR & Undo W
:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
:thesis: X =Y
card (Y \ X) = (card Y) - (card X) by A1, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\ XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree)

Figure: Fake full declarative GPT-2 “Mizar proof” - typechecks!



Mizar autocompletion server in action

@ Applications Places &

SisjefEEex|slnlela|

< C @ Notsecure | grido1.ciirc.cvut.cz:5500 Q

NUMDEr O SaMples (ewer 1s Taster)

3

Temperature (lower is less chaotic)

1.0

Length of output (shorter is faster)

30

Generate

Sample 1

theorem Tho: :: CARD_1:333
for M, N being Cardinal holds card M c=MV N
proof

let M, N be Cardinal;

Sample 2

theorem Tho: :: CARD_1:333

for M, N being Cardinal holds M ** Nis Cardinal
proof

let M, N be Cardinal; :_thesis: M ** Nis Cardinal
cf(

Sample 3
theorem ThO: :: CARD_1:333
for M, N being Cardinal holds Sum (M --> N) c= M ** N

proof
let M, N be Cardinal; :_thesis: Sum (M

thesis: card M c= M V/

github)

Figure: MGG - Mizar Gibberish Generator.



Proving the conditioned completions - MizAR hammer

© Applications Places &

emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
BERG Save &Undo L]

begin

for M, N being Cardinal holds card M c= MV N by XBOOLE_1:7,CARD_3:44,CARD_1:7,CARD_1:3; ::

for X, Y being finite set st not X is empty & X c=Y & card X = card Y holds X =Y by CARD_FIN:1; ::

for M, N being Cardinal holds
(Min N iff card M c= N ) by Unsolved; :: [ATP details]

for M, N being Cardinal holds
(Min N iff card M in N') by CARD_3:44,CARD_1:9; :: [ATP details]

for M, N being Cardinal holds Sum (M --> N) = M *' N by CARD_2:65; :: [ATP details]

for M, N being Cardinal holds M A (union N) in N by Unsolved; :: [ATP details]

for M, N being Cardinal holds M ** N = N ** M by ATP-Unsolved; :: [ATP details]

-i--- card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)

[ATP details]

[ATP details]

Wed 14:42

Wed 14:42

Wrote /home/urban/mizwrk/7.13.01_4.181.1147/tst8/card_tst.miz



A correct conjecture that was too hard to prove

Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10

for G being finite Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

The generalization that avoids finiteness:

for G being Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative



More cuts

« In total 33100 in this experiment
+ Ca 9k proved by trained ENIGMA
- Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.



QSynt: Semantics-Aware Synthesis of Math Objects

» Long AGI'24 talk on OEIS: https://t.ly/nnwrZ
+ Gauthier (et al) 2019-24

+ Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

« Tree Neural Nets and Monte Carlo Tree Search (a la AlphaZero)

« Recently also various (small) language models with their search methods
« Invent programs for OEIS sequences FROM SCRATCH (no LLM cheats)

+ 127k OEIS sequences (out of 350k) solved so far (700 iterations):
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

- ~4.5M explanations invented: 50+ different characterizations of primes

« Non-neural (Turing complete) symbolic computing and semantics
collaborate with the statistical/neural learning

« Program evolution governed by high-level criteria (Occam, efficiency)


https://t.ly/nnwrZ
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: > 350000 finite sequences

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
:RE%S OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane
235711 || Search | Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2,3,5,7,11

Displaying 1-10 of 1163 results found. page12345678910...117
Sort: relevance | references | number | modified | created Format: long | short | data

q +30

A000040 The prime numbers. e

(Formerly M0652 N0241)
2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,

text; internal format)
OFFSET 1,1

COMMENTS See A065091 for comments, formulas etc. concerning only odd primes. For all
information concerning prime powers, see AB00961. For contributions concerning
"almost primes" see A002808.
A number p is prime if (and only if) it is greater than 1 and has no positive
divisors except 1 and p.
A natural number is prime if and only if it has exactly two (positive) divisors.
A prime has exactlv one proper positive divisor. 1.



Generating programs for OEIS sequences

0,1,3,6,10,15,21, . ..

An undesirable large program:

if x = 0 then 0 else
if x 1 then 1 else
if x 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

5

Il
-

Fast program (efficiency criteria):

nxn+n



Programming language

- Constants: 0,1,2

- Variables: x, y

- Arithmetic: +, —, x, div, mod

- Condition :if ... < 0Othen...else...
- loop(f, a, b) := uz where up = b,

Up = f(Un71 , )

- Two other loop constructs: loop2, a while loop

Example:
2X = [15_42 = loop(2 x x,X, 1)
x! = H;=1 y= /O0,0(y X X, X, 1)



QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
- and an auxiliary set F of binary functions (higher-order arguments)

- are the smallest sets such that 0,1,2,x,y € P, and if a,b,c € P and
f,g € F then:

a+b,a—b,axb,adiv b,amod b,cond(a,b,c) e P
A(x,y).ae F, loop(f, a, b), loop2(f, g, a, b, c),compr(f,a) € P

+ Programs are built in reverse polish notation

« Start from an empty stack

+ Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x,1) , built by:

[1=x [X] =y D6 y] = [X x y] —=x X Xy, X]

= [X X y7X’1] — loop [/OOP(A(va) X X yvxv1)]



QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y,x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x,1)

« —4 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

one-hot —4



QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

[]

[%N’ [

y]
l2 17
[y, x]
/ l6
[x mod y| [x x y]
15

[x mod y,1]



Encoding OEIS for Language Models

- Input sequence is a series of digits
+ Separated by an additional token # at the integer boundaries

+ Output program is a sequence of tokens in Polish notation
- Parsed by us to a syntax tree and translatable to Python

- Example: a(n) = n!

jonancc]
spayespgTRyAY,

NANAN
O e R e
&

NMT layer - l l l l l
=== m
def £(X) 4 // / /

for y in range(1, X+1):

X = x*y _

-
return x = P
- _-- _-
%~ L P



Search-Verify-Train Feedback Loop for OEIS

- search phase: LM synthesizes many programs for input sequences

- typically 240 candidate programs for each input using beam search

+ 84M programs for OEIS in several hours on the GPU (depends on model)
- checking phase: the millions of programs efficiently evaluated

« resource limits used, fast indexing structures for OEIS sequences

« check if the program generates any OEIS sequence (hindsight replay)

+ we keep the shortest (Occams’s razor) and fastest program (efficiency)

+ learning phase: LM trains to translate the “solved” OEIS sequences into
the best program(s) generating them



Search-Verify-Train Feedback Loop

- The weights of the LM either trained from scratch or continuously updated
« This yields new minds vs seasoned experts (who have seen it all)
- We also train experts on varied selections of data, in varied ways
+ Orthogonality: common in theorem proving - different experts help
+ Each iteration of the self-learning loop discovers more solutions

- ... also improves/optimizes existing solutions

+ The alien mathematician thus self-evolves

« Occam’s razor and efficiency are used for its weak supervision

+ Quite different from today’s LLM approaches:

« LLMs do one-time training on everything human-invented

« Our alien instead starts from zero knowledge

- Evolves increasingly nontrivial skills, may diverge from humans

« Turing complete (unlike Go/Chess) — arbitrary complex algorithms



QSynt web interface for program invention

@ Applications Places & ® & #1896 MHz ¢ Mon11:40  Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
» Qsynt:AlrediscoversFer X @ grido1.ciirc.cvut.cz/~thib- X +

C A No e | gridot.diirc.cvut.cz Y% §1 = O @ Incognito (2)

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
[10

Generated integers (maximum 100)
32

| Send || Reset

A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256




QSynt inventing Fermat pseudoprimes

Positive integers k such that 2K =2 mod k. (341 = 11 « 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 | Ren
3+ for i in range (1,X + 1):
4 2
5
6
7
8
9
(x +2) <=0
F1(X)
18~ for x in range(32):

19 print (fo(x))



Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:

f(x) := compr (\(x,vy).(loop2(\(x,y).x + vy, \(x,y).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:

? lucas (n) = fibonacci (n+l)+fibonacci (n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if (b(n)==0,1if (isprime (n),0,print (n))))
1

705

2465

2737

3745



QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2

10 ~+ for x in range(32):
11 print (fo(x))
12




Human Made Technology Jumps
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Singularity Take-Off X-mas Card
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Some Automatic Technology Jumps

* iter 53: expansion/prime: A29363 Expansion of 1/((1 — x*)(1 — x7)(1 — x®)(1 — x'9))

* iter 78: triangle/binomial: A38313 Triangle whose (i,j)-th entry is binomial(i, ) % 10—/ % 11/
« iter 94-5: sum: A100192 a(n) = Sumy—o. nbinomial(2n, n + k) % 2k

* 109-121: sum/triangle: A182013 Triangle of partial sums of Motzkin numbers

* 171-2: base/representation: A39080 n st base-9 repr. has the same number of 0’s and 4’s
» 258: occur/base: A44533 n st “2,0” occurs in the base 7 repr of n but not of n + 1

» 300-304: cyclotomic/polynomial: A14620 Inverse of 611th cyclotomic polynomial

* 379: exp/prime: A124214 E.g.f.: exp(x)/(2 — exp(3  x))1/3

* 419: triangle/coefficient: A15129 Triangle of (Gaussian) g-binomial coefficients for g = —13
* 511,3: digit/base/prime: A260044 Primes with decimal digits in 0,1,3.

* 544: square root: A10538 Decimal expansion of square root of 87.

* 659: 4th root: A11084 Decimal expansion of 4th root of 93.



Generalization of the Solutions to Larger Indices

+ Are the programs correct?

« Can we experimentally verify Occam’s razor?
(implications for how we should be designing ML/Al systems!)

+ OEIS provides additional terms for some of the OEIS entries

- Among 78118 solutions, 40,577 of them have a b-file with 100 terms
+ We evaluate both the small and the fast programs on them

+ Here, 14,701 small and 11,056 fast programs time out.

+ 90.57% of the remaining slow programs check

+ 77.51% for the fast programs

+ This means that SHORTER EXPLANATIONS ARE MORE RELIABLE!
(Occam was right, so why is everybody building trillion-param LLMs??7?)

« Common error: reliance on an approximation of a real number, such as .



Are two QSynt programs equivalent?

+ As with primes, we often find many programs for one OEIS sequence
+ Currently we have almost 2M programs for the 100k sequences
- It may be quite hard to see that the programs are equivalent
+ A simple example for 0, 2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+f(n—1)ifn>0
e g(n)=2x%n
« conjecture: Vne N.g(n) = f(n)
« We can ask mathematicians, but we have thousands of such problems
« Or we can try to ask our ATPs (and thus create a large ATP benchmark)!

+ Here is one SMT encoding by Mikolas Janota:

(set-logic UFLIA)

(define-fun-rec £ ((x Int)) Int (ite (<= x 0) 0 (+ 2 (£ (= x 1))))
(assert (exists ((c Int)) (and (> c 0) (not (= (£ c) (» 2 c))))))
(check-sat)



Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($product(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. $product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iGO0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(sK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2, $sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iG0(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iGO0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s



Thanks and Advertisement

+ Thanks for your attention!

« To push Al methods in math and theorem proving, we organize:
- AITP — Artificial Intelligence and Theorem Proving

+ September 2025, Aussois, France, aitp-conference.org

« ATP/ITP/Math vs Al/ML/AGI people, Computational linguists

+ Discussion-oriented and experimental


aitp-conference.org
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